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1.1 Introduction

The ability to recognize and respond to health threats is an essential part of the survival
and reproductive success of any living organism. Throughout Anthropocene history it
seems that homo sapiens have always been concerned about their health. Therefore,
we have sought for ways to prevent and treat various health conditions, including
herbal remedies, physical activity, and dietary changes. One of the earliest written
records of health care is the Egyptian Ebers Papyrus,1 which dates back to around
1550 BCE. The papyrus contains description of anatomy and function of the human
body, the instruments used by doctors, and different diseases and their remedies.1–3

Furthermore, this document may represent one of the earliest documented observations
of the syndrome of heart failure.3 Meanwhile, according to the 1990-2010 Global Atlas
of Cardiovascular Disease,4 humanity transitioned from a global burden of disease dom-
inated by infectious and maternal conditions to a new world in which cardiovascular
disease (CVD) is the leading cause of morbidity and mortality worldwide.

1.2 Cardiovascular magnetic resonance imaging

Medical imaging plays an important role in the diagnosis, prognosis and management
of CVDs. Currently, cardiovascular magnetic resonance (CMR) imaging is the reference
modality for non-invasive assessment of the morphology and function of the heart5,6

(see Figure 1.1). CMR imaging is non-invasive and, in contrast to cardiac computed
tomography, does not expose the patient to ionizing radiation. Furthermore, the wide
variety of soft tissue contrast available on CMR (LGE, T1, T2, lipid-saturation) can
be applied to vascular imaging to assess features of vessel wall, inflammation, and
atherosclerotic plaque.5 Cardiac MR images (CMRI) used in this thesis were acquired
by using a balanced steady state free precession (balanced SSFP) imaging sequence.
CMRIs acquired with a balanced SSFP pulse sequence contain a high contrast-to-noise
ratio between the dark myocardium and the bright blood pool. This enables accurate
and reproducible assessment of important volumetric (e.g. end-diastolic and end-
systolic volumes) and functional parameters (e.g. ejection fraction) of left and right
ventricles.7 The advantages of CMR are particularly valuable for right ventricular
functional assessment because its complex shape and position behind the breastbone
make it difficult to reliably assess by transthoracic echocardiography.5 In addition, CMR
imaging over time, referred to as cine CMR imaging, enables assessment of cardiac
motion. Figure 1.2 shows an example of cardiac CMR short- and long-axis views that
are typically acquired in current clinical practice.
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Figure 1.1: Anatomy of the human heart (source Wikipedia)

1.3 Deep learning for automatic cardiac MR image analysis

To compute myocardial mass, volumetric and functional parameters, accurate image
segmentation i.e., delineation of myocardial and ventricular structures is essential.
Manual segmentation of cine CMRI short-axis volumes is a laborious task, taking
about 20 to 30 minutes to segment both ventricles in end-diastole and end-systole.8

Moreover, manual segmentation across a complete cardiac cycle, comprising 20 to
40 phases per patient, enables computation of parameters quantifying cardiac strain
and motion with potential diagnostic implications but due to the required workload,
this is practically infeasible. In addition, reproducibility of assessment of cardiac
functional indices based on cine CMRI segmentations is hampered by large intra- and
inter-observer variability.9,10 Automatic CMRI segmentation methods may overcome
such limitations. Furthermore, to identify new biomarkers for improved stratified
diagnosis of cardiomyopathies, automatic CMRI analysis methods, like quality control,
segmentation, localization, super-resolution and registration, are required to analyze
large-scale multi-center CMRI datasets.

To perform aforementioned complex CMR image analysis tasks automatically, over
the past 10 years, deep learning based approaches have become the de facto standard.11

Deep learning in artificial neural networks is a subfield of machine learning which is, in
turn, a subfield of artificial intelligence. A deep learning algorithm searches for patterns
in data (input e.g., paintings) in order to solve a task e.g., classification of paintings
(Vermeer, Rembrandt, Rubens, Hals etc.). Hence, it is not explicitly programmed using
handcrafted rules or heuristics. Quintessentially, a deep learning algorithm aims to
find a mapping from input to output. Running the deep learning algorithm can be
expressed as a function.12 The function consists of parameters that are adjusted and

https://en.wikipedia.org/wiki/Heart
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Figure 1.2: Examples of cardiac MRI (CMRI) (a) short-axis view with left (LV) and right (RV) ventricles;

(b) 4-chamber long-axis view with LV, RV, left (LA) and right (RA) atrium; (c) 2-chamber long-axis view

with LV and LA.

optimized during training (learning phase). A deep learning algorithm is supervised
when trained with labelled i.e., paired input and output data and unsupervised, if
training is performed on input data only. After training, i.e., at test time, the ability of
the algorithm to correctly process new input examples that differ from those used for
training is known as generalization.12

An artificial neural network is a machine learning algorithm that can in principle
learn any mapping from input to output data.13 Compared with conventional machine
learning approaches that require handcrafted features, deep learning methods auto-
matically extract relevant features from the training data while learning to solve the
task at hand. According to Schmidhuber14 origins of deep learning with convolutional
neural networks date back to the early work of Fukushima15 (1979). The deep learning
breakthrough at the beginning of the twenty-first century was mainly caused by digiti-
zation and the rapid decline of computation cost in the from of cheap, multi-processor
graphics cards14 (GPU).

Deep learning approaches are well suited to simplify and/or augment every step
in the pipeline of cardiac MRI, including optimization of imaging protocols, image
acquisition, image reconstruction, image analysis, disease classification, report cre-
ation, and derivation of prognostic information.16 For example, deep learning methods
for cardiac MR image analysis have achieved state-of-the-art performance in, e.g.,
segmentation and disease diagnosis,17,18 super-resolution,19,20 landmark detection,21

motion analysis,22,23 survival and outcome prediction.24,25 However, acquisition of
cardiac MR images is slow and complicated by cardiac and respiratory motion.26 To
acquire stacks of short-axis 3D cine CMR images simultaneous multi-slice 2D cine
CMR imaging is performed under multiple breath-holds. Consequently, in current
clinical practice, CMR examination imposes a burden on patients in terms of scan
time and breath-holds. To mitigate the risk for motion artifacts and to sustain patient
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comfort fast scanning is often required. As a result, short-axis cine CMR scans with
high temporal resolution are often highly anisotropic and suffer from respiratory mo-
tion induced inter-slice misalignment. Moreover, caused by the low through-plane
resolution, short-axis CMR volumes often lack whole-heart coverage predominately at
the apex and base of the heart. In addition, recent comparison of a number of state-of-
the-art CMRI segmentation methods17,18 revealed that automatic segmentations are
often anatomically implausible. These shortcomings may hamper correct assessment
of cardiac anatomy and subsequently hinder accurate analysis of cardiac function.

1.4 Thesis outline

This thesis presents approaches to tackle the aforementioned challenges that can
hinder accurate automatic diagnosis and prognosis of cardiovascular diseases using
deep learning for automatic cardiac MR image analysis.

CHAPTER 2 presents a method for automatic segmentation of cardiac chambers and
left ventricle myocardium in CMRIs. In addition, to investigate the model’s trust-
worthiness, prediction uncertainties were extracted from the model. Moreover, the
work examines whether different loss functions effect the reliability of the model. The
approach reveals that image areas indicated as highly uncertain, regarding the obtained
segmentation, almost entirely cover regions of incorrect segmentations.

Based on these findings, in CHAPTER 3 an approach is presented that aims to increase
reliability of automatic cardiac segmentationmethods. Themethod combines automatic
CMRI segmentation with detection of image regions containing local segmentation
failures. Highly uncertain predictions were referred to an expert for (simulated) manual
correction. Such a human-in-the-loop setting can result in more reliable and increased
semi-automatic segmentation performance.

In CHAPTER 4, to assess right ventricular function in subjects suspected of arrhyth-
mogenic right ventricular cardiomyopathy, method developed in CHAPTER 3 is utilized
for automatic deep learning CMRI segmentation. The approach is evaluated using the
automatic CMRI segmentations for classification of CMR Task Force Criteria.

In current clinical setting, CMR scans with high spatial and temporal resolution
are impractical or even impossible to acquire. Hence, accurate assessment of cardiac
geometry and function is typically hampered by low through-plane resolution of CMR
short-axis images. Therefore, CHAPTER 5 presents an automatic semantic interpolation
approach to increase through-plane resolution of anisotropic CMR short-axis images.
The approach can increase spatial resolution by synthesizing new slices in though-plane
direction. Furthermore, the model can be trained in an unsupervised fashion i.e., using
only low-resolution examples.

Left ventricle segmentations obtained from anisotropic CMRIs lack whole-heart
coverage and suffer from motion induced inter-slice misalignment. Consequently, the
obtained left ventricle shapes provide limited information about the true 3D cardiac
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anatomy. Super-resolution method presented in CHAPTER 5 cannot alleviate such short-
comings. Hence, CHAPTER 6 presents a deep learning approach to learn a continuous
implicit function representing 3D left ventricle shapes. The proposed method alleviates
aforementioned shortcomings by reconstructing and completing of high-resolution 3D
cardiac shapes from anisotropic incomplete CMRI segmentations.

The final CHAPTER 7 provides a general discussion of the presented approaches and
most important findings, as well as limitations, and indicates possible future directions.
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Abstract

Current state-of-the-art deep learning segmentation methods have not yet made a broad
entrance into the clinical setting in spite of high demand for such automatic methods.
One important reason is the lack of reliability caused by models that fail unnoticed
and often locally produce anatomically implausible results that medical experts would
not make. This paper presents an automatic image segmentation method based on
(Bayesian) dilated convolutional networks (DCNN) that generates segmentation masks
and spatial uncertainty maps for the input image at hand. The method was trained
and evaluated using segmentation of the left ventricle (LV) cavity, right ventricle
(RV) endocardium and myocardium (Myo) at end-diastole (ED) and end-systole (ES)
in 100 cardiac 2D MR scans from the MICCAI 2017 Challenge (ACDC). Combining
segmentations and uncertainty maps and employing a human-in-the-loop setting, we
provide evidence that image areas indicated as highly uncertain, regarding the obtained
segmentation, almost entirely cover regions of incorrect segmentations. The fused
information can be harnessed to increase segmentation performance. Our results reveal
that we can obtain valuable spatial uncertainty maps with low computational effort
using DCNNs.
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2.1 Purpose

Decisions by medical experts are increasingly enriched and augmented by intelligent
machines, e.g., through computer aided diagnosis (CAD). The quality of the joint
decision process would improve if the automatic systems were able to indicate their
uncertainty. This assumes that the provided uncertainty information is reliable i.e.,
valuable to be considered. A system indicating high uncertainty in image areas of
incorrect segmentations could be used to detect and subsequently refer these regions to
medical experts. Applying such a human-in-the-loop setting would result in increased
segmentation performance. In addition, such a setting could mitigate a severe deficiency
of current state-of-the-art deep learning segmentation methods which occasionally
generate anatomically implausible segmentations1 that a medical expert would never
make.

Previous research has mainly focused on the assessment of uncertainty in dis-
ease prediction,2 tissue segmentation3 and pulmonary nodule detection4 by utilizing
Bayesian neural networks (BNN) or test-time data augmentation techniques.5 Addi-
tional methods to estimate uncertainty are Deep Ensembles6 and Learned Confidence
Estimates.7 In the former multiple models are trained and the variance of their pre-
dictions is used as confidence measure, whereas in the latter the model outputs a
confidence measure simultaneously with the prediction.

In this work, using multi-structures segmentation in cardiac MR images, we intro-
duce a method that simultaneously generates segmentation masks and uncertainty
maps by using a dilated convolutional network (DCNN). We compare two approaches
to obtain uncertainty maps. First, we use entropy maps that can be efficiently generated
by any probabilistic classifier as entropy is a theoretically grounded quantification of
uncertainty in information theory. Second, we employ Bayesian uncertainty maps that
are obtained by Bayesian DCNNs (B-DCNN). In addition, we reveal that a valuable
uncertainty measure can be obtained if the applied model is well calibrated, i.e. if
generated probabilities represent the likelihood of being correct. We demonstrate this
by simulating a human-in-the-loop setting and provide evidence that image areas indi-
cated as highly uncertain regarding the obtained segmentation almost entirely cover
regions of incorrect segmentations. Hence, the fused information can be employed in
clinical practice to inform an expert whether and where the generated segmentation
should be adjusted.

2.2 Data description

Data from the MICCAI 2017 Challenge on automated cardiac diagnosis (ACDC)1 was
used. The dataset consists of cardiac cineMR images (CMRI) from 150 patients who have
been clinically diagnosed in five classes: normal, dilated cardiomyopathy, hypertrophic
cardiomyopathy, heart failure with infarction, or right ventricular abnormality. Cases
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are uniformly distributed over classes. Manual reference segmentations of the left
ventricle (LV) cavity, right ventricle (RV) endocardium and LV myocardium (Myo) at
end-diastole (ED) and end-systole (ES) are provided for 100 cases. For each patient,
short-axis CMRIs with 28-40 frames are available, in which the ED and ES frame have
been indicated. On average images consist of nine slices where each slice has a spatial
resolution of 235×263 voxels (on average). The image slices cover the LV from the base
to the apex. In-plane voxel spacing varies from 1.37 to 1.68mm, with slice thickness
from 5 to 10mm and sometimes inter-slice gap of 5mm. To correct for differences in
voxel size, all 2D image slices were resampled to 1.4×1.4mm2. Furthermore, to correct
for intensity differences among images, each MR volume was normalized between [0.0,
1.0] according to the 5th and 95th percentile of intensities in the image. For detailed
specifications about the acquisition protocol we refer the reader to Bernard et al.1

2.3 Method

To perform segmentation of tissue classes in cardiac 2D MR scans, we used the DCNN
developed by Wolterink et al.8 The DCNN architecture comprises a sequence of ten
convolutional layers with increasing levels of kernel dilation which results in a receptive
field for each voxel of 131×131 voxels, or 18.3×18.3 cm2. The network has two input
channels which take ED and ES slices as its input. We assume that the network leverages
cardiac motion differences between ED and ES time points in order to better localize
the target structures. To simultaneously segment the LV, RV, LV myocardium and
background in ED and ES, the network has eight output channels where each channel
provides a probability for one of the classes. Softmax probabilities are calculated over
the four tissue classes for images acquired in ED and ES. To enhance generalization
performance, the model uses batch normalization and weight decay.

To acquire spatial uncertaintymaps of the segmentation during testing, two different
approaches were evaluated. First, to obtain entropy maps (e-maps) we computed the
multi-class entropy per voxel. Second, to obtain Bayesian uncertainty maps (u-maps),
we implemented Monte Carlo dropout (MC dropout) introduced by Gal & Ghahramani9

for approximate Bayesian inference. We added dropout as the last operation in all but
the final layer (by randomly switching off 10 percent of a layer’s hidden units). By
enabling dropout during testing, softmax probabilities are obtained with 10 samples per
voxel. As an overall measure of uncertainty we used the maximum softmax variance
per voxel over all classes. The variance per voxel per class is obtained from the softmax
samples for each class. We chose to use the maximum instead of the mean (as e.g.,
utilized by Leibig et al.2) because we found that averaging attenuates the uncertainties.

The quality of e-maps and u-maps depends on the calibration of the acquired
probabilities. Previous work6 revealed that loss functions differ regarding how well the
generated probabilities represent the likelihood of being correct. Therefore, we trained
the model with three different loss functions: soft-Dice (SD), cross-entropy (CE), and
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the Brier score (BS),10 which is equal to the average gap between softmax probabilities
and the references. This provides information about accuracy and uncertainty of the
model. Computationally the Brier score loss is equal to the squared error between the
one-hot encoding of the correct label and its associated probability.

To use four-fold cross-validation we split the dataset into 75 and 25 training and test
patients, respectively. Each model is evaluated on the holdout test images and we report
combined results for all 100 patients. During training we used images with 151×151
voxel samples, padded to 281×281 to accommodate the 131×131 voxel receptive field.
Training samples were augmented by 90 degree rotations of the images and references.
The model was trained for 150,000 iterations using the snapshot ensemble technique
described in Huang et al.,11 while after every 10,000th iteration we reset the learning
rate to its original value of 0.02 and stored the model. We used mini-batches of size
16 and applied Adam12 as stochastic gradient descent optimizer. To compare u-maps
with e-maps at test time each model was evaluated twice. First, to obtain u-maps we
used the last six stored models (iterations 100,000 to 150,000) of each fold to obtain
segmentation results. Tissue class per voxel was determined using the mean softmax
probabilities over 60 samples (10 samples per voxel per model). In addition, these
probabilities served to compute the maximum variance (as described in the beginning
of this section). Second, to obtain e-maps we solely employed the last stored model
of each fold to acquire segmentation results. We disabled dropout during inference
and used one forward pass to compute the softmax probabilities and determine the
tissue class per voxel. The corresponding e-maps were computed as the entropy in the
four-class probability distribution. Finally, for both evaluations as a post-processing
step, the 3D probability volumes were filtered by selection of the largest 3D 6-connected
component for each class.

The models were implemented using the PyTorch13 framework and trained on one
Nvidia GTX Titan X GPU with 12 GB memory.

2.4 Results and Discussion

To evaluate whether the obtained per voxel probabilities represent the likelihood of be-
ing correct i.e. are well calibrated, we created Reliability Diagrams14 (RD). Figures. 2.1a,
2.1b and 2.1c show the predicted probabilities discretized into ten bins and plotted
against the true positive fraction for each bin. If the model is perfectly calibrated, the
diagram should match the dashed line. We conclude that a model trained with the
soft-Dice loss produces inferior calibrated probabilities compared to the other two
loss functions. We conjecture that this could be caused by the relatively low penalty
induced by the soft-Dice loss for the model being overconfident for true positive tissue
labels (see Figure 2.1d).

To compare the quality of the obtained uncertainty maps, we simulate a human-
in-the-loop setting. We combine the information of predicted segmentation masks
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(a) Brier score loss (b) soft-Dice loss

(c) cross-entropy loss (d) Loss for a true label

Figure 2.1: Reliability diagrams over all tested ED and ES images and tissue classes for Brier, soft-

Dice and cross-entropy loss functions. Blue (end-diastole) and green (end-systole) bars quantify the

true positive fraction for each probability bin. Red bars quantify the miscalibration of the model

where smaller indicates better. If the model is perfectly calibrated, the diagram should match the

dashed line.
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(a) End-diastole

(b) End-systole

Figure 2.2: Comparison between entropy and Bayesian uncertainty maps for different loss functions

(RV in red, myocardium in green and LV in blue). Figures visualize Dice score of the corrected

segmentation mask when voxels above a tolerated uncertainty or entropy threshold are corrected

to their reference label. x-axis shows mean percentage of voxels referred in an image.
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(a) MRI slice (b) Reference (c) Automatic (d) e-map (e) u-map

Figure 2.3: Example of segmentation errors that are covered by high uncertainties. (a) original

MRI slice to be segmented; (b) manual reference segmentation; (c) automatic segmentation mask

generated by the model when trained with the Brier score loss. Segmentation errors for the right

ventricle are covered by (d) high entropy (e-map) and (e) Bayesian uncertainties (u-map).

with the e-maps or u-maps and assume that voxels above a tolerated uncertainty or
entropy threshold are corrected to their reference label by an expert. For each threshold
we compute the Dice score for the corrected segmentation mask. Figures 2.2a and
2.2b visualize the Dice score as a function of the average percentage of voxels thus
referred. We observe a monotonic increase in prediction accuracy when more voxels
are referred. E.g., inspecting the referral curves for the Brier score loss in Figure 2.2b
we note that referring on average 1% of the voxels in an image, increases performance
for 8, 7 and 5% for RV, Myo and LV, respectively. These results are similar for the
u-maps and the e-maps. In each experiment, the case in which no voxels are referred
for correction is considered the baseline (left most y-axis values). We observe that
baseline segmentation performance is highest when the model is trained with the Brier
score loss, slightly lower for the soft-Dice, and lowest when cross-entropy is used.
Except for the soft-Dice loss we note that u-maps and e-maps follow each other quite
closely, which suggests that both carry similar information. Not including the soft-Dice
loss, segmentation performance with referral using u-maps or e-maps reaches a Dice
score of nearly one when sufficient number of voxels are referred. Hence, we may
conclude that areas of uncertainty and entropy almost completely cover the regions of
incorrect segmentations1. Results obtained after the referral using entropy maps for a
model trained with the soft-Dice loss are clearly inferior compared to the performance
achieved when using the u-maps. We assume that this is due to the miscalibration
of the model (see Figure 2.1b). Compared to e-maps, u-maps tend to exhibit more
uncertainty. This is visually expressed for the cross-entropy loss in Figure 2.2a, where
the Myo referral-curve obtained with u-maps lags behind the corresponding curve that
uses the entropy information.

An example result of the segmentation task performed by a model trained with
the Brier score loss is shown in Figure 2.3. The model obviously failed to segment
parts of the right ventricle (blue) and we can observe that these errors are covered by
entropy and Bayesian uncertainty maps. Figure 2.4 shows a qualitative comparison

1Without covering the complete image in which case all voxels would be referred (corresponding to a
trivial solution).
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(a) BS: Errors (b) BS: e-map (c) BS: u-map

(d) CE: Errors (e) CE: e-map (f) CE: u-map

(g) SD: Errors (h) SD: e-map (i) SD: u-map

Figure 2.4: Comparison of (left column) segmentation errors of left ventricle (red), myocardium

(yellow) and right ventricle (blue); (middle column) Entropy maps; and (right column) Bayesian

uncertainty maps for the Brier score (BS), cross-entropy (CE) and soft-Dice (SD) loss (per row). High

uncertainties correspond to red and low uncertainties to blue colors.
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of the uncertainty maps for the three different loss functions (corresponding to rows
in the figure) that were used during training. Images in the left column visualize the
segmentation errors for the three different tissue types using distinct colors. Although
we can observe that the performed errors are roughly the same for the different loss
functions, we clearly see significant differences between the uncertainty maps. E.g.,
when inspecting the e-maps (middle column) we notice that errors with respect to
the segmentation of the myocardium are not entirely covered by regions of high
uncertainties for a model trained with the soft-Dice loss. In contrast the same regions
are almost completely covered by the e-map for a model trained with the Brier score
or cross-entropy loss. Furthermore, a model trained with the soft-Dice loss generated
u-maps that contain higher uncertainties than u-maps induced by the other two loss
functions. We conjecture that this is caused by the miscalibration of the model (see
Figure 2.1b) which has a bias towards generating probabilities that are close to zero
or one, leading to large softmax variances per voxels (we used 10 samples per voxel).
This does not affect the e-maps because we do not sample predictions for these maps
during testing. Besides, the provided examples corroborate our earlier finding that the
u-maps contain more uncertain, yet often correctly segmented voxels than the e-maps.

2.5 Conclusions

Using a publicly available cardiac cine MRI dataset, we showed that a (Bayesian) dilated
CNN trained with the Brier loss produces valuable Bayesian uncertainty and entropy
maps. Our results convey that regions of high uncertainty almost completely cover
areas of incorrect segmentations. Well calibrated models enable us to obtain useful
spatial entropy maps, which can be used to increase the segmentation performance of
the model.
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Abstract

Segmentation of cardiac anatomical structures in cardiac magnetic resonance images
(CMRI) is a prerequisite for automatic diagnosis and prognosis of cardiovascular dis-
eases. To increase robustness and performance of segmentation methods this study
combines automatic segmentation and assessment of segmentation uncertainty in CMRI
to detect image regions containing local segmentation failures. Three state-of-the-art
convolutional neural networks (CNN) were trained to automatically segment cardiac
anatomical structures and obtain two measures of predictive uncertainty: entropy and
a measure derived by MC-dropout. Thereafter, using the uncertainties another CNN
was trained to detect local segmentation failures that potentially need correction by
an expert. Finally, manual correction of the detected regions was simulated. Using
publicly available CMR scans from the MICCAI 2017 ACDC challenge, the impact of
CNN architecture and loss function for segmentation, and the uncertainty measure
was investigated. Performance was evaluated using the Dice coefficient and 3D Haus-
dorff distance between manual and automatic segmentation. The experiments reveal
that combining automatic segmentation with simulated manual correction of detected
segmentation failures leads to statistically significant performance increase.
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3.1 Introduction

To perform diagnosis and prognosis of cardiovascular disease (CVD) medical experts
depend on the reliable quantification of cardiac function.1 Cardiac magnetic resonance
imaging (CMRI) is currently considered the reference standard for quantification of
ventricular volumes, mass and function.2 Short-axis CMR imaging, covering the entire
left and right ventricle (LV resp. RV) is routinely used to determine quantitative
parameters of both ventricle’s function. This requires manual or semi-automatic
segmentation of corresponding cardiac tissue structures for end-diastole (ED) and
end-systole (ES).

Existing semi-automated or automated segmentation methods for CMRIs regularly
require (substantial) manual intervention caused by lack of robustness. Manual or
semi-automatic segmentation across a complete cardiac cycle, comprising 20 to 40
phases per patient, enables computation of parameters quantifying cardiac motion with
potential diagnostic implications but due to the required workload, this is practically
infeasible. Consequently, segmentation is often performed at end-diastole and end-
systole precluding comprehensive analysis over complete cardiac cycle.

Recently,3,4 deep learning segmentation methods have shown to outperform tradi-
tional approaches such as those exploiting level set, graph-cuts, deformable models,
cardiac atlases and statistical models.5,6 However, recent comparison of a number of
automatic methods showed that even the best performing methods generated anatomi-
cally implausible segmentations in more than 80% of the CMRIs.7 Such errors do not
occur when experts perform segmentation. To achieve acceptance in clinical practice
these shortcomings of the automatic approaches need to be alleviated by further devel-
opment. This can be achieved by generating more accurate segmentation result or by
development of approaches that automatically detect segmentation failures.

In manual and automatic segmentation of short-axis CMRI, largest segmentation
inaccuracies are typically located in the most basal and apical slices due to low tissue
contrast ratios.8 To increase segmentation performance, several methods have been
proposed.9–12 Tan et al.9 used a convolutional neural network (CNN) to regress anatom-
ical landmarks from long-axis views (orthogonal to short-axis). They exploited the
landmarks to determine most basal and apical slices in short-axis views and thereby con-
straining the automatic segmentation of CMRIs. This resulted in increased robustness
and performance. Other approaches leverage spatial10 or temporal11,12 information to
increase segmentation consistency and performance in particular in the difficult basal
and apical slices.

An alternative approach to preventing implausible segmentation results is by in-
corporating knowledge about the highly constrained shape of the heart. Oktay et
al.13 developed an anatomically constrained neural network (NN) that infers shape
constraints using an auto-encoder during segmentation training. Duan et al.14 devel-
oped a deep learning segmentation approach for CMRIs that used atlas propagation to
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Figure 3.1: Overview of proposed two step approach. Step 1 (left): Automatic CNN segmentation of

CMR images combined with assessment of segmentation uncertainties. Step 2 (right): Differentiate

tolerated errors fromsegmentation failures (to be detected) using distance transformmaps based on

reference segmentations. Detection of image regions containing segmentation failures using CNN

which takes CMR images and segmentation uncertainties as input. Manual corrected segmentation

failures (green) based on detected image regions.

explicitly impose a shape refinement. This was especially beneficial in the presence of
image acquisition artifacts. Recently, Painchaud et al.15 developed a post-processing
approach to detect and transform anatomically implausible cardiac segmentations into
valid ones by defining cardiac anatomical metrics. Applying their approach to various
state-of-the-art segmentation methods the authors showed that the proposed method
provides strong anatomical guarantees without hampering segmentation accuracy.

A different research trend focuses on detecting segmentation failures, i.e. on
automated quality control for image segmentation. These methods can be divided in
those that predict segmentation quality using image at hand or corresponding automatic
segmentation result, and those that assess and exploit predictive uncertainties to detect
segmentation failure.

Recently, two methods were proposed to detect segmentation failures in large-scale
cardiac MR imaging studies to remove these from subsequent analysis.16,17 Robin-
son et al.17 using the approach of Reverse Classification Accuracy18 (RCA) predicted
CMRI segmentation metrics to detect failed segmentations. They achieved good agree-
ment between predicted metrics and visual quality control scores. Alba et al.16 used
statistical, pattern and fractal descriptors in a random forest classifier to directly de-
tect segmentation contour failures without intermediate regression of segmentation
accuracy metrics.
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Methods for automatic quality control were also developed for other applications
in medical image analysis. Frounchi et al.19 extracted features from the segmentation
results of the left ventricle in CT scans. Using the obtained features the authors trained a
classifier that is able to discriminate between consistent and inconsistent segmentations.
To distinguish between acceptable and non-acceptable segmentations Kohlberger et
al.20 proposed to directly predict multi-organ segmentation accuracy in CT scans using
a set of features extracted from the image and corresponding segmentation.

A number of methods aggregate voxel-wise uncertainties into an overall score to
identify insufficiently accurate segmentations. For example, Nair et al.21 computed an
overall score for target segmentation structure from voxel-wise predictive uncertainties.
The method was tested for detection of Multiple Sclerosis in brain MRI. The authors
showed that rejecting segmentations with high uncertainty scores led to increased
detection accuracy indicating that correct segmentations contain lower uncertainties
than incorrect ones. Similarly, to assess segmentation quality of brain MRIs Jungo et
al.22 aggregated voxel-wise uncertainties into a score per target structure and showed
that the computed uncertainty score enabled identification of erroneous segmentations.

Unlike approaches evaluating segmentation directly, several methods use predictive
uncertainties to predict segmentation metrics and thereby evaluate segmentation
performance.23,24 For example, Roy et al.23 aggregated voxel-wise uncertainties into
four scores per segmented structure in brain MRI. The authors showed that computed
scores can be used to predict the Intersection over Union and hence, to determine
segmentation accuracy. Similar idea was presented by DeVries et al.24 that predicted
segmentation accuracy per patient using an auxiliary neural network that leverages
the dermoscopic image, automatic segmentation result and obtained uncertainties. The
researchers showed that a predicted segmentation accuracy is useful for quality control.

We build on our preliminary work where automatic segmentation of CMR images
using a dilated CNN was combined with assessment of two measures of segmenta-
tion uncertainties.25 For the first measure the multi-class entropy per voxel (entropy
maps) was computed using the output distribution. For the second measure Bayesian
uncertainty maps were acquired using Monte Carlo dropout26 (MC-dropout). In our
previous work25 we showed that the obtained uncertainties almost entirely cover the
regions of incorrect segmentation i.e. that uncertainties are calibrated. In the current
work we extend our preliminary research in two ways. First, we assess impact of CNN
architecture on the segmentation performance and calibration of uncertainty maps by
evaluating three existing state-of-the-art CNNs. Second, we employ an auxiliary CNN
(detection network) that processes a cardiac MRI and corresponding spatial uncertainty
map (Entropy or Bayesian) to automatically detect segmentation failures. We differen-
tiate errors that may be within the range of inter-observer variability and hence do not
necessarily require correction (tolerated errors) from the errors that an expert would
not make and hence require correction (segmentation failures). Given that overlap
measures do not capture fine details of the segmentation results and preclude us to
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differentiate two types of segmentation errors, in this work, we define segmentation
failure using a metric of boundary distance. In our previous work25 we found that
degree of calibration of uncertainty maps is dependent on the loss function used to train
the CNN. Nevertheless, in the current work we show that uncalibrated uncertainty
maps are useful to detect local segmentation failures. In contrast to previous methods
that detect segmentation failure per-patient or per-structure,23,24 we propose to detect
segmentation failures per image region. We expect that inspection and correction of
segmentation failures using image regions rather than individual voxels or images
would simplify correction process. To show the potential of our approach and demon-
strate that combining automatic segmentation with manual correction of the detected
segmentation failures per region results in higher segmentation performance we per-
formed two additional experiments. In the first experiment, correction of detected
segmentation failures was simulated in the complete data set. In the second experiment,
correction was performed by an expert in a subset of images. Using publicly available
set of CMR scans from MICCAI 2017 ACDC challenge,7 the performance was evaluated
before and after simulating the correction of detected segmentation failures as well as
after manual expert correction.

3.2 Data

In this study data from the MICCAI 2017 Automated Cardiac Diagnosis Challenge
(ACDC)7 was used. The dataset consists of cardiac cine MR images (CMRIs) from
100 patients uniformly distributed over normal cardiac function and four disease
groups: dilated cardiomyopathy, hypertrophic cardiomyopathy, heart failure with
infarction, and right ventricular abnormality. Detailed acquisition protocol is described
by Bernard et al.7 Briefly, short-axis CMRIs were acquired with two MRI scanners of
different magnetic strengths (1.5 and 3.0 T). Images were made during breath hold
using a conventional steady-state free precession (SSFP) sequence. CMRIs have an
in-plane resolution ranging from 1.37 to 1.68mm (average reconstruction matrix 243 ×
217 voxels) with slice spacing varying from 5 to 10mm. Per patient 28 to 40 volumes
are provided covering partially or completely one cardiac cycle. Each volume consists
of on average ten slices covering the heart. Expert manual reference segmentations are
provided for the LV cavity, RV endocardium and LV myocardium (LVM) for all CMRI
slices at ED and ES time frames. To correct for intensity differences among scans, voxel
intensities of each volume were scaled to the [0.0, 1.0] range using the minimum and
maximum of the volume. Furthermore, to correct for differences in-plane voxel sizes,
image slices were resampled to 1.4×1.4mm2.
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MRI Reference DN automatic DRN automatic U-net automatic

(a)

MRI Reference DN automatic DRN automatic U-net automatic

(b)

Figure 3.2: Examples of automatic segmentations generated by different segmentation models for

two cardiac MRI scans (rows) at ES at the base of the heart.

3.3 Methods

To investigate uncertainty of the segmentation, anatomical structures in CMR images
are segmented using a CNN. To investigate whether the approach generalizes to dif-
ferent segmentation networks, three state-of-the-art CNNs were evaluated. For each
segmentation model two measures of predictive uncertainty were obtained per voxel.
Thereafter, to detect and correct local segmentation failures an auxiliary CNN (detection
network) that analyzes a cardiac MRI was used. Finally, this leads to the uncertainty
map allowing detection of image regions that contain segmentation failures. Figure 3.1
visualizes this approach.

3.3.1 Automatic segmentation of cardiac MRI

To perform segmentation of LV, RV, and LVM in cardiac MR images i.e. 2D CMR
scans, three state-of-the-art CNNs are trained. Each of the three networks takes a
CMR image as input and has four output channels providing probabilities for the
three cardiac structures (LV, RV, LVM) and background. Softmax probabilities are
calculated over the four tissue classes. Patient volumes at ED and ES are processed
separately. During inference the 2D automatic segmentation masks are stacked into a
3D volume per patient and cardiac phase. After segmentation, the largest 3D connected
component for each class is retained and volumes are resampled to their original
voxel resolution. Segmentation networks differ substantially regarding architecture,
number of parameters and receptive field size. To assess predictive uncertainties from
the segmentation models Monte Carlo dropout (MC-dropout) introduced by Gal &
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Ghahramani26 is implemented in every network. The following three segmentation
networks were evaluated: Bayesian Dilated CNN, Bayesian Dilated Residual Network,
Bayesian U-net.

Bayesian Dilated CNN (DN): The Bayesian DN architecture comprises a sequence of
ten convolutional layers. Layers 1 to 8 serve as feature extraction layers with small
convolution kernels of size 3×3 voxels. No padding is applied after convolutions. The
number of kernels increases from 32 in the first eight layers, to 128 in the final two fully
connected classification layers, implemented as 1×1 convolutions. The dilation level is
successively increased between layers 2 and 7 from 2 to 32 which results in a receptive
field for each voxel of 131×131 voxels, or 18.3×18.3 cm2. All trainable layers except the
final layer use rectified linear activation functions (ReLU). To enhance generalization
performance, the model uses batch normalization in layers 2 to 9. In order to convert
the original DN27 into a Bayesian DN, dropout is added as the last operation in all but
the final layer and 10 percent of a layer’s hidden units are randomly switched off.

Bayesian Dilated Residual Network (DRN): The Bayesian DRN is based on the
original DRN from Yu et al.28 for image segmentation. More specifically, the DRN-D-
2228 is used which consists of a feature extraction module with output stride eight
followed by a classifier implemented as fully convolutional layer with 1×1 convolutions.
Output of the classifier is upsampled to full resolution using bilinear interpolation.
The convolutional feature extraction module comprises eight levels where the number
of kernels increases from 16 in the first level, to 512 in the two final levels. The first
convolutional layer in level 1 uses 16 kernels of size 7×7 voxels and zero-padding of size
3. The remaining trainable layers use small 3×3 voxel kernels and zero-padding of size
1. Level 2 to 4 use a strided convolution of size 2. To further increase the receptive field
convolutional layers in level 5, 6 and 7 use a dilation factor of 2, 4 and 2, respectively.
Furthermore, levels 3 to 6 consist of two residual blocks. All convolutional layers of
the feature extraction module are followed by batch normalization, ReLU function
and dropout. Adding dropout and switching off 10 percent of a layer’s hidden units
converts the original DRN28 into a Bayesian DRN.

Bayesian U-net (U-net): The standard architecture of the U-net29 is used. The
network is fully convolutional and consists of a contracting, bottleneck and expanding
path. The contracting and expanding path each consist of four blocks i.e. resolution
levels which are connected by skip connections. The first block of the contracting
path contains two convolutional layers using a kernel size of 3×3 voxels and zero-
padding of size 1. Downsampling of the input is accomplished by employing a max
pooling operation in block 2 to 4 of the contracting path and the bottleneck using a
convolutional kernel of size 2×2 voxels and stride 2. Upsampling is performed by a
transposed convolutional layer in block 1 to 4 of the expanding path using the same
kernel size and stride as the max pooling layers. Each downsampling and upsampling
layer is followed by two convolutional layers using 3×3 voxel kernels with zero-padding
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size 1. The final convolutional layer of the network acts as a classifier and uses 1×1
convolutions to reduce the number of output channels to the number of segmentation
classes. The number of kernels increases from 64 in the first block of the contracting
path to 1024 in the bottleneck. In contrast, the number of kernels in the expanding path
successively decreases from 1024 to 64. In deviation to the standard U-net instance
normalization is added to all convolutional layers in the contracting path and ReLU
non-linearities are replaced by LeakyReLU functions because this was found to slightly
improve segmentation performance. In addition, to convert the deterministic model
into a Bayesian neural network dropout is added as the last operation in each block
of the contracting and expanding path and 10 percent of a layer’s hidden units are
randomly switched off.

3.3.2 Assessment of predictive uncertainties

To detect failures in segmentation masks generated by CNNs in testing, spatial un-
certainty maps of the obtained segmentations are generated. For each voxel in the
image two measures of uncertainty are calculated. First, a computationally cheap and
straightforward measure of uncertainty is the entropy of softmax probabilities over
the four tissue classes which are generated by the segmentation networks. Using these,
normalized entropy maps E ∈ [0, 1]H×W (e-map) are computed where H and W denote
the height and width of the original CMRI, respectively.

Second, by applying MC-dropout in testing, softmax probabilities with a num-
ber of samples T per voxel are obtained. As an overall measure of uncertainty the
mean standard deviation of softmax probabilities per voxel over all tissue classes C is
computed

B(I)(x,y) =
1
C

C

∑
c=1 √

1
T − 1

T

∑
t=1

(pt(I)(x,y,c) − μ̂(x,y,c))2 , (3.1)

where B(I)(x,y) ∈ [0, 1] denotes the normalized value of the Bayesian uncertainty
map (b-map) at position (x, y) in 2D slice I, C is equal to the number of classes, T is the
number of samples and pt(I)(x,y,c) denotes the softmax probability at position (x, y) in
image I for class c. The predictive mean per class μ̂(x,y,c) of the samples is computed as
follows:

μ̂(x,y,c) =
1
T

T

∑
t=1

pt(I)(x,y,c) . (3.2)

In addition, the predictive mean per class is used to determine the tissue class per
voxel.
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3.3.3 Calibration of uncertainty maps

Ideally, incorrectly segmented voxels as defined by the reference labels should be
covered by higher uncertainties than correctly segmented voxels. In such a case the
spatial uncertainty maps are perfectly calibrated. Risk-coverage curves introduced by
Geifman et al.30 visualize whether incorrectly segmented voxels are covered by higher
uncertainties than those that are correctly segmented. Risk-coverage curves convey
the effect of avoiding segmentation of voxels above a specific uncertainty value on the
reduction of segmentation errors (i.e. risk reduction) while at the same time quantifying
the voxels that were omitted from the classification task (i.e. coverage).

To generate risk-coverage curves first, each patient volume is cropped based on
a minimal enclosing parallelepiped bounding box that is placed around the reference
segmentations to reduce the number of background voxels. Note that this is only
performed to simplify the analysis of the risk-coverage curves. Second, voxels of the
cropped patient volume are ranked based on their uncertainty value in descending
order. Third, to obtain uncertainty threshold values per patient volume the ranked
voxels are partitioned into 100 percentiles based on their uncertainty value. Finally,
per patient volume each uncertainty threshold is evaluated by computing a coverage
and a risk measure. Coverage is the percentage of voxels in a patient volume at ED or
ES that is automatically segmented. Voxels in a patient volume above the threshold
are discarded from automatic segmentation and would be referred to an expert. The
number of incorrectly segmented voxels per patient volume is used as a measure of risk.
Using bilinear interpolation risk measures are computed per patient volume between
[0, 100] percent.

3.3.4 Detection of segmentation failures

To detect segmentation failures uncertainty maps are used but direct application of
uncertainties is infeasible because many correctly segmented voxels, such as those
close to anatomical structure boundaries, have high uncertainty. Hence, an additional
patch-based CNN (detection network) is used that takes a cardiac MR image together
with the corresponding spatial uncertainty map as input. For each patch of 8×8 voxels
the network generates a probability indicating whether it contains segmentation failure.
In the following, the terms patch and region are used interchangeably.

The detection network is a shallow Residual Network (S-ResNet)31 consisting of a
feature extraction module with output stride eight followed by a classifier indicating
the presence of segmentation failure. The first level of the feature extraction module
consists of two convolutional layers. The first layer uses 16 kernels of 7×7 voxels and
zero-padding of size 3 and second layer 32 kernels of 3×3 voxels and zero-padding of 1
voxel. Level 2 to 4 each consist of one residual block that contains two convolutional
layers with 3×3 voxels kernels with zero-padding of size 1. The first convolutional
layer of each residual block uses a strided convolution of 2 voxels to downsample the
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input. All convolutional layers of the feature extraction module are followed by batch
normalization and ReLU function. The number of kernels in the feature extraction
module increases from 16 in level 1 to 128 in level 4. The network is a 2D patch-level
classifier and requires that the size of the two input slices is a multiple of the patch-
size. The final classifier consists of three fully convolutional layers, implemented
as 1×1 convolutions, with 128 feature maps in the first two layers. The final layer
has two channels followed by a softmax function which indicates whether the patch
contains segmentation failure. Furthermore, to regularize the model dropout layers
(p = 0.5) were added between the residual blocks and the fully convolutional layers of
the classifier.

3.4 Evaluation

Automatic segmentation performance, as well as performance after simulating the
correction of detected segmentation failures and after manual expert correction was
evaluated. For this, the 3D Dice-coefficient (DC) and 3D Hausdorff distance (HD)
between manual and (corrected) automatic segmentation were computed. Furthermore,
the following clinical metrics were computed for manual and (corrected) automatic
segmentation: left ventricle end-diastolic volume (EDV); left ventricle ejection fraction
(EF); right ventricle EDV; right ventricle ejection fraction; and left ventricle myocardial
mass. Following Bernard et al.7 for each of the clinical metrics three performance
indices were computed using the measurements based on manual and (corrected)
automatic segmentation: Pearson correlation coefficient; mean difference (bias and
standard deviation); and mean absolute error (MAE).

To evaluate detection performance of the automatic method precision-recall curves
of identification of slices that require correction were computed. A slice is considered
positive in case it consists of at least one image region with a segmentation failure.
To achieve accurate segmentation in clinic, identification of slices that contain seg-
mentation failures might ease manual correction of automatic segmentations in daily
practice. To further evaluate detection performance detection rate of segmentation
failures was assessed on a voxel level. More specific, sensitivity against the number
of false positive regions was evaluated because manual correction is presumed to be
performed at this level.

Finally, after simulation and manual correction of the automatically detected seg-
mentation failures, segmentation was re-evaluated and significance of the difference
between the DCs, HDs and clinical metrics was tested with a Mann–Whitney U test.

3.5 Experiments

To use stratified four-fold cross-validation the dataset was split into training (75%)
and test (25%) set. The splitting was done on a patient level, so there was no overlap
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Table 3.1: Segmentation performance of different combination of model architectures, loss func-

tions and evaluation modes (without or with MC dropout enabled during testing) in terms of Dice

coefficient (top) and Hausdorff distance (bottom) (mean ± standard deviation). Each combination

comprises a block of two rows. A row in which column Uncertainty map for detection indicates e- or

b-map shows results for the combined segmentation and detection approach. Numbers accentu-

ated in black/bold are ranked first in the segmentation only task whereas numbers accentuated

in red/bold are ranked first in the combined segmentation & detection task. The last row states

the performance of the winning model32 in the ACDC challenge (on 100 patient images). Number

with asterisk indicates statistical significant at 5% level w.r.t. the segmentation-only approach. Best

viewed in color.

(a) Dice coefficient

Uncer-
tainty

End-diastole End-systole

Model map for
detection

LV RV LVM LV RV LVM

DN-Brier 0.962±0.02 0.928±0.04) 0.875±0.03) 0.901±0.11 0.832±0.10) 0.884±0.04
e-map *0.965±0.01 *0.949±0.02 *0.885±0.03 *0.937±0.06 *0.905±0.05 *0.909±0.03

DN-Brier+MC 0.961±0.02 0.922±0.04 0.875±0.04 0.912±0.08 0.839±0.11 0.882±0.04
b-map *0.966±0.01 *0.950±0.01 *0.886±0.03 *0.942±0.03 *0.916±0.04 *0.912±0.03

DN-soft-Dice 0.960±0.02 0.921±0.04 0.870±0.04 0.909±0.08 0.812±0.12 0.879±0.04
e-map *0.965±0.01 *0.945±0.02 *0.879±0.04 *0.938±0.03 *0.891±0.06 *0.905±0.03

DN-soft-Dice+MC 0.958±0.02 0.913±0.05 0.868±0.04 0.907±0.07 0.818±0.12 0.875±0.04
b-map *0.964±0.01 *0.944±0.02 *0.877±0.04 *0.939±0.03 *0.900±0.05 *0.904±0.03

DRN-CE 0.961±0.02 0.929±0.03 0.878±0.03 0.912±0.06 0.850±0.09 0.891±0.03
e-map 0.964±0.01 *0.943±0.02 *0.886±0.03 *0.937±0.03 *0.899±0.04 *0.908±0.03

DRN-CE+MC 0.961±0.02 0.926±0.03 0.877±0.03 0.913±0.06 0.847±0.10 0.890±0.03
b-map *0.965±0.01 *0.948±0.01 *0.887±0.03 *0.939±0.03 *0.911±0.04 *0.909±0.03

DRN-soft-Dice 0.964±0.01 0.937±0.02 0.888±0.03 0.919±0.06 0.856±0.09 0.900±0.03
e-map 0.967±0.01 *0.945±0.02 0.893±0.03 0.934±0.04 *0.892±0.06 *0.911±0.03

DRN-soft-Dice+MC 0.963±0.02 0.935±0.03 0.886±0.03 0.921±0.06 0.857±0.09 0.899±0.03
b-map 0.967±0.01 *0.947±0.02 0.893±0.03 *0.938±0.03 *0.907±0.04 *0.912±0.03

U-net-CE 0.962±0.02 0.923±0.05 0.878±0.03 0.907±0.07 0.840±0.08 0.885±0.03
e-map 0.966±0.01 *0.946±0.02 *0.890±0.03 *0.935±0.04 *0.901±0.06 *0.909±0.03

U-net-CE+MC 0.962±0.02 0.926±0.04 0.879±0.03 0.909±0.07 0.849±0.07 0.887±0.03
b-map 0.967±0.01 *0.954±0.02 *0.893±0.03 *0.940±0.04 *0.920±0.04 *0.914±0.03

U-net-soft-Dice 0.965±0.02 0.928±0.04 0.888±0.03 0.914±0.08 0.844±0.09 0.896±0.03
e-map 0.968±0.01 *0.943±0.03 *0.898±0.03 0.930±0.05 *0.886±0.07 *0.911±0.03

U-net-soft-Dice+MC 0.965±0.02 0.929±0.04 0.889±0.03 0.911±0.10 0.845±0.09 0.897±0.03
b-map 0.968±0.01 *0.948±0.03 *0.900±0.03 0.928±0.09 *0.895±0.06 *0.914±0.03

Isensee et al. 0.966 0.941 0.899 0.924 0.875 0.908

(b) Hausdorff Distance

Uncer-
tainty

End-diastole End-systole

Model map for
detection

LV RV LVM LV RV LVM

DN-Brier 6.7±3.1 13.5±5.9 10.2±6.9 10.7±7.7 16.7±6.8 12.3±5.8
e-map *5.7±2.7 *11.7±5.2 * 8.3±5.9 * 8.0±6.5 *14.2±5.6 * 9.7±5.0

DN-Brier+MC 6.9±3.3 13.1±5.2 9.9±5.9 9.9±5.7 15.0±6.1 12.0±5.2
b-map *5.5±2.6 *10.6±5.1 * 7.4±4.2 * 7.5±6.0 *12.6±5.6 * 8.8±4.0

DN-soft-Dice 7.1±3.5 14.8±6.8 11.0±6.6 10.2±5.6 17.7±7.8 12.9±6.2
e-map *5.6±2.8 *12.6±5.5 * 8.6±4.6 * 8.0±5.0 *14.6±5.9 * 9.6±4.5

DN-soft-Dice+MC 7.7±3.9 14.4±6.0 10.5±4.9 10.1±5.3 17.2±8.0 12.5±5.3
b-map *6.3±3.4 *11.5±4.0 * 8.6±4.8 * 7.8±4.6 *13.6±4.9 * 9.6±4.7

DRN-CE 5.5±2.6 11.7±5.4 8.2±6.2 9.1±6.4 13.7±5.6 8.9±5.3
e-map *4.5±1.9 * 9.0±4.5 * 6.3±4.1 * 6.2±4.4 *11.1±5.3 * 6.7±4.2

DRN-CE+MC 5.6±2.6 11.9±5.5 8.0±5.9 8.7±5.5 13.5±5.9 8.5±4.5
b-map *4.2±1.6 * 8.1±3.7 * 6.1±4.2 * 5.4±3.6 *10.1±5.5 * 6.8±3.8

DRN-soft-Dice 5.5±2.8 11.9±6.1 7.7±5.9 8.5±5.0 13.5±5.5 8.9±5.1
e-map *4.6±2.2 * 9.4±4.5 6.7±4.7 * 6.7±4.4 *11.6±5.4 * 7.0±3.3

DRN-soft-Dice+MC 5.7±3.2 11.5±5.1 8.0±5.5 8.3±4.5 13.3±5.1 8.9±5.1
b-map *4.5±2.2 * 9.3±4.5 * 6.3±4.0 * 6.2±4.1 *10.4±5.0 * 7.0±3.4

U-net-CE 6.4±4.3 15.7±8.6 9.0±6.0 9.7±5.3 17.0±7.7 12.7±8.2
e-map *4.9±3.9 *12.2±8.1 * 7.1±5.6 * 6.1±3.2 *12.6±6.5 * 8.4±6.3

U-net-CE+MC 6.2±4.2 15.3±8.4 8.8±5.8 9.2±5.0 16.5±7.6 12.0±8.0
b-map *4.3±1.6 * 9.9±6.6 * 6.7±4.8 * 5.4±2.8 *10.3±4.7 * 7.6±6.2

U-net-soft-Dice 6.1±3.9 14.1±7.6 10.6±8.4 9.2±7.1 16.3±7.5 12.6±9.6
e-map *4.6±2.3 *11.3±7.2 * 7.5±5.5 * 7.3±6.5 *13.7±7.6 * 9.8±8.0

U-net-soft-Dice+MC 6.2±3.9 14.1±7.7 10.5±8.7 9.0±7.0 15.8±7.5 12.1±9.2
b-map *4.5±2.1 *10.4±7.2 * 7.6±7.0 * 7.3±6.9 *12.9±6.6 * 9.8±8.4

Isensee et al. 7.1 14.3 8.9 9.8 16.3 10.4
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in patient data between training and test sets. Furthermore, patients were randomly
chosen from each of the five patient groups w.r.t. disease. Each patient has one volume
for ED and ES time points, respectively.

3.5.1 Training segmentation networks

DRN and U-net were trained with a patch size of 128×128 voxels which is a multiple
of their output stride of the contracting path. In the training of the dilated CNN (DN)
imageswith 151×151 voxel samples were used. Zero-padding to 281×281was performed
to accommodate the 131×131 voxel receptive field that is induced by the dilation factors.
Training samples were randomly chosen from training set and augmented by 90 degree
rotations of the images. All models were initially trained with three loss functions:
soft-Dice33 (SD); cross-entropy (CE); and Brier loss.34 However, for the evaluation of
the combined segmentation and detection approach for each model architecture the
two best performing loss functions were chosen: soft-Dice for all models; cross-entropy
for DRN and U-net and Brier loss for DN. For completeness, we provide the equations
for all three used loss functions.

soft-Dicec =
∑N

i=1 Rc(i) Ac(i)

∑N
i=1 Rc(i) + ∑N

i=1 Ac(i)
, (3.3)

where N denotes the number of voxels in an image, Rc is the binary reference image
for class c and Ac is the probability map for class c.

Cross-Entropyc = −
N

∑
i=1

tic log p(yi = c|xi) ,

where tic = 1 if yi = c, and 0 otherwise.

(3.4)

Brierc =
N

∑
i=1

(tic − p(yi = c|xi))
2 ,

where tic = 1 if yi = c, and 0 otherwise.

(3.5)

where N denotes the number of voxels in an image and p denotes the probability
for a specific voxel xi with corresponding reference label yi for class c. Choosing Brier
loss to train the DN model instead of CE was motivated by our preliminary work which
showed that segmentation performance of DN model was best when trained with Brier
loss.25 All models were trained for 100,000 iterations. DRN and U-net were trained
with a learning rate of 0.001 which decayed with a factor of 0.1 after every 25,000
steps. Training DN used the snapshot ensemble technique,35 where after every 10,000
iterations the learning rate was reset to its original value of 0.02.

All three segmentation networks were trained using mini-batch stochastic gradient
descent using a batch size of 16. Network parameters were optimized using the Adam
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optimizer.36 Furthermore, models were regularized with weight decay to increase
generalization performance.

3.5.2 Training detection network

To train the detection model a subset of the errors performed by the segmentation
model is used. Segmentation errors that presumably are within the range of inter-
observer variability and therefore do not inevitably require correction (tolerated errors)
are excluded from the set of errors that need to be detected and corrected (segmentation
failures). To distinguish between tolerated errors and the set of segmentation failures
𝒮I the Euclidean distance of an incorrectly segmented voxel to the boundary of the
reference target structure is used. For each anatomical structure a 2D distance transform
map is computed that provides for each voxel the distance to the anatomical structure
boundary. To differentiate between tolerated errors and the set of segmentation failures
𝒮I an acceptable tolerance threshold is applied. A more rigorous threshold is used for
errors located inside compared to outside of the anatomical structure because automatic
segmentation methods have a tendency to undersegment cardiac structures in CMRI.
Hence, in all experiments the acceptable tolerance threshold was set to three voxels
(equivalent to on average 4.65mm) and two voxels (equivalent to on average 3.1mm)
for segmentation errors located outside and inside the target structure. Furthermore,
a segmentation error only belongs to 𝒮I if it is part of a 2D 4-connected cluster of
minimum size 10 voxels. This valuewas found in preliminary experiments by evaluating
values {1, 5, 10, 15, 20}. However, for apical slices all segmentation errors are included
in 𝒮I regardless of fulfilling the minimum size requirement because in these slices
anatomical structures are relatively small and manual segmentation is prone to large
inter-observer variability.7 Finally, segmentation errors located in slices above the base
or below the apex are always included in the set of segmentation failures.

Using the set 𝒮I a binary label tj is assigned to each patch P(I)j indicating whether

P(I)j contains at least one voxel belonging to set 𝒮I where j ∈ {1…M} and M denotes
the number of patches in a slice I. The detection network is trained by minimizing a
weighted binary cross-entropy loss:

ℒDT = − ∑
j∈P(I)

wpos tj log pj + (1 − tj) log(1 − pj) , (3.6)

where wpos represents a scalar weight, tj denotes the binary reference label and pj
is the softmax probability indicating whether a particular image region P(I)j contains
at least one segmentation failure. The average percentage of regions in a patient
volume containing segmentation failures ranges from 1.5 to 3 percent depending on
the segmentation architecture and loss function used to train the segmentation model.
To train a detection network wpos was set to the ratio between the average percentage
of negative samples divided by the average percentage of positive samples.
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Each fold was trained using spatial uncertainty maps and automatic segmentation
masks generated while training the segmentation networks. Hence, there was no
overlap in patient data between training and test set across segmentation and detection
tasks. In total 12 detection models were trained and evaluated resulting from the
different combination of 3 model architectures (DRN, DN and U-net), 2 loss functions
(DRN and U-net with CE and soft-Dice, DN with Brier and soft-Dice) and 2 uncertainty
maps (e-maps, b-maps).
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Table 3.2: Segmentation performance of different combination of model architectures, loss func-

tions and evaluation modes (without or with MC dropout (MC) enabled during testing) in terms of

clinical metrics: left ventricle (LV) end-diastolic volume (EDV); LV ejection fraction (EF); right ventricle

(RV) EDV; RV ejection fraction; and LV myocardial mass. Quantitative results compare clinical metrics

based on reference segmentations with 1) automatic segmentations and 2) simulated manual

correction of automatic segmentations using spatial uncertainty maps. ρ denotes the Pearson

correlation coefficient, bias denotes the mean difference between the two measurements (mean ±
standard deviation) and MAE denotes the mean absolute error between the two measurements.

Each combination comprises a block of two rows. A row in which column Uncertainty map for detec-

tion indicates e- or b-map shows results for the combined segmentation and detection approach.

Numbers accentuated in black/bold are ranked first in the segmentation only task. Numbers in

red indicate statistical significant at 5% level w.r.t. the segmentation-only approach for the specific

clinical metric. Best viewed in color.

U
nc

er
ta
in
ty

m
ap

fo
r

de
te
ct
io
n

LVEDV LVEF RVEDV RVEF LVMMass
Method ρ bias±σ MAE ρ bias±σ MAE ρ bias±σ MAE ρ bias±σ MAE ρ bias±σ MAE

DN-Brier 0.997 0.0±6.1 4.5 0.892 2.2± 9.2 4.2 0.977 -0.2±11.8 8.5 0.834 5.3±10.3 8.5 0.984 -2.7± 9.0 7.0

e-map 0.997 0.0±5.5 4.0 0.982 0.1± 3.8 2.2 0.992 0.0± 6.9 5.2 0.955 1.9± 5.5 4.1 0.986 -2.1± 8.4 6.6

DN-
Brier+MC

0.997 1.6±6.0 4.4 0.921 1.1± 7.9 3.9 0.975 6.7±12.4 9.6 0.854 3.5± 9.9 7.7 0.984 0.7± 9.2 7.1

b-map 0.998 1.0±5.3 3.9 0.991 0.0± 2.7 1.9 0.993 3.2± 6.7 5.7 0.975 0.8± 4.0 3.0 0.987 0.1± 8.3 6.5

DN-soft-
Dice

0.996 1.2±6.5 4.9 0.918 1.5± 8.0 3.9 0.972 0.2±13.0 9.6 0.802 7.2±11.3 10.2 0.982 -4.5± 9.6 8.5

e-map 0.997 1.0±5.5 4.2 0.989 0.2± 3.0 2.2 0.990 0.2± 7.6 5.9 0.940 3.3± 6.2 5.2 0.983 -4.3± 9.3 8.2

DN-soft-
Dice+MC

0.996 3.2±7.1 5.6 0.958 0.4± 5.7 3.6 0.964 8.1±14.9 12.3 0.827 4.8±11.0 8.9 0.978 -0.7±10.7 8.3

b-map 0.997 2.2±5.6 4.4 0.988 -0.2± 3.1 2.2 0.990 4.0± 7.7 7.0 0.959 1.8± 5.1 4.1 0.982 -1.0± 9.5 7.6

DRN-CE 0.997 -0.2±5.5 4.1 0.968 1.2± 5.0 3.5 0.976 1.5±12.1 8.5 0.870 1.3± 9.2 6.9 0.980 0.6±10.2 7.8

e-map 0.998 0.2±4.5 3.5 0.992 0.2± 2.5 1.9 0.988 1.4± 8.5 6.2 0.952 0.8± 5.6 4.2 0.985 0.4± 8.7 6.8

DRN-
CE+MC

0.998 1.0±4.9 3.9 0.972 0.8± 4.6 3.1 0.973 4.8±12.8 9.4 0.876 0.4± 9.1 6.6 0.981 1.9± 9.9 7.6

b-map 0.998 0.7±4.6 3.6 0.992 -0.1± 2.5 1.8 0.992 2.9± 6.9 5.7 0.967 0.6± 4.6 3.4 0.987 1.2± 8.3 6.6

DRN-soft-
Dice

0.998 0.8±5.1 4.0 0.976 0.2± 4.4 3.0 0.980 0.2±11.0 7.5 0.882 3.1± 8.7 6.8 0.984 -3.5± 9.1 7.5

e-map 0.998 0.7±4.4 3.5 0.987 -
0.1± 3.1

2.2 0.987 0.1± 9.1 6.4 0.938 1.9± 6.3 4.9 0.986 -3.5± 8.7 7.1

DRN-soft-
Dice+MC

0.998 1.8±5.1 3.9 0.979 -0.3± 4.1 2.9 0.977 3.5±11.7 8.1 0.868 1.7± 9.5 6.8 0.983 -1.4± 9.5 7.4

b-map 0.998 1.7±4.7 3.7 0.990 -0.2± 2.9 2.1 0.989 2.3± 8.1 5.8 0.959 0.8± 5.2 3.8 0.986 -1.3± 8.5 6.8

U-net-CE 0.995 -4.7±7.2 6.1 0.954 4.1± 6.0 5.1 0.963 -7.6±15.2 12.1 0.870 5.6± 9.0 8.1 0.971 -8.5±12.2 11.5

e-map 0.998 -3.2±4.8 4.4 0.992 1.7± 2.6 2.4 0.987 -4.1± 9.1 6.7 0.957 2.6± 5.2 4.1 0.983 -5.7± 9.3 8.2

U-net-
CE+MC

0.995 -4.3±7.2 5.9 0.958 3.8± 5.8 4.9 0.968 -4.8±14.1 10.7 0.867 5.0± 9.1 7.9 0.972 -8.1±12.0 11.1

b-map 0.997 -3.5±5.5 4.9 0.990 1.6± 2.9 2.6 0.992 -1.8± 7.0 4.9 0.974 1.6± 4.1 3.3 0.981 -6.8±10.0 9.4

U-net-soft-
Dice

0.997 -2.0±6.0 4.5 0.853 3.6±10.9 5.0 0.968 -1.0±14.1 10.0 0.782 4.8±11.6 9.0 0.985 -7.7± 8.8 9.2

e-map 0.997 -1.7±5.3 4.1 0.969 1.9± 4.9 3.3 0.981 -0.1±10.9 7.5 0.919 3.3± 7.0 5.9 0.984 -6.6± 9.0 8.7

U-net-soft-
Dice+MC

0.997 -1.8±5.9 4.4 0.941 3.0± 6.7 4.4 0.969 0.6±13.9 9.8 0.792 4.4±11.3 8.7 0.985 -7.2± 8.9 8.9

b-map 0.997 -1.5±5.3 4.1 0.979 1.1± 4.1 2.9 0.985 1.2± 9.4 6.5 0.939 2.9± 6.2 4.9 0.984 -5.9± 9.0 8.5
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Figure 3.3: Detection performance of segmentation failures generated by different combination

of segmentation architectures and loss functions. (a) Sensitivity for detection of segmentation

failures on voxel level (y-axis) as a function of number of false positive image regions (x-axis). (b)

Precision-recall curve for detection of slices containing segmentation failures (where AP denotes

average precision). Results are split between entropy and Bayesian uncertainty maps. Each figure

contains a curve for the six possible combination of models (three) and loss functions (two). SD

denotes soft-Dice and CE cross-entropy, respectively.

The patches used to train the network were selected randomly (2/3), or were forced
(1/3) to contain at least one segmentation failure by randomly selecting a scan containing
segmentation failure, followed by random sampling of a patch containing at least one
segmentation failure. During training the patch size was fixed to 80×80 voxels. To
reduce the number of background voxels during testing, inputs were cropped based on
a minimal enclosing, rectangular bounding box that was placed around the automatic
segmentation mask. Inputs always had a minimum size of 80×80 voxels or were forced
to a multiple of the output grid spacing of eight voxels in both direction required by
the patch-based detection network. The patches of size 8×8 voxels did not overlap. In
cases where the automatic segmentation mask only contains background voxels (scans
above the base or below apex of the heart) input scans were center-cropped to a size of
80×80 voxels.

Models were trained for 20,000 iterations using mini-batch stochastic gradient
descent with batch-size 32 and Adam as optimizer.36 Learning rate was set to 0.0001
and decayed with a factor of 0.1 after 10.000 steps. Furthermore, dropout percentage
was set to 0.5 and weight decay was applied to increase generalization performance.

3.5.3 Segmentation using correction of the detected segmentation fail-

ures

To investigate whether correction of detected segmentation failures increases seg-
mentation performance two scenarios were performed. In the first scenario manual
correction of the detected failures by an expert was simulated for all images at ED
and ES time points of the ACDC dataset. For this purpose, in image regions that were
detected to contain segmentation failure predicted labels were replaced with reference
labels. In the second scenario manual correction of the detected failures was performed
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by an expert in a random subset of 50 patients of the ACDC dataset. The expert was
shown CMRI slices for ED and ES time points together with corresponding automatic
segmentation masks for the RV, LV and LV myocardium. Image regions detected to
contain segmentation failures were indicated in slices and the expert was only allowed
to change the automatic segmentations in these indicated regions. Annotation was
performed following the protocol described in Bernard et al.7 Furthermore, expert was
able to navigate through all CMRI slices of the corresponding ED and ES volumes.

3.6 Results

In this section we first present results for the segmentation-only task followed by
description of the combined segmentation and detection results.

3.6.1 Segmentation-only approach

Table 3.1 lists quantitative results for segmentation-only and combined segmentation
and detection approach in terms of Dice coefficient and Hausdorff distance. These
results show that DRN and U-net achieve similar Dice coefficients and outperformed
the DN network for all anatomical structures at end-systole. Differences in the achieved
Hausdorff distances among the methods are present for all anatomical structures and
for both time points. The DRN model achieved the highest and the DN network the
lowest Hausdorff distance.

Table 3.3 lists results of the evaluation in terms of clinical metrics. These results
reveal noticeable differences between models for ejection fraction (EF) of left and right
ventricle, respectively. We can observe that U-net trained with the soft-Dice and the
Dilated Network (DN) trained with Brier or soft-Dice loss achieved considerable lower
accuracy for LV and RV ejection fraction compared to DRN. Overall, the DRN model
achieved highest performance for all clinical metrics.
Effect of model architecture on segmentation: Although quantitative differences
betweenmodels are small, qualitative evaluation discloses that automatic segmentations
differ substantially between the models. Figure 3.2 shows that especially in regions
where the models perform poorly (apical and basal slices) the DN model more often
produced anatomically implausible segmentations compared to the DRN and U-net.
This seems to be correlated with the performance differences in Hausdorff distance.
Effect of loss function on segmentation: The results indicate that the choice of loss
function only slightly affects the segmentation performance. DRN and U-net perform
marginally better when trained with soft-Dice compared to cross-entropy whereas DN
performs better when trained with Brier loss than with soft-Dice. For DN this is most
pronounced for the RV at ES.

A considerable effect of the loss function on the accuracy of the LV and RV ejection
fraction can be observed for the U-net model. On both metrics U-net achieved the
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Table 3.4: Average precision and percentage of slices with segmentation failures generated by

Dilated Network (DN), Dilated Residual Network (DRN) and U-net when trained with soft-Dice (SD),

CE or Brier loss. Per patient, average precision of detected slices with failure using e- or b-maps

(2nd and 3rd columns). Per patient, average percentage of slices containing segmentation failures

(reference for detection task) (4th and 5th columns).

Model Average precision % of slices
with segmentation failures

e-map b-map e-map b-map
DN-Brier 84.0 83.0 53.7 52.4
DN-SD 87.0 85.0 58.3 58.1
DRN-CE 75.0 69.0 39.5 39.4
DRN-SD 67.0 67.0 34.9 33.7
U-net-CE 81.0 75.0 54.8 52.5
U-net-SD 76.0 76.0 46.7 45.5

lowest accuracy of all models when trained with the soft-Dice loss.
Effect of MC dropout on segmentation: The results show that enabling MC-dropout
during testing seems to result in slightly improved HD while it does not affect DC.

3.6.2 Detection of segmentation failures

Detection of segmentation failures on voxel level: To evaluate detection per-
formance of segmentation failures on voxel level Figure 3.3a shows average voxel
detection rate as a function of false positively detected regions. This was done for
each combination of model architecture and loss function exploiting e- (Figure 3.3a,
left) or b-maps (Figure 3.3a, right). These results show that detection performance of
segmentation failures depends on segmentation model architecture, loss function and
uncertainty map.

The influence of (segmentation) model architecture and loss function on detection
performance is slightly stronger when e-maps were used as input for the detection
task compared to b-maps. Detection rates are consistently lower when segmentation
failures originate from segmentation models trained with soft-Dice loss compared to
models trained with CE or Brier loss. Overall, detection rates are higher when b-maps
were exploited for the detection task compared to e-maps.

Detection of slices with segmentation failures: To evaluate detection performance
w.r.t. slices containing segmentation failures precision-recall curves for each combina-
tion of model architecture and loss function using e-maps (Figure 3.3b, left) or b-maps
(Figure 3.3b, right) are shown. The results show that detection performance of slices
containing segmentation failures is slightly better for all models when using e-maps.
Furthermore, the detection network achieves highest performance using uncertainty
maps obtained from the DN model and the lowest when exploiting e- or b-maps ob-
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Table 3.5: Comparing performance of segmentation-only approach (auto-only) with combined

segmentation and detection approach for two scenarios: simulated correction of detected segmen-

tation failures (auto+simulation); and manual correction of detected segmentation failures by an

expert (auto+expert). Automatic segmentations were obtained from a U-net trained with cross-

entropy. Evaluation was performed on a subset of 50 patients from the ACDC dataset. Scenarios

are compared against segmentation-only approach (auto-only) in terms of (a) Dice Coefficient (b)

Hausdorff Distance and (c) Clinical metrics. Results obtained from simulated manual correction

represent an upper bound on the maximum achievable performance. Detection network was

trained with e-maps. Number with asterisk indicates statistical significant at 5% level w.r.t. the

segmentation-only approach.

(a)Dice coefficient: Mean± standard deviation for left ventricle (LV), right ventricle

(RV) and left ventricle myocardium (LVM).

End-diastole End-systole
Scenario LV RV LVM LV RV LVM
auto-only 0.964±0.02 0.927±0.04 0.883±0.03 0.916±0.05 0.854±0.08 0.886±0.04

auto+simulation 0.967±0.01 *0.948±0.03 *0.894±0.03 *0.939±0.03 *0.915±0.04 *0.910±0.03
auto+expert 0.965±0.02 0.940±0.03 0.885±0.03 0.927±0.04 0.868±0.07 0.894±0.03

(b) Hausdorff Distance: Mean ± standard deviation for left ventricle (LV), right

ventricle (RV) and left ventricle myocardium (LVM).

End-diastole End-systole
Scenario LV RV LVM LV RV LVM
auto-only 5.6±3.3 15.7±9.7 8.5±6.4 9.2±5.8 16.5±8.8 13.4±10.5

auto+simulation 4.5±2.1 *9.0±4.6 *5.9±3.4 *5.2±2.5 *10.3±3.7 *6.6±2.9
auto+expert 4.9±2.8 *9.8±4.3 7.3±4.3 7.2±3.3 *12.5±4.7 *8.3±3.5

(c) Clinical metrics: a) Left ventricle (LV) end-diastolic volume (EDV) b) LV ejection fraction (EF) c) Right

ventricle (RV) EDV d) RV ejection fraction e) LVmyocardialmass. Quantitative results compare clinicalmetrics

based on reference segmentations with 1) automatic segmentations; 2) simulated manual correction and

3) manual expert correction of automatic segmentations using spatial uncertainty maps. ρ denotes the

Pearson correlation coefficient, bias denotes the mean difference between the two measurements (mean

± standard deviation) and MAE denotes the mean absolute error between the two measurements.

LVEDV LVEF RVEDV RVEF LVMMass
Scenario ρ bias

±σ
MAE ρ bias

±σ
MAE ρ bias

±σ
MAE ρ bias

±σ
MAE ρ bias

±σ
MAE

auto-only 0.995 -4.4
±7.0

5.7 0.927 5.0
±7.1

5.8 0.962 -6.4
±16.2

11.9 0.878 5.8
±8.7

8.0 0.979 -6.4
±10.6

9.5

auto+simulation 0.998 -3.9
±5.2

4.8 0.989 2.3
±2.9

2.9 0.984 -3.7
±10.4

6.8 0.954 2.7
±5.5

4.5 0.983 -5.5
±9.6

8.1

auto+expert 0.996 -4.3
±6.5

5.5 0.968 2.7
±4.8

4.3 0.976 -3.2
±12.9

8.3 0.883 5.1
±8.6

7.7 0.980 -6.2
±10.2

9.1



52 Chapter 3

Table 3.6: Effect of number of Monte Carlo (MC) samples on segmentation performance in terms

of (a) Dice coefficient (DC) and (b) Hausdorff Distance (HD) (mean ± standard deviation). Higher

DC and lower HD is better. Abbreviations: Cross-Entropy (CE), Dilated Residual Network (DRN) and

Dilated Network (DN).

(a) Dice coefficient

Number of
MC samples DRN-

CE
U-net-
CE

DN-soft-Dice

1 0.894±0.07 0.896±0.07 0.871±0.09
3 0.900±0.07 0.901±0.07 0.883±0.08
5 0.902±0.07 0.901±0.07 0.887±0.08
7 0.903±0.07 0.901±0.07 0.888±0.08
10 0.904±0.06 0.902±0.07 0.890±0.08
20 0.904±0.07 0.902±0.07 0.890±0.08
30 0.904±0.07 0.902±0.07 0.891±0.08
60 0.904±0.07 0.902±0.07 0.891±0.08

(b) Hausdorff Distance

Number of
MC samples DRN-

CE
U-net-
CE

DN-soft-Dice

1 9.88±5.76 11.79±8.23 13.54±7.14
3 9.70±6.13 11.40±7.78 12.71±6.79
5 9.54±6.07 11.37±7.81 12.06±6.29
7 9.38±5.86 11.29±7.86 12.08±6.38
10 9.38±5.91 11.24±7.71 11.85±6.34
20 9.37±5.83 11.27±7.79 11.90±6.52
30 9.39±5.91 11.32±7.93 11.90±6.48
60 9.39±5.93 11.22±7.83 11.89±6.56

tained from the DRN model. Table 3.4 shows the average precision of detected slices
with segmentation failures per patient, as well as the average percentage of slices that
do contain segmentation failures (reference for detection task). The results illustrate
that these measures are positively correlated i.e. that precision of detected slices in a
patient volume is higher if the volume contains more slices that need correction. On
average the DN model generates cardiac segmentations that contain more slices with
at least one segmentation failure compared to U-net (ranks second) and DRN (ranks
third). A higher number of detected slices containing segmentation failures implies an
increased workload for manual correction.

3.6.3 Calibration of uncertainty maps

Figure 3.4 shows risk-coverage curves for each combination of model architectures,
uncertainty maps and loss functions (Figure 3.4 left: CE or Brier loss, Figure 3.4 right:
soft-Dice). The results show an effect of the loss function on slope and convergence
of the curves. Segmentation errors of models trained with the soft-Dice loss are less
frequently covered by higher uncertainties than models trained with CE or Brier loss
(steeper slope and lower minimum are better). This difference is more pronounced
for e-maps. Models trained with the CE or Brier loss only slightly differ concerning
convergence and their slopes are approximately identical. In contrast, the curves of the
models trained with the soft-Dice differ regarding their slope and achieved minimum.
Comparing e- and b-map of the DN-SD and U-net-SD models the results reveal that
the curve for b-map has a steeper slope and achieves a lower minimum compared to
the e-map. For the DRN-SD model these differences are less striking. In general for a
specific combination of model and loss function the risk-coverage curves using b-maps
achieve a lower minimum compared to e-maps.
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Figure 3.4: Comparison of risk-coverage curves for different combination of model architectures,

loss functions and uncertainty maps. Results are separated for loss functions (left cross-entropy

and Brier, right soft-Dice loss). 100% coverage means that none of the voxels is discarded based on

its uncertainty whereas a coverage of 0% denotes the scenario in which all predictions are replaced

by their reference labels. Note, all models were trained with two different loss functions (1) soft-Dice

(SD) for all models (2) cross-entropy (CE) for DRN and U-net and Brier loss for DN.

3.6.4 Correction of automatically identified segmentation failures

Simulated correction: The results listed in Table 3.1 and 3.3 show that the proposed
method consisting of segmentation followed by simulatedmanual correction of detected
segmentation failures delivers accurate segmentation for all tissues over ED and ES
points. Correction of detected segmentation failures improved the performance in
terms of DC, HD and clinical metrics for all combinations of model architectures,
loss functions and uncertainty measures. Focusing on the DC after correction of
detected segmentation failures the results reveal that performance differences between
evaluated models decreased compared to the segmentation-only task. This effect is less
pronounced for HD where the DRN network clearly achieved superior results in the
segmentation-only and combined approach. The DN performs the least of all models
but achieves the highest absolute DC performance improvements in the combined
approach for RV at ES. Overall, the results in Table 3.1 disclose that improvements
attained by the combined approach are almost all statistically significant (p ≤ 0.05) at
ES and frequently at ED (96% resp. 83% of the cases). Moreover, improvements are in
99% of the cases statistically significant for HD compared to 81% of the cases for DC.

Results in terms of clinical metrics shown in Table 3.3 are inline with these findings.
We observe that segmentation followed by simulated manual correction of detected
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segmentation failures resulted in considerably higher accuracy for LV and RV ejection
fraction. Achieved improvements for clinical metrics are only statistically significant
(p ≤ 0.05) in one case for RV ejection fraction.

In general, the effect of correction of detected segmentation failures is more pro-
nounced in cases where the segmentation-only approach achieved relatively low accu-
racy (e.g. DN-SD for RV at ES). Furthermore, performance gains are largest for RV and
LV at ES and for ejection fraction of both ventricles.

The best overall performance is achieved by the DRN model trained with cross-
entropy loss while exploiting entropy maps in the detection task. Moreover, the pro-
posed two step approach attained slightly better results using Bayesian maps compared
to entropy maps.

Manual correction: Table 3.5 lists results for the combined automatic segmenta-
tion and detection approach followed by manual correction of detected segmentation
failures by an expert. The results show that this correction led to improved segmenta-
tion performance in terms of DC, HD and clinical metrics. Improvements in terms of
HD are in 50 percent of the cases statistically significant (p ≤ 0.05) andmost pronounced
for RV and LV at end-systole.

Qualitative examples of the proposed approach are visualized in Figures 3.5 and 3.6
for simulated correction and manual correction of the automatically detected segmen-
tation failures, respectively. For the illustrated cases (simulated) manual correction
of detected segmentation failures leads to increased segmentation performance. On
average manual correction of automatic segmentations took less than 2 minutes for
ED and ES volumes of one patient compared to 20 minutes that is typically needed by
an expert for the same task.

3.7 Ablation Study

To demonstrate the effect of different hyper-parameters in the method, a number of
experiments were performed. In the following text these are detailed.

3.7.1 Impact of number of Monte Carlo samples on segmentation perfor-

mance

To investigate the impact of the number of Monte Carlo (MC) samples (T) on the
segmentation performance validation experiments were performed for all three seg-
mentation architectures (Dilated Network, Dilated Residual Network and U-net) using
T ∈ {1, 3, 5, 7, 10, 20, 30, 60} samples. Results of these experiments are listed in Table 3.6.
We observe that segmentation performance started to converge using 7 samples only.
Performance improvements using an increased number of MC samples were largest
for the Dilated Network. Overall, using more than 10 samples did not increase segmen-
tation performance. Hence, in the presented work T was set to 10.
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Figure 3.5: Three patients showing results of combined segmentation and detection approach

consisting of segmentation followed by simulated manual correction of detected segmentation

failures. First column shows MRI (top) and reference segmentation (bottom). Results for automatic

segmentation and simulatedmanual correction respectively achieved by: Dilated Network (DN-Brier,

2nd and 5th columns); Dilated Residual Network (DRN-soft-Dice, 3rd and 6th columns); and U-net

(soft-Dice, 4th and 7th columns).

3.7.2 Effect of patch-size on detection performance

The combined segmentation and detection approach detects segmentation failures on
region level. To investigate the effect of patch-size on detection performance three
different patch-sizes were evaluated: 4×4, 8×8, and 16×16 voxels. The results are shown
in Figure 3.7. We can observe in Figure 3.7a that larger patch-sizes result in a lower
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Figure 3.6: Four patients showing results of combined segmentation and detection approach

consisting of segmentation followed by manual expert correction of detected segmentation failures.

Expert was only allowed to adjust the automatic segmentations in regions where the detection

network predicted segmentation failures (orange contour shown in 2nd column). Automatic seg-

mentations were generated by a U-net trained with the cross-entropy loss. Segmentation failure

detection was performed using entropy maps.

number of false positive regions. The result is potentially caused by the decreasing
number of regions in an image when using larger patch-sizes compared to smaller patch-
sizes. Furthermore, Figure 3.7b reveals that slice detection performance is only slightly
influenced by patch-size. To ease manual inspection and correction by an expert, it
is desirable to keep region-size i.e. patch-size small. Therefore, in the experiments a
patch-size of 8×8 voxels was used.
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Figure 3.7: Detection performance for three different patch-sizes specified in voxels. (a) Sensitivity

for detection of segmentation failures on voxel level (y-axis) versus number of false positive image

regions (x-axis). (b) Precision-recall curve for detection of slices containing segmentation failures

(where AP denotes average precision). Results are split between entropy and Bayesian uncertainty

maps. In the experiments patch-size was set to 8×8 voxels.
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3.7.3 Impact of tolerance threshold on number of segmentation failures

To investigate the impact of the tolerance threshold separating segmentation failures
and tolerable segmentation errors, we calculated the ratio of the number of segmenta-
tion failures and all errors i.e. the sum of tolerable errors and segmentation failures.
Figure 3.8 shows the results. We observe that at least half of the segmentation failures
are located within a tolerance threshold i.e. distance of two to three voxels of the target
structure boundary as defined by the reference annotation. Furthermore, the mean
percentage of failures per volume is considerably lower for the Dilated Residual Net-
work (DRN) and highest for the Dilated Network. This result is inline with our earlier
finding (see Table 3.4) that average percentage of slices that do contain segmentation
failures is lowest for the DRN model.

3.8 Discussion

We have described a method that combines automatic segmentation and assessment of
uncertainty in cardiac MRI with detection of image regions containing segmentation
failures. The results show that combining automatic segmentation with manual cor-
rection of detected segmentation failures results in higher segmentation performance.
In contrast to previous methods that detected segmentation failures per patient or
per structure, we showed that it is feasible to detect segmentation failures per image
region. In most of the experimental settings, simulated manual correction of detected
segmentation failures for LV, RV and LVM at ED and ES led to statistically significant
improvements. These results represent the upper bound on the maximum achiev-
able performance for the manual expert correction task. Furthermore, results show
that manual expert correction of detected segmentation failures led to consistently
improved segmentations. However, these results are not on par with the simulated
expert correction scenario. This is not surprising because inter-observer variability
is high for the presented task and annotation protocols may differ between clinical
environments. Moreover, qualitative results of the manual expert correction reveal
that manual correction of the detected segmentation failures can prevent anatomically
implausible segmentations (see Figure 3.6). Therefore, the presented approach can po-
tentially simplify and accelerate correction process and has the capacity to increase the
trustworthiness of existing automatic segmentation methods in daily clinical practice.

The proposed combined segmentation and detection approach was evaluated using
three state-of-the-art deep learning segmentation architectures. The results suggest
that our approach is generic and applicable to different model architectures. Never-
theless, we observe noticeable differences between the different combination of model
architectures, loss functions and uncertainty measures. In the segmentation-only task
the DRN clearly outperforms the other two models in the evaluation of the boundary of
the segmented structure. Moreover, qualitative analysis of the automatic segmentation
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masks suggests that DRN generates less often anatomically implausible and fragmented
segmentations than the other models. We assume that clinical experts would prefer
such segmentations although they are not always perfect. Furthermore, even though
DRN and U-net achieve similar performance in regard to DC we assume that less
fragmented segmentation masks would increase trustworthiness of the methods.

0 4 8 12 16 20 24 28 32 36 40
Tolerance threshold (#voxels)

0

10

20

30

40

% 
of

 s
eg

me
nt

at
io

n 
fa

il
ur

es

Outside target structure

U-net-SD
DN-SD
DRN-SD
Used in experiments

(a)

0 4 8 12 16 20 24 28 32 36 40
Tolerance threshold (#voxels)

0

2

4

6

8

10

12

14

% 
of
 s
eg
me
nt
at
io
n 
fa
il
ur
es

Inside target structure

U-net-SD
DN-SD
DRN-SD
Used in experiments

(b)

Figure 3.8: Mean percentage of the segmentation failures per volume (y-axis) in the set of all

segmentation errors (tolerable errors+segmentation failures) depending on the tolerance threshold

(x-axis). Red, dashed vertical line indicates threshold value that was used throughout the experi-

ments. Results are split between segmentation errors located (a) outside and (b) inside the target

structure. Each figure contains a curve for U-net, Dilated Network (DN) and Dilated Residual Network

(DRN) trained with the soft-Dice (SD) loss. Segmentation errors located in slices above the base

or below the apex are always included in the set of segmentation failures and therefore, they are

independent of the applied tolerance threshold.

In agreement with our preliminary work we found that uncertainty maps obtained
from a segmentation model trained with soft-Dice loss have a lower degree of uncer-
tainty calibration compared to when trained with one of the other two loss functions
(cross-entropy and Brier).25 Nevertheless, the results of the combined segmentation
and detection approach showed that a lower degree of uncertainty calibration only
slightly deteriorated the detection performance of segmentation failures for the larger
segmentation models (DRN and U-net) when exploiting uncertainty information from
e-maps. Hendrycks and Gimpel37 showed that softmax probabilities generated by deep
learning networks have poor direct correspondence to confidence. However, in agree-
ment with Geifman et al.30 we presume that probabilities and hence corresponding
entropies obtained from softmax function are ranked consistently i.e. entropy can
potentially be used as a relative uncertainty measure in deep learning. In addition,
we detect segmentation failures per image region and therefore, our approach does
not require perfectly calibrated uncertainty maps. Furthermore, results of the com-
bined segmentation and detection approach revealed that detection performance of
segmentation failures using b-maps is almost independent of the loss function used to
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train the segmentation model. In line with Jungo et al.38 we assume that by enabling
MC-dropout in testing and computing the mean softmax probabilities per class leads
to better calibrated probabilities and b-maps. This assumption is in agreement with
Srivastava et al.39 where a CNN with dropout used at testing is interpreted as an
ensemble of models.

Quantitative evaluation in terms of Dice coefficient and Hausdorff distance reveals
that proposed combined segmentation and detection approach leads to significant
performance increase. However, the results also demonstrate that the correction of
the detected failures allowed by the combined approach does not lead to statistically
significant improvement in clinical metrics. This is not surprising because state-of-
the-art automatic segmentation methods are not expected to lead to large volumetric
errors7 and standard clinical measures are not sensitive to small segmentation errors.
Nevertheless, errors of the current state-of-the-art automatic segmentation methods
may lead to anatomically implausible segmentations7 that may cause distrust in clinical
application. Besides increase in trustworthiness of current state-of-the-art segmenta-
tion methods for cardiac MRIs, improved segmentations are a prerequisite for advanced
functional analysis of the heart e.g. motion analysis40 and very detailed morphology
analysis such as myocardial trabeculae in adults.41

For the ACDC dataset used in this manuscript, Bernard et al.7 reported inter-
observer variability ranging from 4 to 14.1mm (equivalent to on average 2.6 to 9
voxels). To define the set of segmentation failures, we employed a strict tolerance
threshold on distance metric to distinguish between tolerated segmentation errors
and segmentation failures (see Ablation study). Stricter tolerance threshold was used
because the thresholding is performed in 2D, while evaluation of segmentation is done
in 3D. Large slice thickness in cardiac MR could lead to a discrepancy between the
two. As a consequence of this strict threshold results listed in Table 3.4 show that
almost all patient volumes contain at least one slice with a segmentation failure. This
might render the approach less feasible in clinical practice. Increasing the threshold
decreases the number of segmentation failures and slices containing segmentation
failures (see Figure 3.8) but also lowers the upper bound on the maximum achievable
performance. Therefore, to show the potential of our proposed approach we chose
to apply a strict tolerance threshold. Nevertheless, we realize that although manual
correction of detected segmentation failures leads to increased segmentation accuracy
the performance of precision-recall is limited (see Figure 3.3) and hence, should be a
focus of future work.

The presented patch-based detection approach combined with (simulated) manual
correction can in principle lead to stitching artefacts in the resulting segmentation
masks. A voxel-based detection approach could potentially solve this. However, voxel-
based detection methods are more challenging to train due to the very small number
of voxels in an image belonging to the set of segmentation failures.

Evaluation of the proposed approach for 12 possible combinations of segmentation
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models (three), loss functions (two) and uncertainty maps (two) resulted in an exten-
sive number of experiments. Nevertheless, future work could extend evaluation to
other segmentation models, loss functions or combination of losses. Furthermore, our
approach could be evaluated using additional uncertainty estimation techniques e.g. by
means of ensembling of networks42 or variational dropout.43 In addition, previous work
by Kendall and Gal,44 Tanno et al.45 has shown that the quality of uncertainty estimates
can be improved if model (epistemic) and data (aleatoric) uncertainty are assessed
simultaneously with separate measures. The current study focused on the assessment
of model uncertainty by means of MC-dropout and entropy which is a combination
of epistemic and aleatoric uncertainty. Hence, future work could investigate whether
additional estimation of aleatoric uncertainty improves the detection of segmentation
failures.

Furthermore, to develop an end-to-end approach future work could incorporate
the detection of segmentation failures into the segmentation network. Besides, adding
the automatic segmentations to the input of the detection network could increase the
detection performance.

Finally, the proposed approach is not specific to cardiac MRI segmentation. Al-
though data and task specific training would be needed the approach could potentially
be applied to other image modalities and segmentation tasks.

3.9 Conclusion

A method combining automatic segmentation and assessment of segmentation uncer-
tainty in cardiac MR with detection of image regions containing local segmentation
failures has been presented. The combined approach, together with simulated and man-
ual correction of detected segmentation failures, increases performance compared to
segmentation-only. The proposed method has the potential to increase trustworthiness
of current state-of-the-art segmentation methods for cardiac MRIs.
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Abstract

BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is diag-
nosed according to the Task Force Criteria (TFC) in which cardiovascular magnetic
resonance (CMR) imaging plays an important role. Our study aims to apply an auto-
matic deep learning-based segmentation for right and left ventricular CMR assessment
and evaluate this approach for classification of the CMR TFC.

METHODS We included 227 subjects suspected of ARVCwho underwent CMR. Subjects
were classified into 1) ARVC patients fulfilling TFC; 2) at-risk family members; and
3) controls. To perform automatic segmentation, a Bayesian Dilated Residual Neural
Network was trained and tested. Performance of automatic versus manual segmen-
tation was assessed using Dice-coefficient and Hausdorff distance. Since automatic
segmentation is most challenging in basal slices, manual correction of the automatic
segmentation in the most basal slice was simulated (automatic-basal). CMR TFC calcu-
lated using manual and automatic-basal segmentation were compared using Cohen’s
Kappa (κ).

RESULTS Automatic segmentation was trained on CMRs of 70 subjects (39.6±18.1 years,
47% female) and tested on 157 subjects (36.9±17.6 years, 59% female). Dice-coefficient
and Hausdorff distance showed good agreement between manual and automatic seg-
mentations (≥0.89 and ≤10.6mm, respectively) which further improved after simulated
correction of the most basal slice (≥0.92 and ≤9.2mm, p<0.001). Pearson correlation
of volumetric and functional CMR measurements was good to excellent (automatic
(r=0.78-0.99, p<0.001) and automatic-basal (r=0.88-0.99, p<0.001) measurements). CMR
TFC classification using automatic-basal segmentations was comparable to manual
segmentations (κ 0.98±0.02) with comparable diagnostic performance.

CONCLUSIONS Combining automatic segmentation of CMRs with correction of the
most basal slice results in accurate CMR TFC classification of subjects suspected of
ARVC.
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4.1 Background

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart dis-
ease that is characterized by ventricular dysfunction, predominantly affecting the
right ventricle (RV), and potentially life-threatening ventricular arrhythmias. Accurate
recognition of this disease is vital since the implantation of an implantable cardioverter
defibrillator can be life-saving. ARVC is diagnosed according to the revised 2010 Task
Force Criteria (TFC).1 Apart from electrical and family history criteria, an important
role is given to the assessment of ventricular dysfunction and structural alterations.
Cardiac magnetic resonance (CMR) imaging is the modality of choice for the assess-
ment of cardiac function and dimensions in ARVC2 since the asymmetric geometry
and the position of the RV in the chest hampers visualization of the entire RV by 2-D
echocardiography.3 The CMR TFC are based on RV regional wall motion abnormalities
combined with cut-off values for RV ejection fraction (EF) or sex-specific cut-off values
for RV indexed end-diastolic volume (EDVI).1 CMR can deliver one minor or two major
points of the necessary four TFC points for an ARVC diagnosis. Therefore, accurate
RV assessment is essential. Segmenting CMRs to measure functional and structural
parameters is a laborious task, taking about 25 minutes to segment both ventricles in
end-diastole (ED) and end-systole (ES).4,5 Notably, RV segmentation takes two-thirds
of this segmentation time and is prone to intra- and inter-observer variability.6 RV
segmentation difficulties can arise from the trabeculated and complex RV geometry.7,8

In ARVC, RV and left ventricular (LV) anatomy can be further complicated by patho-
logical wall thinning and aneurysms due to fibrofatty replacement of the myocardial
wall.2 As a consequence, CMR misinterpretations are a key cause of over-diagnosis
in ARVC.2 The use of automatic methods for the segmentation of the ventricles may
overcome these challenges. Over the last few years many state-of-the-art deep learning
segmentation approaches for short-axis CMR have been developed.4,9–11 For automatic
LV segmentation such methods can achieve performance level of human experts.12,13

However, previous studies also demonstrated that in manual and automatic segmenta-
tion of short-axis CMR, the largest disagreements and errors occur in the most basal
and apical slices.8,12–15 Moreover, previous methods have often been evaluated on CMR
datasets with limited pathology especially related to the RV. In contrast, this study
included a large hospital population being evaluated for ARVC, including subjects with
structurally normal hearts and those with complex structural abnormalities. In this
work we apply a previously validated state-of-the-art segmentation approach16 on a
large heterogeneous hospital population of patients suspected of ARVC. The purpose
of this study was to (i) evaluate our previously developed deep learning segmentation
approach for RV and LV CMR assessment in patients suspected of ARVC, and (ii)
evaluate the clinical implication of this approach for classification of the CMR TFC in
subjects suspected of ARVC.
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Table 4.1: Baseline characteristics of study population. Abbreviations: ARVC= arrhythmogenic

right ventricular cardiomyopathy; CMRI= cardiac magnetic resonance imaging; DSP= desmoplakin;

PKP2= plakophilin-2; PLN= phospholamban; TFC=Task Force Criteria. *: Significant difference

between control and ARVC patients; †: Significant difference between control and at-risk subjects;

‡: Significant difference between ARVC patients and at-risk subjects.

Study population

ARVC patients
(n=37)

At-risk
ARVC group

(n=66)

Control group
(n=54) p-value

Demographics
Age at CMRI (years) 39.1±19.0 30.7±16.2†‡ 42.9±15.9 <0.001
Female (%) 20 (54) 43 (65) 29 (54) 0.37
Proband (%) 10 (27) 0 (0) ‡ na <0.001
Genetic status
Pathogenic variant 36 (97) 56 (85) na 0.06

PKP2 (%) 24 (71) 33 (59)
PLN (%) 4 (12) 22 (39)
DSP (%) 4 (12) 1 (2)

Other (%) 4 (12) 0
Clinical phenotype
Total TFC score 5 [4-6]∗ 2 [1-3]†‡ 0 <0.001
Repolarization criteria

Minor (%) 10 (27) 0 (0)
Major (%) 8 (22) 3 (5)

Depolarization criteria
Minor (%) 23 (62) 9 (14)
Major (%) 0 (0) 0 (0)

Arrhythmia criteria
Minor (%) 25 (68) 6 (9)
Major (%) 2 (5) 0 (0)

Structural criteria
Minor (%) 6 (16) 1 (3)
Major (%) 25 (68) 0 (0)

4.2 Methods

4.2.1 Study population

We included a consecutive cohort of subjects suspected of ARVC who underwent
CMR as part of their clinical evaluation between 2014 and 2019 at the University
Medical Center (UMC) Utrecht. This yielded 241 subjects, of whom 14 were excluded
because of an equivocal diagnosis (ARVC neither confirmed nor rejected) (n=12), prior
chemotherapy (n=1) and imaging artefacts due to irregular heart rhythm (n=1). This
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led to a study population of 227 subjects who were classified into three groups: 1)
ARVC patients diagnosed according to the 2010 TFC (n=53), 2) family members at-risk
of developing ARVC (n=96), and 3) control subjects initially suspected of ARVC but
in whom ARVC was excluded after full clinical assessment (n=78). Diagnosis in the
control patients included RV outflow tract tachycardia (n=45), premature ventricular
contractions/non-sustained ventricular tachycardia (n=19), mutation-negative family
members of mutation-positive ARVC patients (n=3), healthy athletes (n=3), syncope
without a cardiac cause (n=3) repolarization abnormalities with a structurally normal
heart (n=3) and pectus excavatum (n=2). This study was reviewed by the UMC Utrecht
Institutional Review Board and was granted a waiver of informed consent.

4.2.2 ARVC diagnosis

ARVC diagnosis was based on the revised 2010 diagnostic TFC.1 In short, these
consensus-based criteria rely on major and minor criteria for six different categories:
1) global and regional dysfunction and structural alterations, 2) tissue characteriza-
tion, 3) repolarization abnormalities, 4) depolarization/conduction abnormalities, 5)
arrhythmias, and 6) family history/genetics. In each of these six categories subjects
can score a minor criterium (one point), a major criterium (two points) or no criteria (0
points). A definite ARVC diagnosis was made if a subject has at least four points. The
first category can be assessed by CMR, with minor criteria for regional RV wall motion
abnormalities plus RVEF >40 to ≤45% or RVEDVI ≥100 to <110 mL/m2 (males) or ≥90
to <100 mL/m2 (females) and major criteria for RV regional wall motion abnormalities
plus RVEF ≤40% or RVEDVI ≥110mL/m2 (males) or ≥100 mL/m2 (females).1

4.2.3 CMR dataset

All subjects underwent CMR using either 1.5 or 3 Tesla Ingenia or Achieva Philips
scanners (Best, the Netherlands). The CMR dataset consisted of conventional steady-
state free precession sequence short-axis and longitudinal-axis (4-chamber, 2-chamber
and 3-chamber of both ventricles) cine CMR images acquired during breath holds. For
this work, we only included the short-axis CMR volumes consisting of 12-18 contiguous
slices covering both ventricles. The short-axis imaging parameters were as follows:
each slice containing 25 to 40 phases covering one cardiac cycle with repetition time
2.6-3.4 ms and echo time 1.3-1.7 ms, flip angle 45-60 degrees. The CMR images have an
in-plane resolution ranging from 1.11 to 1.45 with a slice thickness varying from 7 to
10mm. Furthermore, reconstruction matrix of images ranges from 240x240 to 288x288
voxels. Expert radiology technicians made manual reference segmentations of the RV
and LV endocardium for all CMR slices at ED and ES time frames. Both time points
were manually chosen by the same experts. The CMR segmentation protocol was
published previously17 and adheres to the guidelines of the Society of Cardiovascular
Magnetic Resonance (SCMR).18 Furthermore, the presence of RV and/or LV wall motion
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abnormalities was visually evaluated by an experienced cardiovascular radiologist on
all available cine images and used for the calculation of the CMR TFC.

4.2.4 Automatic segmentation of CMR

Prior to segmentation, voxel intensities in CMR scans were normalized by rescaling
the values between [0,1] based on their 1st and 99th percentiles per scan. Furthermore,
voxels intensities below or above the 1st and 99th percentiles were clamped to 0 and 1,
respectively. To perform automatic segmentation of RV and LV in the 2D short-axis
CMR images, we trained a Bayesian Dilated Residual Neural Network (DRN)19 that was
previously developed and evaluated by Sander et al.16 The Bayesian DRN was based
on the original DRN from Yu et al.19 for image segmentation. To convert the original
DRN19 into a Bayesian DRN, we implemented Monte Carlo dropout (MC dropout)
introduced by Gal & Ghahramani.20 Using a Bayesian i.e. MC dropout approach is
advantageous because multiple predictions for the same voxel can be averaged to obtain
an improved final prediction per voxel.16 Furthermore, architecture and parameters
of the Bayesian DRN were identical to the model described in Sander et al.16 The
network used a 2D CMR image as input and had three output channels, each providing
probability for the LV, RV or background. Softmax probabilities were calculated over
the three tissue classes. To train the model a combination of soft-Dice21 and cross-
entropy was used as loss function. For completeness, we provide the equations for
both loss functions:

soft-Dicec = 1 −
∑N

i=1 Rc(i) Ac(i)

∑N
i=1 Rc(i) + ∑N

i=1 Ac(i)
, (4.1)

where N denotes the number of voxels in an image, Rc is the binary reference image
for class c and Ac is the probability map for class c.

Cross-Entropyc = 1 −
N
∑
i=1

tic log p(yi = c|xi) , (4.2)

where p denotes the probability for a specific voxel xi with corresponding reference
label yi for class c, and tic =1 if yi = c, and 0 otherwise. Hyper-parameters of the
network were determined in our previous work16 using CMR images from the MICCAI
2017 Automated Cardiac Diagnosis Challenge (ACDC).12 Therefore, no validation set
was required in the current work. To train the model, patches of 160x160 voxels were
randomly chosen from the training set. Training data was augmented by 90 degree
rotations, elastic deformations and gamma transformations of the images. The model
was trained for 160,000 iterations using mini-batch stochastic gradient descent with
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batch-size 16 and Adam as optimizer.22 Learning rate was set to 0.001 and decayed
with a factor of 0.1 after every 40,000 steps. To increase generalization performance
weight decay was used and set to 0.0005. Furthermore, dropout percentage was set to
0.1. Enabling MC dropout during testing, tissue class per voxel was determined using
the mean softmax probabilities over 15 samples. Voxel wise segmentation may result
in isolated (small clusters of) voxels. To address this, only the largest 3D connected
component for each class was retained in the automatic segmentations.

Simulation of the correction of automatic segmentation Previous research demon-
strated that most segmentation inaccuracies occur in the most basal slice on the
CMR.8,12–15 To evaluate whether these inaccuracies of our method impact TFC classifi-
cation, correction of the automatic segmentation in the most basal slice of each CMR
volume was simulated. This was achieved by replacing the automatic segmentation
of the most basal slice with the corresponding manual reference defined by specially
trained radiology technicians as a part of a regular clinical workup. We refer to the
this scenario as automatic-basal hereafter.

4.2.5 Automatic ED/ES phase selection

Accurate identification of ED and ES phase in the cardiac cycle is a prerequisite to
automatically compute RVEDV and RVESV. To show the potential of the method to
automatically determine the ED and ES phase we automatically segmented all CMR
volumes of the patients in the test set, and derived the RV and LV volumes for all time
points of the cardiac cycle. For each patient ED was identified as the phase in which
the fully automatically segmented volume was maximal and ES as the phase in which
the volume was minimal. Automatically identified phases were compared with the
manually selected phases using Bland-Altman analysis. In these plots (e.g. Figure 4.3)
the distance between automatically and manually selected phases is expressed as
percentage of a complete cardiac cycle. Evaluation was performed for RV and LV
separately, and for automatic and automatic-basal segmentations separately.

4.2.6 Evaluation of automatic segmentation

To evaluate performance of the automatic segmentation method 3DDice-coefficient and
3D Hausdorff distance between manual and automatic segmentations were computed.
For this, the 2D automatic segmentation masks were stacked into a 3D volume per
patient and cardiac phase. The Dice-coefficient quantifies overlap between manual and
automatic segmentation and its value ranges between 0 and 1. A higher Dice-coefficient
indicates better agreement between manual and automatic segmentations. The Haus-
dorff distance evaluates segmentation along the boundary of the target structure by
measuring the maximum distance between manual and automatic segmentation. Qual-
itative performance of the automatic segmentation method was visually assessed. To
investigate whether segmentation errors accumulate at specific slice locations in the
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CMR volume the distribution of segmentation errors over slice location was computed.
For this, four slice locations in a volume were distinguished: (i) most apical slice,
(ii) most basal slice, (iii) mid-ventricular slices, and (vi) slices located below the apex
or above the base of the heart. Furthermore, to evaluate the clinical implications of
our automatic CMR segmentation approach for the classification of the CMR TFC in
subjects suspected of ARVC, the following CMR measurements were computed for
manual, automatic and automatic-basal segmentations: LV end-diastolic volume (EDV),
LV end-systolic volume (ESV), LV stroke volume (SV), LVEF, RVEDV, RVESV, RVSV,
and RVEF.

4.2.7 Statistical analysis

Statistical analysis was performed using RStudio Version 1.3.1093 (Boston, MA, USA)
and IBM SPSS Statistics (version 25, USA). Continuous values were presented as mean
± standard deviation or median [interquartile range]. Categorical data was displayed
as absolute frequency (n) and percentages (%). For continuous comparisons of two
groups, two-tailed Student’s t-test was used. For continuous comparisons of three
or more groups, one-way ANOVA was used. Categorical data were compared using
the chi-square χ2 test. A p-value of <0.05 was considered significant. Comparison of
automatic and manual absolute CMR measurements were assessed using Bland-Altman
analysis and the Pearson correlation coefficient (r). CMR TFC was first classified using
visual assessment of wall motion abnormalities and manually derived RVEDVI and
RVEF, and next using visual assessment of wall motion abnormalities and automatically
derived RVEDVI and RVEF. CMR TFC classification agreement between manually
vs. automatically derived CMR measurements was assessed using Cohen’s kappa (κ).
Furthermore, sensitivity and specificity of CMR TFC bymanual and automatic approach
was determined and compared using the McNemar test.

4.3 Results

4.3.1 Study population

We included 70 subjects in the training set (mean age 39.6±18.1 years, 47% female)
and 157 subjects in the test set (mean age 36.9±17.6 years, 59% female). Patient char-
acteristics are shown in Table 4.1. The test set included 37 ARVC patients, 66 at-risk
family members and 54 controls subjects. The distribution of subjects across the three
patient categories was the same for training and test sets (34% controls, 42% at risk, 24%
ARVC patients). No statistically significant difference in sex existed between the three
subgroups (p=0.37), but at-risk family members were younger than ARVC patients
(p=0.021) and controls (p<0.001). ARVC patients had a median of 5 [4-6] diagnostic
TFC points, while at-risk family members had a median of 2 [1-3] points (p<0.001). In
total, 84% of ARVC patients and 3% of at-risk family members had minor or major CMR
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Table 4.2: Segmentation performance of deep learning segmentation model in terms of Dice-

coefficient (higher is better) and Hausdorff distance (in millimeter, lower is better). Automatic−basal

refers to the scenario in which the most basal slice of each automatic segmentation volume was

replaced with the corresponding manual reference. Depicted values specify mean ± standard

deviation. Abbreviations: LV= left ventricle; RV= right ventricle.

End-diastole End-systole
LV RV LV RV

Dice-coefficient
Automatic 0.96±0.01 0.93±0.03 0.93±0.04 0.89±0.04
Automatic−basal 0.97±0.01 0.95±0.02 0.95±0.02 0.92±0.03

Hausdorff-distance
Automatic 6.42±2.26 10.42±2.99 6.58±2.73 10.60±3.50
Automatic−basal 5.07±2.27 9.19±3.19 5.52±2.47 9.09±3.05

TFC (RV wall motion abnormalities combined with abnormal RVEF or RVEDVI cut-off
values). Among 103 ARVC patients and at-risk family members, 90 (87%) carried a
pathogenic variant, mostly in plakophilin-2 (n=57, 63%) followed by phospholamban
(n=26, 29%) and desmoplakin (n=5, 6%).

4.3.2 Assessment of segmentation performance

Table 4.2 lists quantitative results of the automatic segmentation. The automatic method
achieved mean Dice-coefficient for ED and ES 0.96±0.01 and 0.93±0.03, respectively
for the LV and 0.93±0.04 and 0.89±0.04, respectively for the RV. Visual assessment of
automatic segmentation results depicted in Figure 4.1 reveal that performance was
higher for mid-ventricular slices (second and third rows Figure 4.1) compared with
apical and basal slices (first and fourth row Figure 4.1), while an under-segmentation
of trabeculated areas occurred in the apical slices (first row Figure 4.1). Furthermore,
as depicted in Figure 4.2, visual assessment of the manual reference segmentation
revealed a high variability of the RV shape in the basal slices in both ED and ES time
points. Furthermore, as listed in Table 4.3, comparison of automatic with manual
reference segmentations disclosed that on average 24.5% of the segmentation errors
i.e. misclassified voxels were located in the most basal slice (30.7 and 18.3% for RV
and LV, respectively). In contrast, on average only 6.5% of the errors were located in
an apical slice (5.4 and 7.6% for RV and LV, respectively). Table 4.2 lists segmentation
results after the simulated correction of the automatic RV and LV segmentation in the
most basal slice. The results show an increased segmentation performance: mean Dice-
coefficient for the ED and ES are 0.97±0.01 and 0.95±0.03 (vs. 0.96±0.01 and 0.93±0.03
uncorrected) respectively for the LV and 0.95±0.02 and 0.92±0.03 (vs. 0.93±0.04 and
0.89±0.04 uncorrected) respectively for the RV (p<0.001 [one side Wilcoxon signed-rank
test]).
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CMR without segmentation Manual segmentation Automatic segmentation

Figure 4.1: Qualitative segmentation results for left (yellow) and right (blue) ventricles at end-systole

for a patient included in the test set. Columns depict raw CMR (first column), CMR with manual

reference segmentation (second column) and CMR with automatic segmentation (third column).

Rows show apical, mid-ventricular and most basal slices for LV (third row) and RV (fourth row),

respectively.
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Table 4.3: Percentage of segmentation errors per target structure, i.e., left and right ventricle (LV,

RV), located in basal, apical, all mid-ventricular or slices above base and below apex.

Slice location

Basal Mid-ventricular Apical
Above base &
below apex

LV 18.3% 70% 7.5% 4.2%
RV 30.7% 61% 5.4% 2.9%

Table 4.4: Correlation between manual and automatic (second and third columns) and

automatic−basal (fourth and fifth columns) measurements. Abbreviations: EF=ejection fraction;

SV=stroke volume; EDV=end-diastolic volume; ESV=end-systolic volume. *p-value of correlation

<0.001.

Automatic Automatic−basal
Mean absolute

difference
(vs. manual)

Correlation r
(with manual)

Mean absolute
difference

(vs. manual)

Correlation r
(with manual)

Right ventricle
EF (%) 1.4±4.7 0.82 (0.77-0.87)* 0.9±3.9 0.88 (0.84-0.91)*

SV (mL) -2.0±10.8 0.89 (0.84-0.91)* 0.7±9.2 0.92 (0.90-0.94)*
EDV (mL) -9.9±13.9 0.95 (0.94-0.97)* -5.5±9.6 0.98 (0.97-0.98)*
ESV (mL) -7.9±11.0 0.95 (0.93-0.96)* -4.8±8.1 0.97 (0.96-0.98)*

Left ventricle
EF (%) 2.4±3.6 0.78 (0.71-0.84)* 1.4±2.1 0.92 (0.89-0.94)*

SV (mL) 1.4±7.3 0.93 (0.91-0.95)* 0.04±4.2 0.98 (0.97-0.98)*
EDV (mL) -4.6±6.1 0.99 (0.98-0.99)* -4.4±4.1 0.99 (0.99-1.00)*
ESV (mL) -6.0±6.4 0.95 (0.93-0.96)* -4.4±4.6 0.97 (0.96-0.98)*

4.3.3 Automatic ED and ES phase selection

The Bland-Altman plots shown in Figure 4.3a demonstrate the comparison between
automatically identified cardiac phases using the automatic−basal segmentations to
automatically determine the ED and ES phases. For this scenario the bias [limits of
agreement] were -0.72 [-5.29, 3.85]% for the ED-LV phase and -3.03 [-10.08, 4.03]% for
the ES-LV phase, respectively, and -0.34 [-9.58, 8.89]% for the ED-RV and 0.48 [-7.20,
8.17]% for the ES-RV. Figure 4.3b depicts the same comparison using the automatic
segmentations with the manually selected ED and ES phases. The bias [limits of
agreement] were -0.87 [-6.26, 4.52]% for the ED-LV phase and -1.64 [-10.28, 6.99]% for
the ES-LV phase, respectively, and -0.96 [-11.69, 9.76]% for the ED-RV phase and –0.05
[-7.62, 7.53]% for the ES-RV phase, respectively.
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Figure 4.2: Examples illustrating right ventricle (RV) shape variability in manual reference segmen-

tations for basal slices. Shown are original CMR without (top row) and with (bottom row) manual

reference segmentations of the left (yellow) and right (blue) ventricle.

4.3.4 Assessment of absolute CMR measurements

Automatically measured volumes (RV and LV EDV and ESV) are slightly underestimated
compared to manually measured volumes (see Figures 4.4). However, as shown in
Table 4.4, the correlations of both RV and LV volumes were excellent (0.95-0.99, p<0.001).
For RV and LV EF and SV, automatic measurements seem to be slightly overestimated
compared to manual measurements; nonetheless, correlations were excellent 0.82-0.89
for RV and good to excellent (0.78-0.93) for LV. After simulated manual correction of
the basal slice, agreement between manual and automated measurements increased,
as depicted in the Bland Altman plots (see Figures 4.4). This was also reflected in
the Pearson correlation coefficient for both the volumetric (EDV, ESV) (r=0.97-0.99,
p<0.001) as well as the functional (SV, EF) (r=0.88-0.98, p<0.001) CMR measurements.

4.3.5 Classification of ARVC TFC

Since agreement between manual and automatic measurements was higher in the
automatic−basal, we used these results for the further analysis. Table 4.5 depicts the
mean and standard deviation of the CMR measurements stratified per subgroup. The
trends between the three subgroups (ARVC, at-risk family members and controls)
were comparable between manual and automated measurements: ARVC patients had
significantly reduced RVEF (p<0.001) and LVEF (p=0.002), as well as increased RVEDVI
(p<0.001), RVESVI (p<0.001) and LVESVI (p<0.013) compared to at-risk family members
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Figure 4.3: Bland-Altman plots with the agreement between the manually and automatically

selected end-diastolic (ED) and end-systolic (ES) phases for right ventricle (RV) and left ventricle

(LV), respectively, using (a) automatic−basal segmentations and (b) automatic−basal. Distance between
automatically and manually selected phases is expressed as percentage of a complete cardiac cycle.

Evaluation was performed for LV (first and second columns) and RV (third and fourth columns)

separately. Higher opacity of colors correlates to higher density of data points.

and controls. These trends between the subgroups were also observed in the boxplots
of Figure 4.5.

We next compared CMR TFC classification using manual vs. automatic−basal CMR
measurements. All but one subject (156/157, 99%) were correctly classified, showing
an agreement of κ 0.98±0.02. As depicted in Figure 4.6a, subjects who classified as no
(n=130) or minor (n=6) CMRTFCwere correctly classified using the CMRmeasurements
computed using the automatic−basal segmentations obtained from the deep learning
segmentation model. For major TFC, all but one subject were correctly classified;
with one female subject being misclassified as minor CMR TFC. This classification
discrepancy was based on a 5 mL/m2 difference in RVEDVI (102 mL/m2 using manual
measurements and 97mL/m2 using automatic measurements), whereby the cutoff for
major CMR TFC is set at >100mL/m2 in women. The total TFC in this patient went
from 5 to 4, which did not change the ARVC diagnosis. Sensitivity and specificity
of minor and major CMR TFC for diagnosis of ARVC were comparable for manual
(minor TFC 31% | 99% and major TFC 66% | 100%) and for automatic−basal (minor TFC
35% | 100% and major TFC 65% | 100%, p=0.32). CMR TFC classification using the
uncorrected automatic measurements are depicted in Figure 4.6b. This resulted in
correct classification of 149/157 (95%) subjects.
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Table 4.5: Table lists right ventricular (RV) and left ventricular (LV) function and dimension. CMR

measurements are given for controls, at-risk family members and ARVC patients, stratified per

method: (i) manual, (ii) automatic−basal [light blue], and (iii) automatic [blue]). Significant differ-

ence 0.01≤p≤0.05 (*) or p<0.01 (**) between control and ARVC patients; Significant difference

0.01≤p≤0.05 (†) or p<0.01 (‡) between at-risk and ARVC patients.

Study population
ARVC patients

(n=37)
At-risk ARVC group

(n=66)
Control group

(n=54) p-value

Right ventricle
EF 47.1±9.0**‡ 55.5±5.9 56.2±6.1 <0.001

48.3±9.6**‡ 56.1±6.0 57.2±7.4 <0.001
49.2±9.0**‡ 56.9±5.8 57.4±7.7 <0.001

SV 99.0±15.9‡ 92.7±18.3 99.5±23.4 0.116
98.7±20.7 91.6±21.0 99.0±27.3 0.159
98.5±21.8 90.2±20.5 97.±26.6 0.139

EDV 218.1±53.2**‡ 168.6±34.9 178.1±41.3 <0.001
210.1±50.5**‡ 164.1±35.5 173.2±42.3 <0.001
204.7±51.0**‡ 159.9±35.3 169.2±41.9 <0.001

EDVI 111.6±25.4**‡ 93.7±14.8 92.9±18.5 <0.001
107.4±23.8**‡ 91.1±14.9 90.1±18.5 <0.001
104.6±24.0**‡ 88.7±15.1 88.0±18.1 <0.001

ESV 119.1±45.8**‡ 76.0±20.8 78.6±22.6 <0.001
111.4±41.8**‡ 72.5±19.3 74.1±22.2 <0.001
106.2±39.5**‡ 69.7±19.4 72.3±22.7 <0.001

ESVI 60.8±22.7**‡ 42.1±9.9 41.1±11.2 <0.001
56.9±20.7**‡ 40.2±9.0 38.8±11.1 <0.001
54.3±19.5**‡ 38.6±8.9 37.7±11.1 <0.001

Left ventricle
EF 53.3±5.7**‡ 56.4±4.4 56.7±5.3 0.003

54.6±5.2**‡ 57.8±4.9 58.1±5.2 0.003
55.6±5.7**‡ 58.7±5.6 59.3±5.3 0.005

SV 101.0± 18.1 94.6±18.3 101.3±23.1 0.133
100.7±18.0 94.9±18.1 101.3±23.7 0.173
102.8±17.9 95.8±17.0 102.6±22.6 0.091

EDV 190.5±33.4‡ 168.6±33.6 179.0±38.3 0.011
185.4±33.4‡ 165.1±33.0 174.2±37.5 0.018
186.2±32.8‡ 164.6±32.3 173.5±36.9 0.010

EDVI 97.5±14.3 93.6±12.8 93.2±16.0 0.322
94.8±14.4 91.7±12.9 90.7±15.5 0.376
95.3±14.3 91.4±12.7 90.4±15.4 0.246

ESV 89.6±20.7**‡ 74.0±18.3 77.7±19.0 0.001
84.7±19.5**‡ 70.2±18.2 72.9±17.6 0.001
83.3±20.0**‡ 68.8±19.2 70.9±18.3 0.001

ESVI 45.6±8.7**‡ 41.0±7.9 40.5±8.9 0.010
43.2±8.5**† 38.9±8.1 38.0±8.4 0.011
42.5±9.0**† 38.1±8.7 36.9±8.5 0.009
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Figure 4.4: Bland-Altman plots of (a) right ventricular (RV) CMRmeasurements. Absolute agreement

between: (first row) manuals vs. automatic−basal CMR measurements; and (second row) manuals vs.

automatic CMR measurements. Data points are stratified by disease classification 1) ARVC patients

(in black), 2) at-risk family members (in blue), and 3) control subjects (in orange). (b) depicts the

same information for the left ventricular (LV). Abbreviations: EF=ejection fraction; SV=stroke volume;

EDVI=end-diastolic volume index; ESVI=end-systolic volume index.

4.4 Discussion

In this study, we evaluated our previously developed deep learning segmentation
approach for RV and LV ventricular CMR assessment in patients suspected of ARVC.
Moreover, we evaluated the clinical implication of this approach for classification of the
CMR TFC in subjects suspected of ARVC.We demonstrated that CMR TFC classification
using our automatic segmentation with limited manual correction in the most basal
slice was comparable to classification using manual segmentation performed during
clinical work-up. Therefore, CMR TFC classification could potentially be performed
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Figure 4.5: Boxplots depicting right ventricular (RV, first column) and left ventricular (LV, second

column) function (first row) and dimension (second row). CMRmeasurements are given for controls,

at-risk family members and ARVC patients, stratified per method (automatic, automatic−basal and
manual).
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using automatically measured CMR parameters with limited expert interaction.

4.4.1 Previous studies

Recently studies15,23,24 have shown that deep learning segmentation methods outper-
form traditional approaches such as those exploiting level set, graph-cuts, deformable
models, cardiac atlases and statistical models.25,26 Many current state-of-the-art deep
learning biventricular segmentation algorithms have been evaluated on publicly avail-
able cine CMR data from the MICCAI 2017 ACDC.12 The dataset contains CMR volumes
from 150 patients distributed uniformly over normal cardiac function and four disease
groups: dilated cardiomyopathy, hypertrophic cardiomyopathy, ischemic cardiomyopa-
thy, and RV abnormality (RVEDVI greater than 110 mL/m2 for men, and greater than
100 mL/m2 for women, and/or a RVEF below 40%). The ACDC challenge showed that
the largest segmentation inaccuracies were located in the most basal and apical slices of
the short-axis,12 which is in line with our results presented in Table 4.3. Comparable re-
sults were obtained in the recently held Multi-Centre, Multi-Vendor and Multi-Disease
Cardiac Segmentation (M&Ms) challenge.13 Importantly, in contrast to the ACDC and
M&Ms datasets, the clinical annotation protocol used in our study adheres to the
guidelines of the SCMR.18 Segmentation of the RV, especially in basal slices, is more
challenging when following SCMR guidelines compared with the protocol used for the
ACDC and M&Ms datasets. For example, in the SCMR guideline the outflow tract is
included as part of the RV blood volume which challenges segmentation of the basal
slices due to the unclear ventricular-atrial transition.

Researchers27,28 have also trained and evaluated deep learning CMR segmentation
algorithms on the large-scale annotated dataset from the UK Biobank,29 reaching a
performance comparable with human experts. The dataset contains short-axis cine
CMR volumes of 5,008 subjects. As the majority of the subjects are healthy, the
dataset is considered relatively homogenous.29 In the present work, we trained and
evaluated a previously developed deep learning segmentation algorithm16 on a real-
life dataset with subjects suspected of ARVC who underwent CMR as part of their
clinical evaluation. Compared to the previously mentioned datasets,12,13,29 our dataset
contains substantially more subjects with RV complexity caused by ARVC due to
possible aneurysms and wall thinning and contained CMR images acquired on different
field strengths (1.5 and 3 Tesla), pulse sequences and imaging parameters. Hence,
the current work demonstrates that by only correcting a single slice per volume, an
existing state-of-the-art segmentation method16 is sufficiently reliable to be applied to
a relevant clinical problem. Furthermore, we are the first to compare classification of
the CMR TFC of subjects suspected of ARVC using manually and automatically derived
CMR measurements and showing that the deep learning segmentation algorithm we
use performs well in this diverse clinical environment.
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4.4.2 Comparison to manual segmentation

We showed a good to excellent agreement of manual and automated CMR measure-
ments, which significantly increased after simulated correction of the most basal slice
of the RV and LV (automatic (r=0.78-0.99, p<0.001) and automatic−basal (r=0.88-0.99,
p<0.001) measurements). This was also reflected in the significant increase of the
Dice coefficients and Hausdorff distance after basal correction (p<0.001). This is in
agreement with a recent study, showing an improvement of the agreement between
automatic and manual segmentation when manually adjusting the most basal slice.30

Large intra- and inter-observer variability is currently the greatest source of error
when manually segmenting CMRs8,31 with more variability seen for the RV compared
to LV due to the RV geometrical complexity.18 Previously published inter-observer vari-
ability ranges from 2.6 -10.5%32,33 for the LV and 6.2-14.1%33,34 for the RV. The largest
variability between manual readers also appears in the apical and basal slices14 presum-
ably due to low tissue contrast ratios, hypertrabeculation and unclear ventricular-atrial
transition of especially the RV. The variability in contouring of the basal slice is illus-
trated in Figure 4.2. The corresponding manual segmentations convey the difficulty
to determine the anatomical boundaries of cardiac structures in these slices. We pre-
sumed that such variability also hampers performance of the automatic segmentation
method. This limitation can be alleviated by increasing the training set size. To fur-
ther improve performance of deep learning segmentation approaches, especially of
basal and apical short-axis slices, future work could exploit anatomical information
extracted from long-axis views (2, 3, 4-chamber views) e.g. valve landmarks and api-
cal point.35,36 Furthermore, deep learning based CMR segmentation methods would
benefit from short-axis volumes with higher through-plane resolution e.g., using super-
resolution.10,37,38 This would make application of 3D segmentation approaches more
feasible and hence, those models could potentially harness any inter-slice dependen-
cies. Finally, using explicit topological prior information39 for model optimization is a
promising training approach to prevent automatic models from generating anatomically
implausible segmentation.

4.4.3 Clinical implementation of deep learning methods

Depending on the stage of disease, ARVC patients show a wide variety of ventricular
changes that can be observed on CMR: ventricular wall motion abnormalities (e.g.
aneurysms, akinesia, dyskinesia), wall thinning (due to fibrofatty replacement of the
myocardium), increased trabeculations, dilatation and decreased functional measure-
ments, that are especially present in the RV.2 These challenges make ARVC eminently
suitable to study the performance of machine learning algorithms on the RV. Previously
published algorithms showed better agreement for LV than RV volumes.40 Although
limits of agreement were smaller for the LV compared to the RV, we showed comparable
segmentation performance for RV and LV CMR measurements in this heterogenous
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study population. Furthermore, segmentation performance was comparable between
structurally normal hearts and hearts affected by ARVC.

Importantly, we showed that calculation of ARVC TFC from automatically com-
puted CMR parameters is feasible when combining automatic segmentation with
correction of the most basal slice only. The diagnostic performance of the CMR TFC
calculated using automatic segmentations (sensitivity 32-58%, specificity 99-100%)
were comparable to manual measurements in this and previously published studies
(sensitivity 13-69%, specificity 88-100%).41,42 Although the correlation of manual and
automatic measurements is high, the differences in CMR TFC classification without
basal correction demonstrates that a fully automatic segmentation approach without
human intervention is not yet reliable. However, the conducted experiments reveal that
current state-of-the-art deep learning segmentation models can substantially reduce
manual effort to semi-automatically segment cardiac structures in a heterogeneous
dataset: manual segmentation time would be approximately 2 minutes instead of 25
minutes. Recently, Huellebrand et al.43 proposed a human-in-the-loop approach that
combines deep learning-based CMR segmentation and cardiac disease classification.
The authors show that manual correction of automatic CMR segmentations by a clinical
expert results in increased classification performance compared to a fully automatic
segmentation approach. To identify volumes that contain segmentation failures the
user can explore parallel coordinates plots that visualize CMR measurements along
with cardiac shape and texture features. A similar approach was previously presented
by Sander et al.16 that combines automatic segmentation and assessment of segmen-
tation uncertainty in CMR to automatically detect image regions containing local
segmentation failures. Subsequently, detected regions are manually corrected by a
clinical expert. Such a semi-automatic approach could lead to a large reduction in
inter-observer variability. This is not only interesting for specialized tertiary ARVC
centers, but even more for less experienced centers, since CMR misinterpretations are
an important cause of over-diagnosis in ARVC and only 27% of people referred to a
tertiary center with a suspected ARVC diagnosis finally meet diagnostic criteria for
ARVC.44 Our work shows that our previously developed deep learning segmentation
method is able to fulfill a diagnostic purpose by simplifying accurate calculation of
functional and volumetric measurements for the CMR TFC, showing opportunities to
facilitate and improve individual patients health.

4.4.4 Limitations

Although we automated the calculation of the dimensional and functional parameters,
wall motion abnormalities are also part of the CMR TFC. This was evaluated visually by
experienced cardiovascular radiologists in this work, but it is subject to inter-observer
variation in less experienced readers. Due to anatomical challenges of the RV a fully
automatic RV strain algorithm is not yet available. Future work should focus on
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automatic computation of RV strain and better automatic segmentation of the basal
slice, which could contribute to full automatization and standardization of the CMR
TFC. Combining automatic segmentation with manual correction of the most basal
slice, 99% of the CMR TFC were correctly classified, with misclassification of only
one patient from major to minor CMR TFC. Moreover, one could argue that this latter
classification falls within measurement error, and it did not change the diagnosis (total
TFC score went from 5 to 4). Although the absolute differences in volumetric and
functional parameters were small, due to the absolute cutoff values used for the CMR
TFC, differences in classification can theoretically exist when the difference is as small
as 1 mL/m2, and clinical interpretation of automatic measurements remains important.
Notably, CMR is no gold standard for the diagnosis of ARVC, but rather part of the
diagnostic process.

4.5 Conclusions

Automatic deep learning-based CMR segmentation has the ability to provide a fast,
standardized and reproducible method to measure RV and LV volumetric parameters
on CMR. We demonstrate that the applied automated segmentations have a good agree-
ment with manual segmentations. Furthermore, combining automatic segmentation
with manual correction of the segmentation in the most basal slice results in accurate
CMR TFC classification of subjects suspected of ARVC.
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Abstract

High-resolution medical images are beneficial for analysis but their acquisition may
not always be feasible. Alternatively, high-resolution images can be created from
low-resolution acquisitions using conventional upsampling methods, but such methods
cannot exploit high-level contextual information contained in the images. Recently,
better performing deep-learning based super-resolution methods have been introduced.
However, these methods are limited by their supervised character, i.e. they require high-
resolution examples for training. Instead, we propose an unsupervised deep learning
semantic interpolation approach that synthesizes new intermediate slices from encoded
low-resolution examples. To achieve semantically smooth interpolation in through-
plane direction, the method exploits the latent space generated by autoencoders. To
generate new intermediate slices, latent space encodings of two spatially adjacent slices
are combined using their convex combination. Subsequently, the combined encoding is
decoded to an intermediate slice. To constrain the model, a notion of semantic similarity
is defined for a given dataset. For this, a new loss is introduced that exploits the spatial
relationship between slices of the same volume. During training, an existing in-between
slice is generated using a convex combination of its neighboring slice encodings. The
method was trained and evaluated using publicly available cardiac cine, neonatal brain
and adult brain MRI scans. In all evaluations, the new method produces significantly
better results in terms of Structural Similarity Index Measure and Peak Signal-to-Noise
Ratio (p < 0.001 using one-sided Wilcoxon signed-rank test) than a cubic B-spline
interpolation approach. Given the unsupervised nature of the method, high-resolution
training data is not required and hence, the method can be readily applied in clinical
settings.
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5.1 Introduction

High spatial resolution of medical images is considered a key quality component for
accurate disease diagnosis and prognosis. However, in case of magnetic resonance
imaging (MRI) acquiring high-resolution images comes at the cost of reduced signal-to-
noise ratio (SNR) or decreased temporal resolution. Higher image resolution can be
achieved by increasing acquisition time. However, in clinical practice, fast scanning is
often required to mitigate the risk for motion artifacts and to sustain patient comfort.

As a result, MRI scans with high temporal resolution are often highly anisotropic,
which may hamper accurate analysis. There is ample research on methods that enable
faster acquisition while maintaining high SNR and high spatial resolution such as
compressed sensing1 and parallel MRI.2 However, these methods are mainly available
in a research setting and are not available for the majority of MRIs obtained in clinical
practice.

Conventional interpolation methods like Linear, B-spline, and Lanczos resam-
pling3 are often used to increase through-plane resolution of anisotropic MRIs at
post-processing. The possibility to apply such methods retrospectively, i.e. after image
acquisition, is often advantageous because they do not require raw image data. Con-
ventional interpolation methods are easily and broadly applicable. Nevertheless, they
cannot exploit high-level contextual information contained in the images. Furthermore,
to upsample low-resolution images these methods quintessentially compute weighted
intensity averages using existing image voxel values.

More sophisticated super-resolution methods have been developed that either
perform denoising, deblurring, anti-aliasing, upsampling, or a combination thereof,
aiming to recover a high quality of medical images from their degraded versions. In
the context of this work, super-resolution for medical images refers to the process of
recovering information that was lost or degraded during the low-resolution sampling
process. Hence, such methods can recover anatomical structures that are finer than
the sampling grid. As a result of this process anatomical structures also appear smooth
and plausible in through-plane direction.

Super-resolution methods can be broadly divided into two categories. First, ap-
proaches that combine several low-resolution images to estimate, or reconstruct, the
high-resolution image.4,5 Typically, suchmethods require registering the low-resolution
scans with each other. Therefore, performance of these approaches depends on the qual-
ity of image alignment. Given that alignment of non-moving organs can be achieved
easier than for moving organs like the heart, early super-resolution approaches in the
medical imaging domain were first developed for brain MRI (e.g., Peled et al.6,7). Second,
to extend the applicability of super-resolution methods to moving organs approaches
were developed that learn a non-linear mapping between (paired) low-resolution (LR)
and high-resolution (HR) image patches.8–12 Recently, these methods were super-
seded by deep-learning based super-resolution approaches using convolutional neural
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Encoder Latent space Decoder

Figure 5.1: Visualization of proposedmethod. To perform upsampling in anisotropicmedical images

we exploit the ability of autoencoders to interpolate in latent space. The trained autoencoder is

used to project two spatially adjacent slices onto a latent space. Thereafter, latent space encodings

zn and zn+1 are combined using their convex combination. Increasing α from 0 to 1 results in a

sequence of new slices where each subsequent slice is progressively less semantically similar to xn
and more semantically similar to xn+1. Anatomy in the obtained stack of slices appears semantically

smooth in the direction that is perpendicular to the imaging plane.

networks (CNN).13–27

To learn the non-linear mapping between low and high-resolution images the
aforementioned methods require high-resolution training examples. However, in clin-
ical practice such images are impractical or even impossible to acquire. Hence, to
circumvent this short-coming, several unsupervised methods28–34 have been proposed
to increase resolution of images without using high-resolution training data. These
approaches take advantage of anisotropic images and exploit the high in-plane resolu-
tion to increase the low through-plane resolution. Jog et al.28 proposed a Fourier-based
method35 that combines multiple augmentations of a single 3D low-resolution in-
put image to estimate Fourier coefficients of higher frequency ranges absent in the
anisotropic images. To create required image augmentations the method learns a
regression function between blurred low-resolution slices and their corresponding
high-resolution slices extracted from the high-resolution in-plane direction. Later Zhao
et al.29 proposed to alter the method of Jog et al.28 by replacing the regression approach
with the deep-learning super-resolution approach by Lim et al.17 Both methods were
evaluated on brain MRI with relatively mild anisotropy. Subsequently, Zhao et al.30,31

extended their approach29 to suppress aliasing artifacts. In parallel, Dalca et al.32 pro-
posed a Gaussian Mixture Model that learns to encode anatomical similarities extracted
from a large collection of anisotropic brain MRIs. Using the learned latent structure,
low-resolution scans are upsampled by imputing missing slices.

We propose a deep learning semantic interpolation approach that synthesizes
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new intermediate slices from encoded low-resolution examples. Specifically, in our
preliminary study33 we trained an autoencoder to compress and reconstruct high-
resolution slices taken from highly anisotropic volumes. Using the latent space of the
trained autoencoder new intermediate slices are synthesized by mixing the encodings
of two adjacent slices. The process is depicted in Figure 5.1. Our method can synthesize
an arbitrary number of intermediate slices exploiting the mixing coefficient of the
neighboring slice’s latent vectors. Note that the method effectively imputes image
slices that are of similar appearance, i.e. slice thickness is retained, but slice spacing will
be decreased, resulting in anatomically and semantically smooth transitions in through-
plane direction. The method was evaluated on cardiac cine MRI. In parallel to our study,
Xia et al.34 presented a super-resolution approach for cardiac cine MRI that employs a
conditional generative adversarial network (GAN) that takes two spatially adjacent
cardiac MRI (CMRI) slices as input to synthesize a slice in-between the input slices. To
guide adversarial training the approach generates an auxiliary image using previously
developed optical36 and depth-aware37 flow-based interpolation approaches. The
approach increases anisotropic resolution with upsampling-factor of two, synthesizing
one slice in through-plane direction. By recursively applying the method, higher
upsampling-factors of two can be achieved.

Building further on our preliminary method using convolutional autoencoders,
we introduce an additional training loss function that exploits the spatial relationship
between neighboring slices in 3D images. This enables us to define a notion of semantic
similarity for a given dataset. As a result, the autoencoder is encouraged to generate
new slices that provide a semantically smooth morphing between two input images.
Furthermore, we provide evidence that our extended approach leads to improved
upsampling performance when compared to Sander et al.33 Unlike Xia et al.,34 our
approach can be applied with any desired upsampling factor, i.e. it can synthesize
an arbitrary number of slices between two given slices in a straightforward fashion.
Moreover, our approach uses only a single encoder-decoder structure and does not
rely on auxiliary networks. Compared to Dalca et al.32 our approach does not require
a common atlas space to operate in. Moreover, our method is easy to implement and
requires little GPU memory.

Like in our preliminary work,33 we evaluate performance on cardiac cine MRI.
Moreover, to show that our approach generalizes to other anatomies the evaluation has
been substantially extended. In the experiments, three publicly available MRI datasets
were used: cardiac cine MRI from the MICCAI 2017 Automated Cardiac Diagnosis Chal-
lenge38 (ACDC); neonatal brain MRI of the developing Human Connectome Project39

(dHCP) and adult brain MRI from the OASIS project.40 Evaluation on neonatal and
adult brain MRI enabled performance comparison with related unsupervised28,29 and
supervised41 super-resolution methods. Finally, to demonstrate that our model is in-
variant to MRI scanners and voxel intensity distributions, we apply a model trained on
cardiac MRI scans from the ACDC dataset to cardiac MRIs of the Sunnybrook dataset.42
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5.2 Data

5.2.1 Cardiac Cine MRI

AUTOMATED CARDIAC DIAGNOSIS CHALLENGE Cardiac cine MRIs from the MICCAI
2017 Automated Cardiac Diagnosis Challenge (ACDC)38 were used. The dataset con-
sists of short-axis cardiac cineMRIs from 100 patients uniformly distributed over normal
cardiac function and four disease groups: dilated cardiomyopathy, hypertrophic car-
diomyopathy, heart failure with infarction, and right ventricular abnormality. Detailed
acquisition protocol is described by.38

Briefly, MRIs have an in-plane resolution ranging from 1.37 to 1.68mm (average
reconstruction matrix 243×217 voxels) with slice thickness and spacing varying from 5
to 10mm. The ACDC dataset specifies slice spacing for each image volume while slice
thickness is only specified as a range for the complete dataset. Per patient 28 to 40 time
points cover the cardiac cycle. Each volume consists of on average ten slices including
the heart. To correct for intensity differences among scans, in the current work, image
intensities of each volume were rescaled and clamped between [0, 1] based on their
1st and 99th percentiles. Furthermore, to correct for differences in-plane voxel sizes,
image slices were resampled to 1.4 ×1.4mm2.

SUNNYBROOK CARDIAC DATA To demonstrate the ability of our proposed method to
generalize to other datasets with the same modality and anatomy, cardiac cine MRI
from the publicly available Sunnybrook Cardiac dataset42 was used for additional model
evaluation. The dataset contains 45 short-axis cine MRI images distributed over four
pathology categories: healthy subjects, patients with hypertrophy, patients with heart
failure and infarction, and patients with heart failure without infarction.

Each scan contains 20 time points (i.e. volumes) encompassing the entire cardiac
cycle, which results in 45×20 volumes in total. All scans have a slice thickness and
spacing of 8mm and an in-plane resolution of 1.25×1.25mm2. Scans are made with
a 256×256 reconstruction matrix and consist of about 10 slices. In this work, image
intensities of each volume were rescaled and clamped between [0, 1] based on their 1st

and 99th percentiles.

5.2.2 Neonatal Brain MRI

In this study neonatal brain MRIs of the developing Human Connectome Project
(dHCP)39 were used (second release). The dataset constists of 508 infants with ges-
tational age at birth ranging from 24 to 42 weeks. All infants were scanned without
sedation in a scanner environment optimized for safe and comfortable neonatal imag-
ing. A comprehensive description of the acquisition protocol can be found in Hughes
et al.39

The T2-weighted (T2w) images are provided with an isotropic resolution of
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0.5×0.5×0.5mm3. To reduce image size, in this work, volumes were cropped to cortical
brain structures resulting in an axial reconstruction matrix of 256×256 voxels for all
images. Finally, to correct for intensity differences among scans, voxel intensities of
each volume were scaled to the [0, 1] range.

5.2.3 Adult Brain MRI

Brain MRIs of 416 subjects aged 18 to 96 from the OASIS project40 were used. Detailed
information about the acquisition can be found in the paper by Marcus et al.40 and on
the OASIS website1.

Briefly, T1-weighted brain MRIs were provided with an isotropic resolution of
1.0×1.0×1.0mm3. To correct for intensity differences among scans, in this work, voxel
intensities of each volume were scaled to the [0, 1] range.

5.3 Method

We propose a method to synthesize new slices in anisotropic 3D medical images by
using the ability of a trained autoencoder to interpolate in latent space. The autoencoder
is trained to compress and reconstruct high-resolution 2D slices taken from volumes
with low through-plane resolution. We postulate that the autoencoder learns to encode
anatomy from a collection of training images. While an individual image may only
capture a partial aspect of a complete anatomical structure, such as the heart, the
autoencoder may infer the missing information from similarly appearing images that
captured different aspect of the anatomical structure.

After training, input slices can be reconstructed with minimal information loss.
More important, new slices are synthesized through convex combinations of latent
space encodings of the two adjacent slices, which is followed by decoding of the
convex combinations to the new intermediate slices. Note that increasing the mixing
coefficient from 0 to 1 results in a sequence of new slices where each subsequent slice
is progressively less semantically similar to the first input slice and more semantically
similar to the second input slice. Although thickness of synthesized slices will be
similar to the input slices, slice spacing will decrease. As a result, anatomical structures
appear smooth and plausible in through-plane direction.

5.3.1 Autoencoder

An autoencoder43 is an unsupervised learning algorithm that aims to learn a lower-
dimensional representation of the input. It consists of an encoder and decoder imple-
mented as neural network. The encoder fθ parametrized by θ compresses the input

1https://www.oasis-brains.org/
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x ∈ ℝdx into a lower-dimensional space z = fθ(x), z ∈ ℝdz , i.e. the latent space represen-
tation, which captures the most salient features of the input. Typically, this layer has
the least amount of neurons and is also referred to as the bottleneck of an autoencoder.

The decoder gϕ parametrized by ϕ uses the latent space representation to generate
an approximate reconstruction of the input, x̂ = gϕ(z). The network layers in encoder
and decoder are fully connected. In general, training an autoencoder aims to mini-
mize a loss function ℒ(x, x̂) that quantifies dissimilarity between the input and the
corresponding reconstruction.

This work uses a convolutional autoencoder44 (CAE)2 that has the same overall
structure as a standard autoencoder but replaces the fully connected layers with convo-
lutions. Latent space encodings generated by standard autoencoders are vectors with
dimensionality equal to the size of the lower-dimensional space. In comparison, latent
space representation of an input tensor generated by a convolutional autoencoder is a
tensor with rank equal to the rank of the input tensor. The rank of an image is three
(width, height, number of input channels). Throughout this work the number of input
channels is one for gray scale images.

5.3.2 Autoencoder Architecture

The architecture of the convolutional autoencoder used in this work is the same for
all datasets and experiments. The architecture of the encoder consists of two blocks,
each with two consecutive convolutional layers using a kernel size of 3×3 voxels and
zero-padding of size 1, followed by batch normalization and 2×2 voxels average pooling.
The first and second block use 32 and 64 kernels, respectively. The last block is followed
by two additional convolutional layers of 128, and 128 kernels for the final output layer.
The output of the final convolutional layer is used as latent space representation of the
input. All convolutional layers except for the final use a leaky ReLU nonlinearity. The
combination of two average pooling layers of size 2×2 voxels and 128 kernels for the
latent space representation results in an over-complete autoencoder. In other words,
the information that can potentially be stored in the latent space is larger than the
information contained in the grayscale input image.

The architecture of the decoder is reverse of the encoder. It consists of two blocks of
two consecutive convolutional layers with leaky ReLU nonlinearities followed by batch
normalization and 2×2 voxels nearest neighbor upsampling. The number of kernels
is halved after each upsampling layer. The last block is followed by two additional
convolutional layers of 32 kernels, and 1 kernel for the last layer. All convolutional
layers of the autoencoder use a kernel size of 3×3 voxels and zero-padding of size
1. To ensure that output values are in the range of [0, 1] the final layer uses the
sigmoid function. Moreover, using two average pooling layers of size 2×2 voxels in the
encoder requires the width and height of the input image each to be divisible by four.

2The terms autoencoder and convolutional autoencoder will be used interchangeably hereafter.
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Nevertheless, test images do not have to match the size of the training patches.

5.3.3 Autoencoding for Semantic Interpolation

Our interpolation approach projects two spatially adjacent slices (xn, xn+1) onto a
latent space. It requires high in-plane resolution. Thereafter, latent representations
zn = fθ(xn) and zn+1 = fθ(xn+1) are combined using a convex combination:

zα(zn,zn+1) = (1 − α)zn + αzn+1 for α ∈ [0, 1] . (5.1)

where α denotes the mixing coefficient. Finally, the decoder generates a new slice
xαn,n+1 = gϕ(zα(zn,zn+1)) by decoding the mixture of latent codes. We refer to this process
as synthesizing slices for values of α ∈ (0, 1), as opposed to reconstructing encoded
input slices when α ∈ {0, 1} for slices xn and xn+1, respectively. Increasing α from 0 to
1 results in a sequence of new slices where each subsequent slice is progressively less
semantically similar to xn and more semantically similar to xn+1. As a result, anatomy
in the obtained stack of slices also appears semantically smooth in the direction from
which the slices were extracted. We refer to this approach as Autoencoding for Semantic
Interpolation (ASI).

To attain upsampling of anisotropic images by factor K in through-plane direction,
K−1 slices need to be synthesized where the set of alpha values𝒜 is defined as follows:

𝒜 = {αi|αi =
i
K
}
K−1

i=1
, where K = {m|m ∈ ℕ,m > 1}

and |𝒜 | = K − 1 ,
(5.2)

and |.| denotes the cardinality of a set.

5.3.4 Loss Function

The autoencoder is trained to compress and reconstruct high-resolution slices taken
from an anisotropic 3D medical imaging dataset. The model aims to minimize the
reconstruction loss between the original x and the reconstructed x̂ slice.

To further constrain the model a notion of semantic similarity is defined for a
given dataset. For this, the spatial relationship between slices of the same volume is
exploited. During training an existing in-between slice xn (where n ∈ ℕ+) that has two
neighboring slices, xn−1 and xn+1, is synthesized using a convex combination of the
neighboring slice encodings where α (the mixing coefficient) of Equation 5.1 is set to
0.5. The new slice encoding is mapped through the decoder to an approximation x̂α=0.5n
of the original in-between slice xn.

Finally, a distance loss is computed between the original in-between xn slice and
its approximation i.e. synthesized slice x̂α=0.5n resulting in the following combined loss:
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ℒ = d(xn, x̂n)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒreconstruction

+λ d(xn, x̂α=0.5n )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒsynthesis

where λ ≥ 0,
(5.3)

d denotes a distance function between two images and λ is a hyperparameter weighting
the contribution of the synthesis loss. Setting λ to zero disables the synthesis loss
during training. Minimizing the synthesis loss during training should encourage the
autoencoder to linearize the latent space of images. Therefore, a convex combination
of slice encodings should result in smooth nonlinear interpolations in image space.

To compute the reconstruction loss, this work used the pixel-wise mean squared
error between original xn and reconstructed x̂n image. In addition, to compute the syn-
thesis loss between reference xn and synthesized image x̂α=0.5n the Learned Perceptual
Image Patch Similarity (LPIPS) metric45 was used. The LPIPS metric is a perceptually-
based pairwise image distance that is calculated as a weighted difference between
the VGG-1646 embedding of the reference and synthesized image. LPIPS uses the
embeddings of VGG-16 layers conv_1 to conv_5. The VGG-16 CNN is pretrained on
ImageNet and the weights to compute the weighted difference were fit so that the
metric agrees with human perceptual similarity judgments.
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.

5.4 Implementation details

The method was implemented using the PyTorch framework49 and trained on one
Nvidia GTX Titan X GPU with 12 GB memory. Model weights were initialized as
zero-mean Gaussian random variables with a standard deviation of 1/√nl (1 + 0.22) set
in accordance with the leaky ReLU slope of 0.2. nl denotes the number of incoming
network connections to layer l.

A model was trained using mini-batch stochastic gradient descent with a learning
rate of 1 × 10−5. Image slices were provided once per epoch to the autoencoder in
random order. In each experiment the training set was augmented by 90 degree
rotations of the images and random intensity changes. Network parameters were
optimized using the Adam optimizer50 minimizing the reconstruction and synthesis
loss.

To compute the synthesis loss as described in Section 5.3.4, this study used the
LPIPS metric implementation3 of Zhang et al.45 Furthermore, in order to compute the
synthesis loss mini-batches of T slice pairs were randomly selected from the training set.
A slice pair consisted of two slices (xn−1 and xn+1) originating from the same volume
that are spatially separated by one in-between slice xn. To determine the optimal value
for λ i.e. the contribution of the synthesis loss to the overall loss, a separate line search
was performed for each dataset.

Finally, in all experiments model selection was performed on the validation set.
The test set was not used during method development in any way.

Table 5.1: Quantitative comparison of reconstruction and synthesis performance of cardiac cine

MRIs (ACDC dataset) in terms of SSIM, PSNR, and VIF between proposed model trained with re-

construction loss only (ASIλ=0) and model trained with combination of reconstruction and synthesis

loss (ASIλ=0.05). A higher score indicates better performance. Measures (mean±standard devia-

tion) are computed on cardiac short-axis slices. Rec denotes reconstructed and Syn synthesized

slices. Synthesis performance was assessed on downsampled test volumes using a factor of 2 in

through-plane direction. Best performance is indicated in bold.

Method SSIM PSNR VIF
Rec Syn Rec Syn Rec Syn

ASIλ=0
0.994
±0.01

0.572
±0.09

41.34
±1.66

17.94
±2.01

0.960
±0.01

0.815
±0.01

ASIλ=0.05
0.968
±0.01

0.650
±0.07

32.83
±1.31

19.01
±1.89

0.891
±0.01

0.810
±0.01

3https://github.com/richzhang/PerceptualSimilarity

https://github.com/richzhang/PerceptualSimilarity
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(a) Original (b) Reconstruction (c) Differences

Figure 5.3: Qualitative evaluation of reconstruction performance of our method on cardiac cine

MRI (ACDC dataset). (a) Original cardiac MRI scan; (b) Its reconstruction and (c) Differences between

original (minuend) and corresponding reconstructed (subtrahend) slice. Note that to reconstruct a

slice xn the mixing coefficient α in Equation 5.1 is set to zero. Blue corresponds to negative and red

to positive differences. Image intensities are scaled to a [0, 1] range. All difference images use the

same color scale [−1, 1].

5.5 Evaluation

Performance of the method was quantitatively evaluated in terms of Structural Similar-
ity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Visual Information
Fidelity51 (VIF). Recent work of Mason et al.52 conveyed that Visual Information Fi-
delity demonstrates a high correlation with radiologists’ opinions of MRI quality. The
proposed method was compared against performance of cubic B-spline interpolation
which is known to outperform methods like Nearest-Neighbor or Linear interpola-
tion.53,54 Statistical significance of performance differences between evaluated methods
was tested using the one-sided Wilcoxon signed-rank test.

In addition, upsampling performance was qualitatively evaluated by visually in-
specting the reconstructed and synthesized slices. Visual inspection mainly focused
on anatomical plausibility and semantic similarity of synthesized slices compared to
corresponding reference slices. Furthermore, generated images were visually examined
for smoothness of interpolation.

5.6 Experiments and Results

5.6.1 Comparison of autoencoding approaches

Before applying the proposed approach to cardiac and brain MRI scans, several au-
toencoder approaches were investigated for latent space interpolation using MNIST
data.55 Given any digit and its 40 degree rotated variant, referred to as input images,
intermediate rotations were synthesized by mixing the latent space encodings of the
two input images. Results were compared with digits that were rotated in the image
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Figure 5.4: Qualitative evaluation of image synthesis performance of proposed method on cardiac

cine MRI (ACDC dataset). Slice spacing was improved from 10 to 1.43mm by synthesizing six inter-

mediate slices (second to penultimate columns) using latent space encodings of the two neighboring

slices (first and last column). α denotes the mixing coefficient as specified in Equation 5.1.

space. Three different approaches were compared: Variational Autoencoder47,56 (VAE),
Adversarially Constrained Autoencoder Interpolation48 (ACAI) and the proposed ap-
proach (ASI). Interpolation performance was qualitatively evaluated using images of
the MNIST dataset.

EXPERIMENTAL DETAILS The dataset was randomly split into training (60 000 images),
validation (1000 images), and test sets (9000 images). To train the models, patches of
32×32 were randomly chosen from the training set in mini batches of 32 images. The
training set was augmented by random rotations γ ∈ [0, 2π] of the images. Models
were trained for 100 epochs. The proposed model was implemented as described
in section 5.3.2 except that 16 kernels were used for the latent space representation.
Furthermore, λ as specified in Equation 5.3 was set to 10 after performing a line search
(λ ∈ {0.05, 0.5, 1, 10, 100, 1000}).

To compute the synthesis loss as specified in Equation 5.3 each training image xn
was augmented with two neighboring images {xn−1, xn+1}. xn−1 denotes a 15 degree
counterclockwise rotation of image xn and xn+1 a 15 degree clockwise rotation of image
xn. This enabled synthesizing image x̂α=0.5n in Equation 5.3 using a convex combination
of the neighboring image encodings {zn−1, zn+1} where α (the mixing coefficient) in
Equation 5.1 was set to 0.5.

During evaluation, for each test image x three new images were synthesized by
interpolating between the image and a 40 degree counterclockwise rotation of the same
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Figure 5.5: Boxplots comparing upsampling performance for cubic B-spline compared with pro-

posed method (ASI) in terms of SSIM, PSNR, and VIF. Cardiac cine MRIs of 20 patients from the

ACDC dataset were upsampled with factor 2 in through-plane direction. A higher score indicates

better performance. Measures were computed on sagittal slices through short-axis volume. The

proposed method achieved higher performance when evaluated by all measures compared with

cubic B-spline interpolation. The differences between proposed and conventional method are sta-

tistically significant (p < 0.0001) using the one-sided Wilcoxon signed-rank test. Triangle indicates

mean value.

image xrot40∘ . For this, the set of mixing coefficients 𝒜 as specified in Equation 5.2 was
set to {0.25, 0.5, 0.75}. As a result, the three synthesized in-between images should be
rotated versions of the original image x in steps of 10 degree {xrot10∘ , xrot20∘ , xrot30∘}.
Three examples are shown in Figure 5.2.

Variational Autoencoder (VAE) To improve smoothness of the latent space of
an autoencoder47,56 proposed to model the latent representations as a random variable
distributed according to a prior distribution. The latent distribution constraint is
enforced by an additional loss term which measures the Kullback-Leibler divergence
between approximate posterior, modelled by the encoder, and prior distribution. In
this work the prior was equal to a Gaussian distribution with diagonal covariance
matrix. Implementation of the autoencoder was identical to the proposed approach
except for the encoder that was extended with two linear layers to model the mean
and covariance matrix of the posterior Gaussian distribution.

Adversarially Constrained Autoencoder Interpolation (ACAI) To improve
the ability of a convolutional autoencoder to interpolate in latent space Berthelot
et al.48 proposed to regularize the autoencoder by means of an adversarial training
objective. Using a discriminator the autoencoder is encouraged to generate interpolated
images that appear to be indistinguishable from reconstructions of real images. In this
work, the approach was implemented following implementation details as described in
Berthelot et al.48
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Original slice to be

synthesized

B-spline ours

Figure 5.6: Qualitative comparison between cubic B-spline and proposed approach on cardiac

MRI (ACDC dataset) for upsampling factor 2. First column shows slice from reference volume.

Second column depicts image generated by conventional interpolation method. Last column shows

synthesized slice using proposed method. Bottom row: Differences between original (minuend)

and synthesized slice (subtrahend). Blue corresponds to negative and red to positive differences.

Image intensities are scaled to a [0, 1] range. All difference images use the same color scale [−1, 1].

RESULTS Qualitative comparison of autoencoding approaches shown in Figure 5.2
demonstrates that our proposed model achieved the best interpolation performance.
Performance differences become most apparent for interpolated images using a mixing
coefficient equal to 0.5. Additionally, one can observe that linear steps taken in latent
space using the set of mixing coefficients can approximate rotation steps in image space.

5.6.2 Semantic Interpolation of Cardiac Cine MRI

Short-axis cardiac cine MRIs are acquired to primarily investigate cardiac function.
These images have a high temporal and in-plane resolution at the cost of lower through-
plane resolution. The functional parameters extracted from these images, such as ejec-
tion fraction, may show high variability, which can be explained by the high anisotropic
resolution, that may heavily influence volume measurements. These measurements
may improve when extracted from upsampled images with smooth cardiac structures
in through-plane direction. Therefore, the proposed approach was evaluated on highly
anisotropic cardiac cine MRI using the ACDC dataset.
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(a) Original sagittal view with 10mm

slice spacing

(b) B-spline (c) ours

Figure 5.7: Qualitative comparison between cubic B-spline and proposed method for upsampled

cardiac short-axis stacks (ACDC dataset). Volumes were upsampled with factor 10 from 10mm

(original) to 1mm slice spacing. Shown are sagittal views through upsampled short-axis stacks. The

proposed method can generate new slices that result in smoother anatomical transitions compared

to slices generated by conventional interpolation method. The performance difference is more

pronounced for the structures of the left ventricle myocardium. Note that a feature located at the

apex of the right ventricle seems to appear more accurate in the upsampled image using cubic

B-spline interpolation method compared to the proposed approach.
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Figure 5.8: Zoomed-in images of synthesis results in scans of two different patients (one example

per row) using neonatal brain MRIs from the dHCP dataset. Slice spacing was improved from 2 to

0.29mm by synthesizing six intermediate slices (second to penultimate columns). For this, latent

space encodings of the two neighboring slices (first and last column) were combined using their

convex combination. α denotes the mixing coefficient as specified in Equation 5.1. Bounding

boxes focus on anatomical variations between images in a row. Note that a small cross-fade artifact

appears in the bright area of the fourth (α = 3/7) and fifth (α = 4/7) image in the second row.
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Table 5.2: Distribution of patients in ACDC dataset over training, validation and test sets. First

column specifies the slice spacing (mm) of cardiac MRI volumes. The ACDC dataset specifies slice

spacing for each image volume while slice thickness is only specified as a range for all volumes.

Slice spacing Training Validation Test
(mm)

5 6 - 6
6.5 - 1 -
7 1 - -

10 63 9 14

EXPERIMENTAL DETAILS The dataset was randomly split into training (70 patients),
validation (10 patients), and test sets (20 patients). Table 5.2 specifies slice spacing of
volumes over the three sets. The test set was only used for the final quantitative as
well as qualitative evaluation.

To train a model, patches of 128×128 pixels were randomly chosen from the training
set in mini-batches of 12 slice pairs i.e. 24 image slices. A model was trained for 900
epochs. Furthermore, λ in Equation 5.3 was set to 0.05.

Test images were center-cropped to 140×140 pixels covering all cardiac structures
of interest. To quantitatively evaluate our method, lower through-plane resolution
was mimicked by excluding every other slice in the test images i.e. by increasing slice
spacing. These excluded slices were subsequently recovered by synthesizing them
using the proposed approach. For this, the upsampling factor K was set to 2 and 𝒜,
the set of mixing coefficients was equal to 0.5. Downsampled test volumes had a slice
spacing of 10mm and 20mm while slice thickness remained unchanged.

Comparison With Conventional Interpolation Method: Upsampling perfor-
mance of the proposed unsupervised approach was quantitatively and qualitatively
evaluated and compared with cubic B-spline interpolation.

RESULTS The primary goal of the proposed method is to synthesize new slices lo-
cated in-between two spatially adjacent slices. However, the method’s capacity to
synthesize new slices depends on the ability of the autoencoder to reconstruct existing
slices. Therefore, we report reconstruction and synthesis performance of the trained
autoencoder separately.

Slice Reconstruction: Results for reconstructed and synthesized slices listed
in Table 5.1 convey that the proposed approach achieved high reconstruction perfor-
mance especially in terms of SSIM and PSNR. Figure 5.3 depicts qualitative results
of reconstruction performance for the proposed method on cardiac MRI. The results
show that the trained autoencoder can reconstruct high-quality images i.e. input slices.
Nevertheless, difference image shown in Figure 5.3c depicts that some high spatial
frequency details of the input slice are lacking in the reconstructed slice.
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Original axial slice to

be synthesized

B-spline ours

Original coronal slice B-spline ours

Original sagittal slice B-spline ours

Figure 5.9: Qualitative comparison of image synthesis performance on neonatal brain MRI (dHCP

dataset) between conventional interpolation methods and proposed approach. Original volumes

with slice thickness and spacing of 0.5mm were downsampled to 2.5mm by applying a Gaussian

blur before including every fifth slice in the test volume. Differences between reference (minuend)

and synthesized slice (subtrahend). Blue corresponds to negative and red to positive differences.

Image intensities are scaled to a [0, 1] range. All difference images use the same color scale [−1, 1].
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Figure 5.10: Comparison of upsampling performance for cubic B-spline interpolation compared

with proposedmethod (ASI) in terms of SSIM, PSNR, and VIF. Neonatal brainMRIs of 20 subjects from

the dHCP dataset were upsampled with factorK ∈ {2, 3, 4, 5, 6} in through-plane direction. A higher
score indicates better performance. The proposed method achieved higher performance in terms

of SSIM and PSNR compared with conventional interpolation method. The differences between

proposed and cubic B-spline interpolation approach in terms of SSIM and PSNR are statistically

significant (p < 0.001) using the one-sided Wilcoxon signed-rank test.

Slice Synthesis: Qualitative evaluation of synthesis performance of the proposed
method conveys that synthesized slices, i.e. those that are generated using a convex
combination of the neighboring slice encodings, show an anatomically and semanti-
cally meaningful transition between the two neighboring slices. Moreover, despite
large anatomical variations between the neighboring slices for the right ventricle,
left ventricle and trabecular structures of the left ventricle, the proposed method can
generate slices that depict an anatomically smooth transition between the neighboring
slices. Figure 5.4 illustrates three example evaluations for basal, mid-ventricular and
apical MRI slices, respectively, where upsampling factor K was set to 7 and 𝒜, the
set of mixing coefficients was equal to {1/7, 2/7, 3/7, 4/7, 5/7, 6/7}. Furthermore, quantitative
evaluation of synthesis performance assessed on downsampled cardiac cine MRI scans
listed in Table 5.1 reveals that synthesis performance is lower than reconstruction
performance.

Comparison With Conventional Interpolation Method: Upsampling perfor-
mance was compared with cubic B-spline in terms of SSIM, PSNR and VIF. For this,
the methods synthesized cardiac slices that were excluded from the test volumes (see
Section 5.6.2). Results for upsampling factor 2 are shown in Figure 5.5. We observe
that the proposed method achieved better performance when evaluated by all mea-
sures compared with the conventional interpolation method. These differences are
statistically significant (p < 0.0001) using the one-sided Wilcoxon signed-rank test.

Moreover, qualitative comparison of the methods reveals that synthesized images
using the proposed method contain fewer errors than images generated by conventional
interpolation method. Results shown in Figure 5.6 depict that performance differences
are especially pronounced for the left ventricle papillary muscles and right ventricle
myocardium.
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Table 5.3: Comparison of upsampling performance in terms of SSIM and PSNR of proposed un-

supervised method compared to supervised super-resolution approaches on neonatal brain MRI

(dHCP dataset) as reported by Pham et al.41,57 for upsampling factor 3. Approaches of Pham et

al.41,57 were evaluated on a subset of 20 scans taken from the dHCP dataset. Best performance is

indicated in bold.

Method SSIM PSNR
Pham et al., 201941 (supervised) 0.962 31.75
Pham et al., 201757 (supervised) 0.977 35.84
ours 0.971 35.85
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Figure 5.11: Zoomed-in images of synthesis results in scans of adult brain MRIs of two different

patients (one example per row) from the OASIS dataset. Slice spacing was improved from 4 to

0.57mm by synthesizing six intermediate slices (second to penultimate columns). For this, latent

space encodings of the two neighboring slices (first and last column) were combined using their

convex combination. α denotes the mixing coefficient as specified in Equation 5.1. Bounding boxes

focus on anatomical variations between images in a row.

Finally, methods were qualitatively compared for a through-plane upsampling
factor of ten using the original cardiac volumes. Visual inspection of the results
discloses that proposed method can generate volumes with a higher image quality than
cubic B-spline interpolation. Qualitative comparison shown in Figure 5.7 reveals that
performance differences are most pronounced for the myocardial structures of the left
ventricle. These structures show smoother transitions between adjacent axial slices
when generated by proposed method compared to cubic B-spline interpolation. The
latter method generates volumes that suffer from aliasing artifacts while the proposed
method can mostly suppress such artifacts.

5.6.3 Semantic Interpolation of Neonatal Brain MRI

Acquisition of high-resolution neonatal brain MRIs is typically hampered by uncontrol-
lable full-term infant motion and their small size of the brain.58 As a result, acquired
neonatal brain MRIs are often anisotropic and poorly capture the 3D brain structures.5
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Super-resolution of neonatal brain MRI may enhance the capacity of image analysis
on the dynamics of brain maturation59 and brain development.60,61 Therefore, our
proposed approach was evaluated using 240 randomly selected T2-weighted (T2w)
neonatal brain MRIs from the developing Human Connectome Project39 (dHCP) here-
after referred to as dHCP dataset.

EXPERIMENTAL DETAILS The dataset was randomly split into training (200), validation
(20) and test set (20). The images with isotropic resolution of 0.5×0.5×0.5mm3 served
as ground truth high-resolution (HR) images. To simulate low through-plane reso-
lution (LR) images were downsampled by factor K ∈ {2, 3, 4, 5, 6} in the z-axis. More
specifically, low-resolution images were generated by using a Gaussian blur with the
full-width-at-half-maximum (FWHM) set to the desired slice thickness.4 Subsequently,
volumes were downsampled with factor K by including every Kth slice in the test
images to obtain 0.5×0.5×K ∗ 0.5mm3 resolution. To assess upsampling performance of
the proposed method downsampled test volumes were upsampled in through-plane
direction by synthesizing K − 1 new slices between each pair of neighboring slices
using the set of mixing coefficients as defined in Equation 5.2. Resulting volumes were
then compared with high-resolution ground truth data.

To train a model patches of 64×64 voxels were randomly chosen from the training
set using mini-batches of 8 randomly selected slice pairs (16 slices) originating from
the same volume as described in Section 5.4. To balance loss terms in Equation 5.3, λ
was set to 0.001. A model was trained in 1300 epochs and the best performing model
on the validation set was selected for final evaluation on the test volumes.

RESULTS Slice Synthesis: Qualitative evaluation of the proposed approach on neona-
tal brain MRI with reveals that generated slices using a convex combination of neigh-
boring slice encodings, comprise a smooth anatomical transition between adjacent
slices. Examples depicted in Figure 5.8 show upsampling performance of proposed
method for neighboring slices with large anatomical variations. In the depicted figures
slice spacing was improved from 2 to 0.29mm by synthesizing six intermediate slices
using latent space encodings of the two neighboring slices.

Visual inspection of Figure 5.9 conveys that our proposed approach was able to
synthesize excluded high-resolution axial slices more accurately than cubic B-spline in-
terpolation. These results are corroborated by the coronal and sagittal views revealing
that volumes generated by the proposed method are less blurry and contain smoother
transitions between slices compared to volumes generated by the conventional inter-
polation method.

Moreover, quantitative comparison shown in Figure 5.10 depicts that the proposed
unsupervised method outperformed cubic B-spline interpolation in terms of SSIM and
PSNR for all evaluated upsampling factors. Furthermore, the performance differences
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Original axial slice to

be synthesized

B-spline ours

Original coronal slice B-spline ours

Original sagittal slice B-spline ours

Figure 5.12: Comparing upsampling performance between cubic B-spline interpolation and pro-

posed approach using T1-weighted adult brain MRI of the OASIS dataset. Original volumes with

slice thickness and spacing of 1mm were downsampled to 5mm by applying a Gaussian blur be-

fore including every fifth slice in the test volume. Differences between reference (minuend) and

synthesized slice (subtrahend). Blue corresponds to negative and red to positive differences. Image

intensities are scaled to a [0, 1] range. All difference images use the same color scale [−1, 1].
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are statistically significant (p < 0.001) using the one-sided Wilcoxon signed-rank test.

Comparison With Supervised Super-Resolution Methods: Supervised deep-
learning super-resolution methods developed by Pham et al.41,57 were evaluated on
a subset of 20 neonatal brain MRIs from the dHCP dataset. Table 5.3 lists results
as reported by Pham et al.41 together with quantitative evaluation of our proposed
approach on the same dataset (see Section 5.6.2). Although methods of Pham et al.41,57

used high-resolution ground-truth data for model training their results can be used
to put results reported in this work into perspective. One may carefully conclude
that our proposed unsupervised deep-learning approach is on par with supervised
super-resolution approaches by Pham et al.41,57 when evaluated on neonatal brain MRI.

5.6.4 Semantic Interpolation of Adult Brain MRI

Upsampling performance of the proposedmethodwas also evaluated using T1-weighted
(T1w) adult brain MRIs of the OASIS project.40 The images with isotropic resolution of
1.0×1.0×1.0mm3 served as ground truth high-resolution (HR) images.

EXPERIMENTAL DETAILS Model was trained on the first 200 unique patients, validated
on the subsequent 20 patients, and tested on 50 randomly selected scans from the
remaining set. To ensure that test images were divisible by four, slices were zero-
padded to 220×220 voxels. Other experimental settings were identical to experiments
performed on neonatal brain MRI described in section 5.6.3.

RESULTS Slice Synthesis: Qualitative evaluation of proposed method on adult brain
MRI with reveals that synthesized slices constitute a smooth anatomical transition
between neighboring slices. The proposed method is able to bridge large anatomical
variations between adjacent slices. These findings are depicted in Figure 5.11.

Comparison With Conventional Interpolation Method: Qualitative com-
parison of generated axial brain MRI slices between cubic B-spline interpolation and
proposed approach shown in Figure 5.12 reveals that the proposed method can synthe-
size excluded axial slices with higher image quality than conventional interpolation
method. Moreover, visual inspection of coronal and sagittal slices shown in Figure 5.12
conveys that images generated by cubic B-spline interpolation more frequently suffer
from aliasing artifacts than images generated by our proposed method.

In line with results reported for cardiac cine and neonatal brain MRI in Sections 5.6.2
and 5.6.3, respectively, quantitative evaluation in terms of SSIM, PSNR, and VIF depicted
in Figure 5.13 corroborate the qualitative findings. Measures were computed on sagittal
slices through volume. The proposedmethod outperformed cubic B-spline interpolation
and the differences are statistically significant (p < 0.0001) in terms of SSIM and PSNR
for all upsampling factors (K ∈ {2, 3, 4, 5, 6}).



Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI 117

2 3 4 5 6
Upsampling factor (K)

0.88

0.90

0.92

0.94

0.96

0.98

SSIM

ours (ASI)
B-spline

2 3 4 5 6
Upsampling factor (K)

26

28

30

32

34

36

38

40
PSNR

ours (ASI)
B-spline

2 3 4 5 6
Upsampling factor (K)

0.80

0.82

0.84

0.86

0.88

0.90
VIF

ours (ASI)
B-spline

Figure 5.13: Quantitative comparison of upsampling performance for proposed method (ASI) and

cubic B-spline interpolation in terms of SSIM, PSNR, and VIF. T1-weighted adult brain MRIs of 50

subjects from the OASIS dataset were upsampled with factor K ∈ {2, 3, 4, 5, 6}. The differences
between proposed and cubic B-spline interpolation approach in terms of SSIM and PSNR are

statistically significant (p < 0.001) using the one-sided Wilcoxon signed-rank test.

Comparison With Unsupervised Super-Resolution Methods: Previously
developed unsupervised super-resolution methods by Jog et al.28 and Zhao et al.29 were
evaluated on T1-weighted adult brain MRIs from the Neuromorphometrics dataset. The
dataset is not publicly available. From the 114 brain scans in the Neuromorphometrics
dataset a subset of 60 scans (30 patients) was taken from the OASIS project. Therefore,
reported results of previously developed methods for images from the Neuromorpho-
metrics dataset can be used as estimates for a careful comparison. Quantitative results
in terms of PSNR and SSIM listed in Table 5.4 show that for upsampling factor 2 our
proposed method is on par or better than previously developed super-resolution ap-
proaches. For upsampling factor 3 the method of Zhao et al.29 achieved the best results
and our proposed approach is on par with method of Jog et al.28

Generative image synthesis approach of Dalca et al.32 was evaluated on 50 T1-
weighted brain MRIs of the ADNI dataset.62 To compare performances, our model
was trained (100 scans) and evaluated (50 scans) on the ADNI dataset using identical
experimental settings as described in section 5.6.4. Table 5.5 lists quantitative results
for both methods in terms of mean squared error (MSE). One can observe that our
method achieved a lower mean squared error compared with approach of Dalca et al.32

5.6.5 Ablation Study

To investigate the effect of the synthesis loss on upsampling performance, the proposed
model was trained and evaluated on cardiac cineMRIs byminimizing the reconstruction
loss only. For this, λ in Equation 5.3 is set to zero (referred to as ASIλ=0). All other
experimental conditions were held constant.

This setting enables performance comparison between model ASIλ=0 and a model
trained with the combined reconstruction and synthesis loss (ASIλ=0.05). Figure 5.14
depicts qualitative comparison between the two models for image synthesis of cardiac

http://www.neuromorphometrics.com/
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Table 5.4: Comparison between proposed method (ASI) and unsupervised super-resolution ap-

proaches of Jog et al.28 and Zhao et al.29 in terms of SSIM and PSNR. Approaches of Jog et al.28 and

Zhao et al.29 were evaluated on T1-weighted adult brain MRIs with 1.0mm3 isotropic resolution
from the Neuromorphometrics dataset. Slice spacing was improved from 2 to 1mm (factor 2) and

3 to 1mm (factor 3). Results reported here are taken from the original work by Jog et al.28 and Zhao

et al..29

Method Factor 2 Factor 3
SSIM PSNR SSIM PSNR

Jog et al.28 0.983 37.98 0.968 33.49
Zhao et al.29 0.976 35.14 0.977 34.44
ours 0.985 38.01 0.967 34.24

Table 5.5: Quantitative comparison of upsampling performance of proposed unsupervised method

(ASI) compared with approach of Dalca et al.32 in terms of mean squared error (MSE). Both ap-

proaches were evaluated on 50 randomly selected T1-weighted adult brain MRIs with 1.0mm3

isotropic resolution from the ADNI dataset. Slice spacing was improved from 6 to 1mm. Result

listed here was reported in the work by Dalca et al.32 Values represent medians over 50 scans.

Method MSE
Dalca et al.32 2.1 ×10−3

ours 1.5 ×10−3

MRI. The results reveal that performance decreased for a model trained with the
reconstruction loss only. The performance difference is more pronounced for larger
anatomical variations between neighboring slices e.g. the shape of the right ventricle.
Furthermore, Figure 5.15 demonstrates synthesis performance of the two models. The
model trained with just the reconstruction loss (ASIλ=0) generates cross-fade artifacts
between the intensities of the two neighboring slices63–65 whereas the model trained
with a combination of reconstruction and synthesis loss (ASIλ=0.05) can substantially
suppress such artifacts.

These results are corroborated by quantitative evaluation in terms of SSIM, PSNR,
and VIF depicted in Figure 5.16. One can observe that the model trained with the com-
bined reconstruction and synthesis loss achieved better performance when evaluated by
SSIM and PSNR compared to a model trained with the reconstruction loss only (ASIλ=0).
For the VIF measure the performance achievements are reversed. All differences are
statistically significant (p < 0.0001) using the one-sided Wilcoxon signed-rank test.

To further investigate the effect of the synthesis loss on upsampling performance,
separate quantitative evaluations were performed on reconstructed and synthesized
short-axis slices, respectively. The results listed in Table 5.1 reveal that a model
trained with the reconstruction loss only (ASIλ=0) achieved better performance for the
reconstruction task compared to a model trained with the combined reconstruction

http://www.neuromorphometrics.com/
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(a) Original slice to

be synthesized

(b) Synthesized
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ASIλ=0.05

(c) Synthesized us-

ing ASIλ=0 trained

with reconstruction

loss only

Figure 5.14: Comparison of synthesis performance between proposed model trained on cardiac

MRI (ACDC dataset) using a combination of reconstruction and synthesis loss (b) compared to

model trained with reconstruction loss only (denoted ASIλ=0) (c). Bottom row: Differences between

reference (minuend) and synthesized slice (subtrahend). Blue corresponds to negative and red to

positive differences. Image intensities are scaled to a [0, 1] range. All difference images use the

same color scale [−1, 1].
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Figure 5.15: Comparison of synthesis performance between proposed model trained with (top row)

reconstruction loss only (denoted ASIλ=0) and (bottom row) model trained with a combination of

reconstruction and synthesis loss ASIλ=0.05. Second to penultimate columns show six synthesized

intermediate slices using latent space encodings of the two neighboring slices (first and last column).

Model trained with just reconstruction loss (ASIλ=0) generates cross-fade artifacts (e.g. columns four

to six) between the intensities of the two neighboring slices. Such artifacts are mostly suppressed

by the ASIλ=0.05 model. α denotes the mixing coefficient as specified in Equation 5.1.
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Figure 5.16: Boxplots compare performance of the proposed model trained with (a) reconstruction

loss only (denoted ASIλ=0) compared with model trained with (b) reconstruction and synthesis

loss ASIλ=0.05 in terms of SSIM, PSNR, and VIF. Cardiac cine MRIs of 20 patients from the ACDC

dataset were upsampled with factor 2 in through-plane direction. A higher score indicates better

performance. Measures were computed on sagittal slices through volume. Triangle indicates mean

value.

and synthesis loss (ASIλ=0.05). In contrast, the latter model performed better in terms
of SSIM and PSNR when synthesizing the excluded slices. These results indicate that
the additional synthesis loss resulted in increased interpolation performance but at the
same time impacted reconstruction performance of the autoencoder.

Finally, Figure 5.17 shows the effect of different values of λ on reconstruction
and synthesis performance of the proposed approach. Increasing the contribution
of the synthesis loss, i.e. using larger values for λ, increases synthesis and lowers
reconstruction performance of the model in terms of SSIM and PSNR.
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Figure 5.17: Quantitative comparison of reconstruction and synthesis performance in terms of

SSIM, PSNR, and VIF between proposed model trained on cardiac cine MRIs (ACDC dataset) using

different values for the hyperparameter λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} as specified in

Equation 5.3. y-axis shows performance for reconstructed and synthesized slices, respectively.
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Figure 5.18: Boxplots showing results for upsampling of 90 cardiac MRIs from Sunnybrook dataset

with upsampling factor 2 in through-plane direction for conventional interpolation method (cubic

B-spline) compared to proposedmethod (ASI) in terms of SSIM, PSNR, and Visual Information Fidelity

(VIF). Proposed approach was trained on CMR scans from ACDC dataset. Hence, depicted results

demonstrate generalization performance of proposed method. A higher score indicates better

performance. Measures were computed on sagittal slices through short-axis volume. Performance

differences are statistically significant (p < 0.0001) using the one-sided Wilcoxon signed-rank test.

Triangle indicates mean value.

5.6.6 Evaluation on Cardiac Cine MRIs from Sunnybrook dataset

To examine generalization performance of our proposed method a model trained on
cardiac cine MRIs from the ACDC dataset was evaluated on cardiac MRI scans from the
Sunnybrook dataset.42 Figure 5.18 shows quantitative comparison for cubic B-spline
compared with proposed method (ASI) in terms of SSIM, PSNR, and VIF. One can
observe that the proposed approach trained on ACDC images outperformed cubic
B-spline interpolation for all measures on Sunnybrook dataset. The latter methods do
not require training. These differences are statistically significant (p < 0.0001) using
the one-sided Wilcoxon signed-rank test. Furthermore, the results depict that relative
performance differences between methods are nearly identical to those observed on
ACDC dataset depicted in Figure 5.5. Finally, achieved performance on cardiac MRI
scans of Sunnybrook dataset is higher for all measures compared with performance
reported for evaluation on ACDC dataset depicted in Figure 5.5. This might have been
caused by scans of Sunnybrook dataset having more consistent image quality, better
alignment of adjacent slices, and higher bit depth compared with scans from ACDC
dataset.

5.7 Discussion

A method for unsupervised deep-learning image synthesis of medical images has been
presented. To synthesize new intermediate slices and thereby recovering spatial in-
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Figure 5.19: Qualitative comparison for upsampling factor 2 on cardiac MRI (ACDC dataset). Each

row depicts an example of synthesizing intermediate slice 2 (second column) using latent space

encodings of the two neighboring slices 1 and 3 (first and last column). The synthesized slice

is shown in penultimate column. First row shows basal slices with large anatomical variations

compared to second row that depicts mid-ventricular slices with mild anatomical variations. α
denotes the mixing coefficient as specified in Equation 5.1. Scans have a slice spacing of 10mm.

.
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formation, the method exploits the latent space interpolation ability of autoencoders.
New intermediate slices are generated by mixing the latent space encodings of two
spatially adjacent slices. High-resolution ground-truth images are not required to
train the approach. Results of our preliminary experiments using MNIST data demon-
strated that our proposed approach outperformed a variational autoencoder (VAE) and
Adversarially Constrained Autoencoder Interpolation (ACAI) approach48 for interpo-
lating rotations of handwritten digits. Evaluation of the approach on cardiac and brain
structures using four publicly available MRI datasets revealed that the method can
outperform cubic B-spline interpolation. Performance differences between evaluated
methods become more apparent when the upsampling task becomes more difficult i.e.
for highly anisotropic volumes e.g. cardiac MRI or larger through-plane upsampling
factors. This might indicate that the model can infer the missing information from
contextual and anatomical information captured in the latent space. Furthermore, the
experimental results revealed that our proposed approach can compete with related
unsupervised28,29 and supervised41 super-resolution approaches. Compared with un-
supervised super-resolution methods of Jog et al.,28 Zhao et al.,29–31 Dalca et al.32 and
Xia et al.,34 our approach can be applied with any desired upsampling factor and uses
a single encoder-decoder structure. Moreover, applying methods of Jog et al.28 and
Zhao et al.29–31 requires optimization during inference for every image at hand and
therefore, inference requires several minutes of GPU processing time.31 In contrast, at
test time our method can synthesize multiple intermediate slices between each pair
of adjacent slices in an MRI scan in less than a second on a GPU. Furthermore, using
the method of Dalca et al.32 necessitates creation of a common atlas space to which
each image must be transformed. Finally, it is fair to note that the approach of Zhao et
al.30,31 performs explicitly anti-aliasing by using an additional CNN.

Even though autoencoders are designed to learn a lower-dimensional representa-
tion of the input while minimizing information loss, in this work, we used them to
perform semantic interpolation and thereby recover spatial information in anisotropic
medical images. Specifically, we used an over-complete autoencoder that can poten-
tially retain all information contained in the input. Theoretically, such an approach
could learn an identity to minimize the reconstruction loss. Nonetheless, in line with
previous research,66 the results presented in this work seem to indicate that such a
model can learn a useful representation of its input. Furthermore, the experimental
results revealed that interpolation between image representations is feasible to approx-
imate information orthogonal to the input images. This suggests that the proposed
approach learns to extract contextual and high level conceptual information from the
input images. Moreover, the results demonstrate that the decoder learns to exploit
this information to instantiate semantically meaningful intermediate slices. While
previously developed shape-based interpolation approaches of Raya et al.67 and Grevera
et al.68 exploit anatomical shape information to achieve high-order interpolation be-
tween cross sections of 3D anatomical structures, we argue that our approach performs



124 Chapter 5

semantic interpolation between two spatially adjacent slices.
Synthesized images are not guaranteed to be semantically meaningful. However,

the solution space of the proposed approach is constrained using encodings of two
spatially adjacent slices. Moreover, compared with an adversarial training objective48

training the autoencoder with the proposed synthesis loss enforces an explicit con-
straint on the solution space because the synthesized image is evaluated against its
reference. Nevertheless, image interpolation in latent space can still result in cross-
fade artifacts between the intensities of the two images i.e. neighboring slices.63–65

Appearance of such an artifact can be observed in Figure 5.8 (second row, columns
four to six). However, results presented in Figure 5.15 demonstrated that the proposed
model can synthesize images with substantially less artifacts compared with a standard
autoencoding approach. Although adversarial approaches are extremely difficult to
train,69 adding a critic to our approach could further constrain the model and improve
synthesis performance. Moreover, to further constrain the model an additional synthe-
sis loss in latent space could have been proposed.65 We deliberately leave the challenge
of defining a useful distance metric in latent space for future work.

Our approach assumes that a linear spacing in latent space corresponds to slice
spacing in image space. Although, alternatives such as spherical latent space interpola-
tion70,71 or an enforced Riemannian latent space63,72 can be used, linear interpolation
in the latent space of an autoencoder trained with the proposed synthesis loss showed
excellent results. Nevertheless, human anatomy does not change linearly along spatial
dimensions. We conjecture that the model can learn such a nonlinearity from the train-
ing data. Furthermore, we presume that the synthesis loss encourages the model to
learn the nonlinear mapping between distances in latent and image space. For example,
our experiments on cardiac MRI revealed that the model has learned that structural
changes at the base of the heart are substantially different than at the apex. Finally, our
experiments on neonatal and adult brain MRI apply mixing coefficients (α) unequal to
0.5. Results of these experiments corroborate our assumption that linear steps taken
in latent space can approximate anatomical distances in image space, however, the
approach does not guarantee such a relationship to be exact.

Performance of the proposed method is affected by large anatomical variations
between adjacent slices as shown in Figure 5.19. Furthermore, quality of synthesized
images is decreased when adjacent slices within the original volume are misaligned.
This is a known problem in cardiac cine MR imaging caused by surrounding organ
motion during breath-hold acquisition. In these cases intermediate points along the
interpolation path spanned by two adjacent slice encodings result in anatomically
implausible images i.e. cross-fades. This might indicate that the latent space between
the two endpoints is too sparsely populated. For cardiac cine MRI this could be
alleviated by choosing additional interpolation endpoints e.g. from other time frames.
This direction will be investigated in future work.

Training the autoencoder with a combination of reconstruction and synthesis
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loss slightly hampered reconstruction performance when compared to training with
reconstruction loss only as shown in Table 5.1. However, quality of synthesized slices
considerably improved when adding the synthesis loss during training. To render 3D
high-resolution images the method only relies on the quality of newly synthesized
slices. Hence, all existing slices do not need to be reconstructed but can be taken from
the original anisotropic 3D volumes.

The here presented approach was developed in parallel with the super-resolution
method proposed by Xia et al.34 In the current work quantitative results are presented
in terms of SSIM, PSNR and VIF for all cardiac MRI slices of test patients from the
ACDC dataset and 45 subjects from the Sunnybrook dataset. In comparison, work of
Xia et al.34 depicts results in terms of PSNR and correlation coefficient for a limited
selection of two cardiac MRI slices (mid-ventricular and basal) from the UK Biobank.
Note that intensity statistics of images from different datasets may be very different and
hence, PSNR measurements might be inaccurate.18 Therefore, thorough quantitative
comparison of the two methods is hardly feasible.

To conclude, we presented a method for unsupervised semantic interpolation of
anisotropic 3D medical images achieving anatomically smooth transitions in through-
plane direction. New intermediate slices are generated by mixing the latent space
encodings of two spatially adjacent slices. The experiments using cardiac cine and
brain MRIs demonstrated that the proposed approach outperforms cubic B-spline
interpolation on cardiac cine and brain MRIs. Given the unsupervised nature of the
method, high-resolution training data is not required and hence, the method can be
readily applied in clinical settings.
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Abstract

Since the onset of computer-aided diagnosis in medical imaging, voxel-based seg-
mentation has emerged as the primary methodology for automatic analysis of left
ventricle (LV) function and morphology in cardiac magnetic resonance images (CMRI).
In standard clinical practice simultaneous multi-slice 2D cine short-axis MR imaging
is performed under multiple breath-holds resulting in highly anisotropic 3D images.
Furthermore, sparse-view CMRI often lacks whole heart coverage caused by large
slice thickness and often suffers from inter-slice misalignment induced by respiratory
motion. Therefore, these volumes only provide limited information about the true
3D cardiac anatomy which may hamper highly accurate assessment of functional
and anatomical abnormalities. To address this, we propose a method that learns a
continuous implicit function representing 3D LV shapes by training an auto-decoder.
For training, high-resolution segmentations from cardiac CT angiography are used.
The ability of our approach to reconstruct high-resolution shapes from sparse-view
cardiac shape information is evaluated by using paired high- and low-resolution CMRI
LV segmentations. The results show that the reconstructed LV shapes have an un-
constrained subvoxel resolution and appear smooth and plausible in through-plane
direction. Furthermore, these high-resolution reconstructed ventricle volumes are
closer to the corresponding reference volumes than reference low-resolution volumes.
Finally, the results demonstrate that the proposed approach allows recovering missing
shape information and can correct motion artifacts.
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6.1 Introduction

Cardiovascular magnetic resonance (CMR) imaging is the reference modality for mor-
phological and functional assessment of the heart.1 Conventionally, to acquire stacks
of short-axis 3D cine CMR images (CMRI) simultaneous multi-slice 2D cine CMR
imaging is performed under multiple breath-holds. To mitigate the risk of motion
artifacts and to sustain patient comfort fast scanning is often required. As a result,
short-axis CMR scans with high temporal resolution (i) are often highly anisotropic
(low through-plane resolution ranging between 5 and 10mm), (ii) lack whole-heart
coverage, and (iii) suffer from respiratory motion-induced inter-slice misalignment
(example depicted in Figure 6.1c). As a consequence, left and right ventricular shapes
obtained from manual or (semi-)automatic segmentations in short-axis CMRI only
provide a sparse representation of the true 3D cardiac anatomy. Nevertheless, in cur-
rent clinical practice these representations are used to compute volume-based imaging
biomarkers, e.g., ejection fraction and stroke volume. Furthermore, volumetric indica-
tors are limited to global cardiac function and therefore, cannot capture local functional
and anatomical abnormalities.2 Moreover, current shortcomings of anisotropic cardiac
segmentations in CMRI hamper research progress in the field of computational cardiac
physiology. The latter has recently shown the potential to improve and complement the
management of cardiovascular diseases3 by, e.g. accurately simulating cardiac electro-
physiology and mechanics,4 discovering new biomarkers for patient risk stratification,5

and predicting cardiac outcomes.6 Therefore, to increase accuracy and reproducibility
of CMRI analysis and to enable advanced morphological and functional assessment of
the heart, personalized high-resolution representation of cardiac anatomy is considered
a prerequisite.7,8

To obtain high-resolution 3D representations of the entire left and right ventricles
from CMR images, previous approaches aim to increase through-plane resolution
of anisotropic CMRI scans by imputing missing slices and/or correcting for motion
artifacts after images are reconstructed. Methods are either applied to CMR images9–15

or directly to the CMRI segmentations of the cardiac structures of interest.16–21

In this work, we focus on the latter, more specifically on the reconstruction and
completion of high-resolution 3D cardiac shapes using anisotropic CMRI segmentations
with inter-slice misalignment. In previous work, Oktay et al.16 developed a deep learn-
ing approach that simultaneously performs voxel-based automatic CMRI segmentation
and super-resolution of the obtained cardiac shapes. To correct for respiratory motion
artifacts, an autoencoder is used to apply shape constraints during training. More
recently, Duan et al.17 designed a pipeline to generate high-resolution 3D bi-ventricular
shapes from anisotropic short-axis CMR scans. To refine automatically obtained low-
resolution short-axis segmentations they used atlas propagation.17 A generative ap-
proach for high-resolution 3D segmentation of the left ventricle (LV) myocardium
was proposed by Biffi et al.18 In contrast with16,17 the approach described by Biffi et
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(a) Cardiac MRI long-axis view (b) Cardiac MRI short-axis view (c) Sagittal view through CMRI short-

axis volume

Figure 6.1: Examples of cardiac MRI (CMRI) (a) long-axis; (b) short-axis and (c) low-resolution sagittal

view through CMRI short-axis view with motion induced slice-misalignment.

al.18 requires high-resolution long-axis segmentations during training and inference.
This might hamper its applicability in clinical practice because such high-resolution
long-axis segmentations are often not available. Recently, Wang et al.20 proposed
a latent optimization framework that jointly performs motion correction and super-
resolution for short-axis CMRI segmentations. First, a latent space of high-resolution
cardiac segmentations is learned by means of a generative model. Subsequently, given
a low-resolution CMRI segmentation, the nearest high-resolution encoding is found by
using an iterative optimization approach that downsamples and degrades the retrieved
high-resolution shape to match the low-resolution CMRI segmentation. By contrast
with the aforementioned methods that operate on a voxel-grid, Beetz et al.19 proposed a
method to reconstruct high-resolution bi-ventricular surfaces that uses point cloud data
accumulated from sparse-view short- and long-axis CMRI segmentations. Recently,
Beetz et al.21 replaced the point completion network with a mesh deformation U-Net.
To train previously developed approaches,16–21 real or synthetic22 high-resolution
CMRI segmentations are required for training. Unfortunately, real high-resolution
CMRI segmentations are in practice difficult to obtain. Furthermore, upsampling factor
of the approaches depends on the resolution of the high-resolution CMRI reference
segmentations and therefore, limits its applicability in case higher resolutions are
required.

In contrast with the above approaches, our work exploits the high-resolution and
fast acquisition of CT and uses segmentations from cardiac CT angiography (CCTA)
to reconstruct and complete high-resolution 3D cardiac shapes from anisotropic in-
complete CMRI segmentations. We adapt the probabilistic auto-decoder approach23

that performs shape reconstruction using a latent space and continuous deep implicit
function.24 Instead of predicting voxelized representations of cardiac shapes at a fixed
resolution, we use implicit neural representations that represent surfaces indepen-
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dently of the resolution. Inasmuch as assessment of LV function and morphology is
important for diagnosis of cardiovascular diseases, we focus on high-resolution shape
reconstruction and completion of the LV.
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Figure 6.2: Visualization of the proposed method. To model the relationship between spatial points

and a surface, a signed distance function (SDF) parametrized by a multi-layer perceptron (MLP) is

used. A shape is implicitly represented by the zero iso-surface of its SDF. A single MLP can represent

multiple shapes by conditioning the network output, i.e., a signed distance value on a spatial point

x and a shape-specific latent vector z. During training, model weights and latent shape vectors are

jointly optimized. To this end, a distance loss is computed between the reference and predicted

signed distance values of the known shape coordinates. To encode a strong LV shape prior, the

approach is trained using high-resolution segmentations in cardiac CT angiography (a). During

inference (b), to perform high-resolution reconstruction of anisotropic cardiac MRI segmentations,

a latent shape vector needs to be determined for each new shape. Best viewed in color.

To provide evidence that high-resolution 3D LV reconstructions approximate high-
resolution LV reference segmentations better than the corresponding low-resolution LV
reference segmentations, the method is evaluated on publicly available CMRI segmenta-
tions from the UK Digital Heart project. Moreover, we demonstrate that reconstruction
performance of our approach can be improved by seamlessly integrating LV segmenta-
tions from different cardiac MRI views. Finally, to show that the proposed method can
generalize to unseen LV shapes of patients suffering from a variety of cardiomyopathies,
the approach is evaluated on publicly available segmentations from the MICCAI 2021
Multi-Disease, Multi-View &Multi-Center Right Ventricular Segmentation Challenge.25

6.2 Data

To reconstruct high-resolution LV shapes from low-resolution CMRI LV segmenta-
tions, the model is first trained on high-resolution CCTA segmentations of the LV
(section 6.5.1). Subsequently, the model is evaluated on (i) 500 segmentations of the
LV in paired 3D high- and low-resolution short-axis CMRI (section 6.5.2), and (ii)
360 LV segmentations in paired 3D low-resolution short-axis and 2D high-resolution
4-chamber long-axis CMRI (section 6.5.3).
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Figure 6.3: Visualization of (a) original, and (b) canonical orientation in reference coordinate system

of CCTA segmentations of left (green) and right (orange) ventricles; (c) CCTA with shape-specific

coordinate frame defined using three orthogonal unit vectors (x, y, z) where (i) x was defined as the
vector pointing from the center of mass of the LV (green) to the center of mass of the right ventricle

(orange), (ii) z was defined as the vector pointing from the center of mass of the LV to the center of

mass of the left atrium (yellow), and (iii) y (pointing out of the Figure 6.3c towards the reader) was

equal to the cross-product of x and z. Best viewed in color.

6.2.1 Cardiac CT angiography imaging

This study includes CCTA scans of 452 adult patient with acute ischemic stroke with
median age of 72 years, 268 (59.3%) were men, and median baseline NIH Stroke Scale
of 5. Prospective ECG-gated sequential CCTA (tube voltage 100 kVp and tube current
288 mAs) were acquired in end-diastole at the Amsterdam University Medical Center
location UvA, The Netherlands.26 In-plane resolutions of 3D CCTA images range from
0.27 to 0.52mm while all scans have a slice thickness and increment of 0.6mm and
0.4mm, respectively. Reference annotations of the LV, right ventricle and left atrium
were defined by automatic segmentation27,28 and manual correction performed by
two investigators if needed. For 434/452 (96%) of the patients CCTA LV reference
segmentations were used. Since model training required high-resolution shapes that
cover the complete LV, CCTA LV reference segmentations with incomplete coverage
of the left ventricle or insufficient scan quality were excluded.

6.2.2 Cardiac cine MRI from UK Digital Heart Project

This work used publicly available cardiac CMRI segmentations of 1331 healthy adults
from the UK Digital Heart Project (UKDHP) at Imperial College London.22 The dataset
is composed of pairs of high- and low-resolution short-axis CMRI segmentations
of LV, right ventricle and LV myocardium for end-diastolic and end-systolic time

https://data.mendeley.com/datasets/pw87p286yx/1
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frames. In the experiments, only the end-diastolic time frame was considered. High-
resolution segmentations were obtained from 3D balanced steady-state free precession
(SSFP) cine sequences acquired in a single breath-hold. In contrast, low-resolution
segmentations were obtained from 2D balanced SSFP cine sequences in different breath-
holds and therefore may contain inter-slice motion artefacts. The provided reference
segmentations were defined by automatic segmentation29 and manually corrected
by two expert clinicians if necessary.22 High-resolution segmentation volumes are
provided with a voxel resolution of 1.2×1.2×2mm3 (average reconstruction matrix
281×281 voxels). In-plane resolution of low-resolution volumes range from 1.08 to
1.25mm (average reconstruction matrix 287×287 voxels) and slice spacing between 8
to 10.12mm. Each high- and low-resolution volume consists of on average 99 and 12
slices, respectively.

6.2.3 Cardiac cine MRI from M&Ms-2 challenge

This work included LV and right ventricle segmentations in paired 3D low-resolution
short-axis and 2D high-resolution 4-chamber long-axis CMRI from the MICCAI 2021
Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation Challenge
in cardiac MRI (M&Ms-2).25 The publicly available dataset contains images from 360 pa-
tients distributed over normal cardiac function and seven disease groups: hypertrophic
cardiomyopathy, inter-atrial communication, arrhythmogenic cardiomyopathy, tetrol-
ogy of fallot, dilated LV, dilated right ventricle, tricuspid regurgitation. Figures 6.1a
and 6.1b show an example of a cardiac CMR long-axis and short-axis view, respectively.
In-plane resolutions of short-axis stacks and long-axis slices range from 0.61 to 1.64mm
and 0.68 to 1.88mm, with average reconstruction matrix 282×263 and 253×276 voxels.
Slice thickness of short-axis volumes ranges from 5 to 19.2mmwhile all long-axis slices
have 1mm slice thickness. Each short-axis volume consists of on average 11 slices
covering the heart while each long-axis image consists of one slice. Expert manual
reference segmentations are provided for the LV, right ventricle and LV myocardium
for all short-axis and long-axis slices at end-diastolic and end-systolic time frames. In
this work, only the end-diastolic time frame was considered. Consistency between
short-axis and 4-chamber long-axis segmentations in basal and apical regions was
guaranteed by two clinical experts who had to agree on the final annotation result.
Moreover, the annotation protocol was identical to the one used for the MICCAI 2017
Automated Cardiac Diagnosis Challenge (ACDC) dataset.30 For further details the
reader is referred to Campello et al.25 and the challenge website.

6.3 Method

We propose a method for reconstruction of high-resolution LV with complete shape
from anisotropic incomplete CMRI segmentations. To this end, an LV shape is repre-

https://www.ub.edu/mnms-2/


142 Chapter 6

sented as zero iso-surface of its signed distance function (SDF). The SDF is parametrized
using a multi-layer perceptron. A single multi-layer perceptron can represent multiple
LV shapes by conditioning the model output on a learned latent shape vector. Therefore,
the model takes a spatial point and a latent shape vector to predict the signed distance
of a point to the closest surface. The approach is visualized in Figure 6.2.

6.3.1 Implicit neural representation of shapes

Our approach implicitly represents shapes as the zero iso-surface decision boundaries
of a deep neural network trained to represent SDFs. An SDF is a continuous function
that outputs the shortest distance (s ∈ ℝ) of a spatial point x ∈ ℝ3 to the boundary of
the shape. The sign of the distance encodes whether the point is inside (negative) or
outside (positive) the surface. The set of SDF observations 𝒪i of a shape i contains all
coordinates and their corresponding signed distance values:

𝒪i = {(xij, sij)|sij = SDFi(xij)} , (6.1)

where sij denotes the reference signed distance of a coordinate xij from shape i. To
approximate the SDF a multi-layer perceptron fϕ with parameters ϕ is used. Using an
SDF, the surface of a shape i is implicitly represented by the points on the decision
boundary. The model can represent multiple shapes by conditioning the network
output on a latent shape vector zi. Given a spatial point xij, and a latent vector zi ∈ ℝm,
fϕ predicts the signed distance of the point to the surface:

fϕ(zi, xij) ≈ SDFi(xij) . (6.2)

During training for each shape i a latent vector is randomly initialized zi ∼ 𝒩 (0, σz)
and optimized together with the model parameters using stochastic gradient descent.
By contrast with23 where an L1 loss was used during training, we found that a mean
squared error between predicted and reference signed distance resulted in superior
reconstruction performance:

argminϕ,{zi}Ni=1
1
N

N
∑
i=1

1
K

K
∑
j=1

(fϕ(zi, xij) − tanh(sij))
2
+ λ|zi|22 , (6.3)

where sij denotes the reference distance of a coordinate xij from shape i with corre-
sponding latent shape vector zi for a dataset of N shapes. Furthermore, K denotes the
number of coordinates and their signed distance values sampled from the set 𝒪i (see
Equation 6.1). λ is a hyper-parameter weighting the contribution of the regularization
loss (second term in Equation 6.3). Furthermore, tanh(.) denotes the hyperbolic tangent
function. Previously, Park et al.23 introduced a hyper-parameter (δ) to administer the
distance from the surface over which the model should learn an SDF metric, i.e., to
control the domain of the function fϕ. Hence, hyper-parameter δ limits the values of
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the predicted and reference signed distances to an interval between [−δ, δ]. In the here
proposed approach, the hyper-parameter δ was omitted, and instead, by applying a
hyperbolic tangent function to the reference signed distance (see Equation 6.3), the
network was implicitly forced to an output interval of [−1, 1]. Owning to the steepness
of the hyperbolic tangent function around zero, the model is encouraged to focus on
the ventricle’s surface structure.

All latent shape vectors have 128 dimensions. Furthermore, the multi-layer per-
ceptron consists of eight fully connected hidden layers. To speed up model training,
weight-normalization was used, and the fully connected layers were implemented as
one-dimensional convolutional layers with a kernel size of one. The first seven layers
consist each of 512 kernels, followed by a ReLU nonlinearity. The final layer i.e., the
output layer has one kernel representing the distance of a spatial point to the surface
boundary. Unlike in the original work,23 we found that adding a skip connection
between the input and the fourth layer, and enabling dropout during training, did not
increase model performance.
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Figure 6.4: Visualization of experimental evaluation of proposed approach on two publicly available

cardiac MRI datasets (see section 6.2). (a) Evaluation using paired high- and low-resolution CMRI

left ventricle (LV) volumes from the UKDHP dataset (see section 6.5.2). (b) Evaluation using paired

2D high- and low-resolution 4-chamber long-axis CMRI LV segmentations from the M&Ms-2 dataset.

A low-resolution slice was obtained by taking a cross section from the 3D low-resolution short-axis

LV CMRI segmentation. Orientation of the sliced low-resolution short-axis volume matches the

4-chamber long-axis view (as acquired). Best viewed in color.

6.3.2 High-resolution shape reconstruction

After training, to reconstruct a high-resolution LV shape, first, the nearest latent shape
representation zi needs to be determined for a shape i (hereafter referred to as optimal
latent shape vector). For this, the model parameters ϕ are frozen, and the randomly
initialized latent vector zi is optimized using gradient descent, minimizing the following
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loss as described by Park et al.:23

argminzi
1
K

K
∑
j=1

||fϕ(xij, zi) − sij|| + λ|zi|22 , (6.4)

where K denotes the number of coordinates (xij) and their signed distance values (sij)
sampled from the set 𝒪i of SDF observations (see Equation 6.1). λ is a hyper-parameter
weighting the contribution of the regularization loss (second term in Equation 6.4). We
found empirically that during inference the L1 loss (see Equation 6.4) was superior
over the proposed L2 training loss (see Equation. 6.3).

Subsequently, using the optimized latent shape vector zi, a discretized voxel-based
signed distance volume Vi with an unconstrained resolution is obtained by querying
the network at continuous spatial locations. The high-resolution reconstructed surface
is implicitly represented by the coordinates on the decision boundary, i.e., the zero
iso-surface {xij ∈ ℝ3|fϕ(zi, xij) = 0}, where xij denotes a coordinate of shape i.

In this work, LV shapes are reconstructed using a volume Vi of size 200×200×200
(width, height, depth), i.e., for each shape the model is queried using 8 × 106 sample
coordinates. Voxel-grid coordinates of Vi are transformed into coordinates of the
reference frame by defining the spatial sampling bounds BVi of the voxel-grid in the
reference frame. In other words, BVi , a matrix of size 3×2, defines the space in which
the high-resolution shape can be reconstructed. Using a fixed volume size for all
reconstructed shapes, the spatial resolution of a shape Vi is determined by its spatial
sampling bounds BVi . After obtaining a signed distance volume, a binary volume of
the LV can be obtained by thresholding the signed distance volume.

1(xij, zi) = {
1, fϕ(xij, zi) <= θ
0, fϕ(xij, zi) > θ

(6.5)

For this, θ is set to zero. In this work, a voxelized binary volume of the LV is only
generated for quantitative evaluation of the reconstructed shape. Additionally, a mesh
is extracted from the same signed distance volume using the Lewiner Marching Cubes
algorithm.31

6.3.3 Reference coordinate system and canonical orientation of cardiac

shapes

To encourage the model to extract spatial regularities from the shapes’ coordinates, all
shapes need to be aligned to the canonical orientation of a shared 3D Cartesian reference
coordinate system.32,33 For this purpose, the center of mass of a shape is associated with
the origin of the reference coordinate system (object-centered coordinate system). To
accomplish alignment of cardiac shapes with the canonical orientation of the reference
coordinate system, a common shape-specific coordinate frame needs to be defined.



High-resolution reconstruction and completion of anisotropic cardiac MRI segmentations using continuous

implicit neural representations 145

Subsequently, for each shape, the shape-specific coordinate frame is rotated onto the
reference coordinate frame. The chosen canonical orientation in this work matches
the cardiac short-axis view of the heart. The axial plane of the short-axis view is
perpendicular to the long-axis of the heart, which is considered the axis that aligns the
heart’s base and apex.

The reference coordinate system is identified by the unit vectors x̂, ŷ, ẑ. It is assumed
that the z-axis (ẑ) of the reference coordinate system is colinear with the long-axis of the
heart. Furthermore, the x-axis (x̂) is colinear to the vector pointing from the center of
mass of the LV to the right ventricle. Finally, the y-axis (ŷ) of the reference framework
is equal to the cross-product of x̂ and ẑ. An example of the canonical orientation for a
segmentation of the LV and right ventricle is depicted in Figure 6.3.

6.4 Evaluation

To quantitatively assess our method’s ability to reconstruct high-resolution LV shapes
from sparse-view short-axis CMRI LV reference segmentations, paired 3D high- and
low-resolution short-axis LV reference shapes from the UKDHP dataset were used
(section 6.2.2). To evaluate whether high-resolution LV reconstructions approximate
high-resolution LV reference volumes better than the corresponding low-resolution
LV reference volumes, overlap (3D Dice similarity coefficient) and boundary distances
(3D Hausdorff distance, 95th percentile Hausdorff distance, Average symmetric surface
distance) were computed between (i) paired 3D high- and low-resolution short-axis
LV reference shapes, and (ii) high-resolution reference and reconstructed LV shapes
using sparse-view short-axis CMRI LV reference segmentations. Furthermore, to
assess performance in terms of clinical metrics and to enable indirect performance
comparison with high-resolution reconstruction approach by Beetz et al.21 (section 6.7),
the LV end-diastolic volume (in mL) was computed on a population level for high- and
low-resolution references and reconstructed high-resolution LV shapes. Figure 6.4a
visualizes the aforementioned evaluation.

In addition, to evaluate the method’s potential to complete missing shape informa-
tion, overlap (2D Dice similarity coefficient) and boundary distances (2D Hausdorff dis-
tance, 95th percentile Hausdorff distance, Average symmetric surface distance) were as-
sessed between reference and reconstructed LV shapes using paired 2D high-resolution
4-chamber long-axis and 3D low-resolution short-axis CMRI LV segmentations from
the M&Ms-2 dataset (see section 6.2.3). While sparse-view 3D short-axis CMRI LV
shapes often lack whole heart coverage, 2D high-resolution 4-chamber long-axis views
do cover the complete LV anatomy from apex to base. The evaluation approach was
previously described by Wang et al.20 and is visualized in Figure 6.4b.

Furthermore, statistical significance of performance differences between (i) paired
high- and low-resolution reference segmentations, and (ii) high-resolution reference
and reconstructed shapes were tested using the one-sided Wilcoxon signed-rank test.
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Table 6.1: Quantitative evaluation of high-resolution reconstruction performance using high-

resolution left ventricle (LV) shapes from CCTA scans of 77 test patients. Comparing high-resolution

LV reference meshes (reference) obtained from LV segmentations in CCTA (section 6.2.1) with re-

constructed high-resolution LV meshes (reconstructed) in terms of (a) Hausdorff distance (HD), 95th

percentile Hausdorff distance (HD95) and Average symmetric surface distance (ASSD) and (b) LV

end-diastolic volume (LVEDV) (mean±standard deviation).

Surface distances (mm)
HD↓ HD95↓ ASSD↓

5.80±3.20 2.41±0.65 1.04±0.33
(a)

LVEDV (mL)
reference reconstructed

121±43 120±42
(b)

Finally, performance of the method was qualitatively evaluated by visually inspecting
the reconstructed surfaces or voxel-based segmentations. Visual assessment focused on:
smoothness of the reconstructed surface, anatomical shape completion, and correction
of motion-induced inter-slice misalignment.

6.5 Experiments and Results

A latent space and deep implicit neural function (multi-layer perceptron) for the recon-
struction of high-resolution LV shapes were trained and evaluated on high-resolution
CCTA segmentations of the LV (section 6.5.1). Subsequently, to demonstrate the ability
of the approach to reconstruct and complete high-resolution LV shapes from sparse-
view incomplete short-axis CMRI segmentations, the approach was evaluated on (i)
500 segmentations of the LV in paired 3D high- and low-resolution short-axis CMRI
from the UKDHP dataset (section 6.5.2), and (ii) 360 LV segmentations in paired 3D
low-resolution short-axis and 2D high-resolution 4-chamber long-axis CMRI from the
M&Ms-2 dataset (section 6.5.3). Figures 6.4a and 6.4b visualize the aforementioned
experimental evaluations.

6.5.1 Learning a LV shape prior

To learn a LV shape prior for the representation of plausible high-resolution LV shapes,
our approach was trained on high-resolution LV meshes obtained from 3D cardiac CTA
LV reference segmentations (section 6.2.1).
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Figure 6.5: Two examples of qualitative evaluation using paired high (HR) and low-resolution (LR)

CMRI short-axis left ventricle (LV) segmentations from UKDHP dataset (see section 6.2.2). Example 1,

first row shows comparison between reference high (blue) and low-resolution (orange) LV reference

segmentations (HR↔ LR). Second row depicts comparison between LV reference high-resolution

segmentation (blue) and high-resolution reconstruction (yellow) (HR ↔ proposed). Example 2

illustrates the same comparisons in row three (HR↔ LR) and four (HR↔ proposed), respectively.

Furthermore, example 2 (third row, all columns) depicts a low-resolution short-axis shape (orange)

with severe motion-induced slice misalignment.
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EXPERIMENTAL DETAILS Our approach requires that all LV shapes are represented in a
shared reference coordinate system (see section 6.3.3). Therefore, in this experiment,
LV segmentations in CCTA were first linearly transformed to align with the canonical
orientation of the reference coordinate system. To accomplish this, for each volume, a
shape-specific coordinate frame was defined (an example is depicted in Figure 6.3c). To
define the shape-specific coordinate frame, reference segmentations of the LV, right
ventricular and left atrium were required. Computing the Euler angles between the
reference coordinate frame and the shape-specific coordinate frame allows for rotation
of the LV segmentation into the canonical orientation of the reference coordinate
system. Subsequently, rotated LV segmentations were aligned with the origin of the
reference coordinate system (using the center of mass of the LV). To obtain a compressed
representation of LV shapes that facilitates fast training, shapes were converted to
triangular meshes using the Lewiner Marching Cubes1 algorithm.31 Moreover, meshes
were smoothed and reduced to contain 10,000 points each. Meshes of 434 patients were
randomly split into training (341/434 patients, 78%), validation (16/434 patients, 4%)
and test (77/434 patients, 18%) sets. We deliberately chose a small validation set to
retain a large training set.

The model was trained using mini-batch stochastic gradient descent and a batch
size of eight. Meshes of the training set were provided once per epoch to the model
in random order. For each mesh, 1,024 coordinates were randomly sampled from
the surface and another 1,024 were uniformly sampled within the boundaries of the
mesh. For this, mesh boundaries were extended in each direction by 10mm. Reference
signed distance values for the sampled coordinates were obtained by computing the 3D
Euclidean distance of each sampled coordinate to the mesh surface2. The learning rate
was set to 0.001 and decayed over 5,000 iterations using a cosine annealing learning
rate schedule. Network parameters (ϕ) and latent shape vectors were optimized jointly
using the Adam optimizer,34 minimizing the loss specified in Equation 6.3. Furthermore,
following Park et al.23 λ in Equation 6.3 was set to 0.0001, and latent shape vectors
were initialized using a univariate normal with σ equal to 0.01.

The model was trained for 2,000 epochs and validated every 100th epoch. To re-
construct a validation shape, a latent shape vector was optimized for 1,000 iterations
using the Adam optimizer with a learning rate of 0.001, minimizing the loss specified
in Equation 6.4. Moreover, validation loss was computed for each shape by randomly
sampling 4,096 pairs of coordinates and signed distances from the set of SDF observa-
tions (as defined in Equation 6.1). The model with the lowest validation loss was used
for performance evaluation of high-resolution reconstruction using anisotropic CMRI
LV segmentations. The method was implemented using the PyTorch framework35 and
trained on one Nvidia RTX 2080 GPU with 11 GB memory. The model was trained in
approximately 6 hours.

1Lewiner marching cubes implementation of scikit-image
2using pyvista’s DataSetFilters.compute_implicit_distance function
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RESULTS Quantitative test results in terms of surface distances and LV end-diastolic
volume listed in Table 6.1 demonstrate that the proposed approach can accurately re-
construct high-resolution LV shapes from high-resolution LV reference segmentations
in CCTA images. The average surface distance is within two (average) voxel spacings.

Table 6.2: Quantitative evaluation using left ventricle (LV) segmentations in paired high- and low-

resolution CMRI from the UKDHP dataset. Comparing high-resolution (HR) CMRI LV reference

segmentations with (i) low-resolution (LR) LV reference segmentations (LR LV), and (ii) high-resolution

LV reconstructions (proposed). The evaluation is performed using (a) Dice similarity coefficient (DSC),

Hausdorff distance (HD), 95th percentile Hausdorff distance (HD95) and Average symmetric surface

distance (ASSD) and (b) LV end-diastolic volume (LVEDV) (mean±standard deviation). Differences

between (i) and (ii) are statistically significant (p < 0.001) using the one-sided Wilcoxon signed-rank

test. Best performance is indicated in bold.

DSC↑ HD↓
(mm)

HD95↓
(mm)

ASSD↓
(mm)

LR LV ↔ HR LV
0.87
±0.03

10.72
±2.71

5.77
±1.54

2.28
±0.59

proposed ↔ HR LV
*0.92
±0.02

*8.29
±3.16

*3.90
±0.88

*1.61
±0.35

(a)

LVEDV (mL)
reference LR LV reference HR LV proposed

133±12 146±36 150±37
(b)

6.5.2 High-resolution shape reconstruction using segmentations from the

UKDHP dataset

To assess model performance, paired LV segmentations in 3D high- and low-resolution
short-axis CMRI at end-diastole were taken from the first 500 patients of the UKDHP
dataset (section 6.2.2). Using the trained model as described in section 6.5.1, high-
resolution LV shapeswere reconstructed from low-resolution LV shapes. High-resolution
LV reconstructions were then quantitatively and qualitatively compared with reference
high-resolution LV shapes. Figure 6.4a visualizes the comparison.

EXPERIMENTALDETAILS The approach requires that reference high- and low-resolution
LV segmentations are aligned to the canonical orientation of the reference coordinate
system as described in section 6.3.3. To accomplish this, for each volume, a shape-
specific coordinate frame was defined as described in section 6.5.1. Because the short-
axis acquisition plane in CMRI is orthogonal to the z-axis of the reference coordinate
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Table 6.3: Quantitative comparison between high-resolution 2D CMRI 4-chamber long-axis (LAX)

left ventricle (LV) reference segmentations (HR LAX) with cross sections taken from (i) low-resolution

(LR) 3D CMRI short-axis (SAX) LV reference segmentations (LR-SAX), and (ii) high-resolution (HR) 3D

SAX LV reconstructions (proposed). Orientation of cross sections matches orientation of 4-chamber

LAX view. The evaluation is performed using Dice similarity coefficient (DSC), Hausdorff distance

(HD), 95th percentile Hausdorff distance (HD95) and Average symmetric surface distance (ASSD)

(mean±standard deviation). Differences between (i) and (ii) are statistically significant (p < 0.001)
using the one-sided Wilcoxon signed-rank test. Best performance is indicated in bold.

DSC↑
±σ

HD↓
±σ

HD95↓
±σ

ASSD↓
±σ

LR SAX ↔ HR LAX
0.89
±0.05

10.56
±4.08

7.67
±3.40

3.08
±1.48

proposed ↔ HR LAX
*0.91
±0.05

*8.16
±3.86

*6.51
±3.38

*2.79
±1.57

system (see Figure 6.3c), alignment of short-axis CMRI segmentationswith the canonical
orientation of the reference coordinate frame only required rotation in the xy-plane.
Furthermore, rotation of a CMRI shape was performed as described in section 6.5.1.
Finally, to align CMRI segmentations with the origin of the reference coordinate system,
voxel coordinates of each volume were centered using the center of mass of the LV.

Using the trained model (see section 6.5.1), high-resolution LV reconstructions
were obtained from low-resolution CMRI references segmentations following the steps
described in section 6.3.2. Latent shape optimization requires pairs of coordinates and
their corresponding signed distance values (Equation 6.4). To obtain the latter, for all
segmentation voxels, the 3D Euclidean distance transform was computed 3 taking the
volume’s voxel spacing into account.

Furthermore, to accelerate inference, for each shape, latent optimization was per-
formed with a filtered subset 𝒮i of SDF observations 𝒪i as defined in Equation 6.1:

𝒮i = {(xij, sij) ∈ 𝒪i| |sij| <= γ √(v
x
i )2 + (vyi )2} , (6.6)

where sij denotes the signed distance of a coordinate xij from shape i. Furthermore,
γ ∈ ℕ+ and vxi and vyi denote the in-plane resolution (x and y-direction, respectively) of
the original low-resolution voxel-based shape representation. 𝒮i contains all on-surface
points and, depending on γ and the segmentation’s in-plane resolution, an additional
number of (off-surface) coordinates. Hereafter, we refer to 𝒮i as the filtered set of SDF
observations. To determine the optimal value for γ a line search was performed for
γ ∈ {1, 2, 5, 10, 15}. Trading off between computation time and model performance (in
terms of overlap measure and surface distance), γ was set to 2 in all experiments.

Furthermore, using the Adam optimizer with a learning rate of 0.001, optimization

3using scipy.ndimage.distance_transform_edt function
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of a latent shape vector was performed for 1,000 iterations minimizing the loss as
specified in Equation 6.4. λ in Equation 6.4 was set to 0.0001. Subsequently, high-
resolution binary volumes and meshes were reconstructed as described in section 6.3.2.
For this, spatial sampling bounds BVi of the high-resolution signed distance volume Vi
(see section 6.3.2) were set to the spatial bounds of the high-resolution reference shape.

RESULTS To perform latent shape optimization, the filtered set of SDF observations 𝒮i
as defined in Equation 6.6 contained on average 7,150 (σ=1,100) pairs of coordinates
and signed distance values. Quantitative evaluation shown in Table 6.2b demonstrates
that high-resolution LV reconstructions can approximate LV end-diastolic volume
more accurately compared with low-resolution reference volumes. Moreover, quantita-
tive results listed in Table 6.2a show that high-resolution LV reconstructions have a
substantially higher overlap in terms of Dice similarity coefficient and lower surface
distance to the high-resolution reference surfaces compared with low-resolution ref-
erence volumes. These results indicate improved accuracy and completeness of the
high-resolution reconstructions compared with the reference low-resolution volumes.

In addition, qualitative evaluation of the approach shown in Figure 6.5 reveals that
high-resolution reconstruction of low-resolution CMRI LV segmentations results in
plausible and smooth LV surfaces. Furthermore, surfaces of the high-resolution LV
reconstructions follow the surfaces of high-resolution reference LV shapes more closely
compared with low-resolution reference shapes. Moreover, the results demonstrate that
LV shapes with missing apical and basal slices can be completed using the proposed
approach. Finally, qualitative comparison depicted in Figure 6.5 also illustrates that
reconstruction performance of the approach is affected by low-resolution reference
segmentations with severe inter-slice misalignment. Furthermore, one can observe in
Figure 6.5 that reconstructed LV shapes do not contain the complete LV outflow tract.
This could be surprising because the model was trained on high-resolution CCTA LV
reference segmentations that do contain the LV outflow tract (see Figure 6.2). However,
the spatial sampling bounds (see section 6.3.2) of the high-resolution reconstruction
were set to the spatial bounds of the high-resolution CMRI LV reference shape. CMRI
LV shapes typically only include a small part of the LV outflow tract and hence, spatial
bounds between apex and base are smaller compared with LV shapes in CCTA.

6.5.3 High-resolution shape reconstruction using segmentations from the

M&Ms-2 dataset

To demonstrate that our proposed approach can generalize to unseen LV shapes of
patients suffering from a variety of cardiomyopathies, the approach is evaluated using
paired 2D high-resolution 4-chamber long-axis and 3D low-resolution short-axis CMRI
LV segmentations from 360 patients of the M&Ms-2 dataset (section 6.2.3). In clinical
practice, 2D 4-chamber long-axis CMR images (examples shown in first column of
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Figure 6.6: Qualitative comparison between high-resolution (HR) left ventricle (LV) reference seg-

mentation of 4-chamber long-axis view (LAX, first column) with (second column) cross section taken

from 3D high-resolution short-axis (SAX) reconstruction (proposed) and (third column) cross section

taken from 3D low-resolution (LR) SAX LV reference segmentation. Orientation of cross section

matches orientation of 4-chamber LAX view. Each row shows a different patient. Red dots in images

of first column indicate manually drawn landmarks for mitral valve plane. Cross sections (second

and third columns) were clipped if exceeding the mitral valve plane. Best viewed in color.
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Figure 6.6) are routinely acquired together with short-axis CMRIs. To allow evaluation,
cross sections were obtained from 3D low-resolution short-axis LV reference segmen-
tations and 3D high-resolution LV reconstructions using image metadata provided in
the headers of short- and long-axis images. Orientation of cross sections matches the
4-chamber long-axis acquisition plane. Example images are shown in second and third
column of Figure 6.6. Cross sections were then compared with 2D high-resolution
4-chamber long-axis LV reference segmentations (see Figure 6.4b).

EXPERIMENTAL DETAILS To generate 3D high-resolution short-axis LV reconstructions,
first, low-resolution short-axis LV segmentations were aligned to the reference coordi-
nate system using the steps described in section 6.5.2. Second, for each low-resolution
short-axis LV shape, an optimal latent shape vector was determined following the steps
described in section 6.5.2. Third, because the approach was trained using coordinates
in the reference coordinate system, coordinates of the 2D high-resolution long-axis
LV reference segmentations were transformed to the reference coordinate system.
Finally, using the optimal latent shape vector and the transformed 4-chamber long-axis
coordinates, the trained model (section 6.5.1) can be queried to obtain a cross section
from the 3D high-resolution short-axis LV reconstruction matching the orientation of
the long-axis view.

RESULTS Quantitative results presented in Table 6.3 convey that cross sections from 3D
high-resolution short-axis LV reconstructions show improved overlap and reduced sur-
face distance with 2D high-resolution long-axis LV reference segmentations compared
with cross sections from 3D short-axis low-resolution LV reference segmentations. Dif-
ferences between the high-resolution LV reconstructions (proposed) and low-resolution
short-axis LV reference segmentations in terms of Dice similarity coefficient, Haus-
dorff distance, 95th Hausdorff distance and Average symmetric surface distance are
statistically significant (p < 0.001) determined by the one-sided Wilcoxon signed-rank
test. Qualitative results depicted in Figure 6.6 corroborate this finding. Surfaces that
were reconstructed with proposed approach appear smoother than cross sections taken
from 3D short-axis LV reference segmentations. Furthermore, Figure 6.6 illustrates the
potential of the approach to complete missing shape information especially at the apex
and base of the heart. Finally, one can observe that the proposed approach can correct
for limited inter-slice misalignment.

6.6 Additional experiments

To obtain the optimal latent shape vector for a low-resolution CMRI LV segmentation i,
in previous experiments (sections 6.5.2 and 6.5.3), the filtered set of SDF observations 𝒮i
was used (as specified in Equation 6.6). To scrutinize the shape completion capabilities
of the method, additional experiments were performed (section 6.6.1) using sparse
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Table 6.4: Quantitative comparison between high-resolution (HR) 3D CMRI short-axis (SAX) reference

left ventricle (LV) shapes and high-resolution LV reconstructions using corresponding low-resolution

CMRI SAX LV reference segmentations. High-resolution reconstruction was performed using (i) SDF

observations taken from low-resolution reference SAX volumes (# of LR SAX SDF observ.), and (ii) a

combination of (i) and SDF observations taken from two cross sections of 3D high-resolution LV

reference shapes (HR-cross). The evaluation is performed using Dice similarity coefficient (DSC),

Hausdorff distance (HD), 95th percentile Hausdorff distance (HD95), Average symmetric surface

distance (ASSD) and LV end-diastolic volume (LVEDV). Best performance is indicated in (i) blue

bold using only LR reference coordinates, and (ii) black bold using a combination of LR reference

coordinates and coordinates of HR cross sections. Using All SDF observations resulted on average

in 7,150 (σ=1,100) pairs of coordinates and signed distance values. Best viewed in color.

# of LR
SAX SDF
observ.

HR-
cross

Dice↑ HD↓
(mm)

HD95↓
(mm)

ASSD↓
(mm)

LVEDV
(mL)

None ✓
0.92
±0.02

7.88
±2.78

3.81
±0.78

1.58
±0.33

148
±36

100
0.89
±0.03

11.70
±4.39

5.43
±1.92

2.10
±0.64

135
±31

100 ✓
0.89
±0.01

8.60
±2.10

4.79
±0.68

2.00
±0.26

129
±33

1000
0.91
±0.02

8.43
±2.63

3.97
±0.89

1.63
±0.35

147
±36

1000 ✓
0.91
±0.01

8.42
±2.34

4.41
±0.62

1.78
±0.27

135
±33

2000
0.91
±0.02

8.31
±2.70

3.93
±0.90

1.62
±0.36

149
±36

2000 ✓
0.91
±0.02

8.43
±2.62

4.21
±0.67

1.69
±0.28

138
±33

3000
0.92
±0.02

8.00
±2.36

3.86
±0.85

1.60
±0.34

149
±36

3000 ✓
0.91
±0.02

8.53
±2.99

4.07
±0.72

1.65
±0.30

142
±34

4000
0.91
±0.02

8.25
±2.83

3.92
±0.90

1.62
±0.36

149
±36

4000 ✓
0.92
±0.02

8.28
±3.06

3.95
±0.83

1.61
±0.32

144
±34

All
0.92
±0.02

8.29
±3.16

3.90
±0.88

1.61
±0.35

150
±37

All ✓
0.92
±0.02

8.03
±3.05

3.82
±0.81

1.58
±0.33

148
±36

LVEDV reference
146
(±36)
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subsets of 𝒮i. Furthermore, experiments described in section 6.6.2 illustrate how SDF
observations from different cardiac views can be seamlessly integrated. Moreover, the
latter experiments investigate the effect of such an integration on high-resolution re-
construction performance. Other experimental settings in these experiments, including
the evaluation approach (see Figure 6.4 and section 6.4), were identical to experiments
described in previous sections.

6.6.1 Effect of number of SDF observations on reconstruction performance

To investigate the shape completion capabilities of the approach, for each low-resolution
LV segmentation in CMRI, latent shape optimization used different numbers of SDF
observations. For this, random subsets of observations of size K as defined in Equa-
tion 6.4 (K ∈ [100, 4000]) were taken from the set of filtered SDF observations (𝒮i as
defined in Equation 6.6).

Table 6.4 lists results for quantitative comparison between high-resolution reference
and high-resolution reconstructed LV shapes. Reconstruction was performed using
corresponding low-resolution LV reference shapes (see Figure 6.4a). Furthermore,
complementary results listed in Table 6.5 show quantitative comparison between 2D
high-resolution LV reference segmentations in 4-chamber long-axis CMRI with cross
sections taken from 3D high-resolution short-axis LV reconstructions. Orientation
of the short-axis cross section matches the 4-chamber long-axis acquisition plane.
Results of both evaluations convey that reconstruction performance of the approach
improved when more SDF observations were sampled from the low-resolution shapes,
i.e., when K as defined in Equation 6.4 increased. Furthermore, one can notice that
performance, in terms of overlap and surface distance converges when 3,000 SDF
observations were used for the latent shape optimization. Qualitative results depicted
in Figure 6.7 corroborate this finding. This demonstrates the strong LV shape prior
that is encoded in the multi-layer perceptron parameters by training the model on
high-resolution CCTA LV segmentations.

6.6.2 Effect of integrating observations from different cardiac views on

reconstruction performance

Additional experiments were performed to demonstrate the potential of the method
to improve reconstruction performance by seamlessly integrating observations from
different cardiac views. Experimental settings were identical to settings described
in previous section 6.6.1, except that, for each shape, latent shape optimization was
performed with additional SDF observations from different cardiac views.

To perform high-resolution reconstruction experiments using paired high- and
low-resolution short-axis LV reference segmentations in CMRI (Figure 6.4a), SDF
observations taken from low-resolution short-axis LV segmentations in CMRI were
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combined with SDF observations taken from two orthogonal cross sections of 3D high-
resolution short-axis LV reference segmentations (example depicted in Figure 6.8a).
To find the nearest latent shape representation, for each low-resolution LV shape, the
combined set of SDF observations is used. Subsequently, high-resolution LV shapes
were reconstructed using the steps described in sections 6.3.2 and 6.5.2).

Quantitative comparison between high-resolution reference and reconstructed LV
shapes listed in Table 6.4 shows that reconstruction performance is superior when
using only SDF observations of the high-resolution cross sections. The latter contain
on average 450 SDF observations. The result illustrates the positive effect of SDF
observations in through-plane direction on high-resolution reconstruction performance.
Furthermore, one can observe that performance drops substantially if only a 100 SDF
observations from the low-resolution short-axis view were included. Nevertheless,
reconstruction performance of the approach recovers when an increasing number of
SDF observations from the low-resolution short-axis LV segmentations were included.

A similar experiment was performed for high-resolution reconstruction using paired
high- and low-resolution 4-chamber long-axis CMRI segmentation slices (Figure 6.4b).
For this, SDF observations taken from low-resolution short-axis LV segmentations in
CMRI were combined with SDF observations taken from 2D high-resolution 4-chamber
long-axis LV reference segmentations (example shown in Figure 6.8b). Since coordinates
of all LV segmentations in CMRI were already aligned with the reference coordinate
system (see section 6.3.2), SDF observations of the different cardiac views could be
combined without additional effort. Using the combined set of SDF observations high-
resolution LV shapes were reconstructed using the steps described in sections 6.3.2
and 6.5.2. To allow evaluation, cross sections were taken from 3D high-resolution LV
reconstructions matching the 4-chamber long-axis acquisition plane (see Figure 6.4b).

Quantitative comparison between 2D high-resolution 4-chamber long-axis LV
reference segmentations and cross sections obtained from 3D high-resolution short-axis
LV reconstructions listed in Table 6.5 are in linewith previous results, i.e., reconstruction
performance is superior when using only SDF observations of the high-resolution 4-
chamber long-axis LV reference segmentations (on average 360 SDF observations).
Furthermore, performance decreases as more SDF observations of the low-resolution
short-axis view were included. Results listed in Tables 6.4 and 6.5 also reveal that for
the same number of low-resolution short-axis LV observations performance increases
if latent optimization included additional SDF observations taken from different cardiac
views. However, the effect softens with increased number of SDF observations taken
from the low-resolution short-axis LV segmentation.

6.7 Comparison with other work

Closest to our work are previously developed high-resolution reconstruction methods
for anisotropic CMRI bi-ventricular segmentations by Wang et al.20 and Beetz et al.19,21
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Table 6.5: Evaluation of shape completion performance in terms of Dice similarity coefficient (DSC),

Hausdorff distance (HD), 95th percentile HD (HD95) and Average symmetric surface distance (ASSD)

(mean±standard deviation) using paired 2D high-resolution (HR) 4-chamber long-axis (LAX) left

ventricle (LV) reference segmentations and cross sections taken from 3D high-resolution short-axis

(SAX) LV reconstructions (proposed). High-resolution reconstruction of SAX LV shape is performed

using (i) SDF observations taken from low-resolution (LR) SAX LV reference segmentations (# of

LR SAX SDF observ.), and (ii) a combination of (i) and SDF observations from HR LAX LV reference

segmentations in CMRI (include HR LAX observ.). Using All SDF observations resulted on average in

6,900 (σ=2,200) pairs of coordinates and signed distance values. Best performance is indicated in

blue bold (LR reference coordinates only) and black bold. Best viewed in color.

# of LR
SAX SDF
observ.

include
HR LAX
observ.

DSC↑ HD↓
(mm)

HD95↓
(mm)

ASSD↓
(mm)

None ✓
0.96
±0.03

5.37
±5.83

3.41
±3.99

1.16
±0.69

100
0.90
±0.05

9.88
±4.20

7.84
±3.49

3.25
±1.55

100 ✓
0.96
±0.04

5.71
±5.31

3.93
±3.76

1.35
±0.96

1000
0.91
±0.05

8.42
±4.16

6.65
±3.48

2.83
±1.59

1000 ✓
0.94
±0.05

7.00
±4.53

5.30
±3.70

1.99
±1.52

2000
0.91
±0.05

8.09
±3.78

6.45
±3.27

2.77
±1.57

2000 ✓
0.93
±0.05

7.47
±4.42

5.76
±3.58

2.28
±1.59

3000
0.91
±0.05

8.08
±3.74

6.46
±3.29

2.77
±1.58

3000 ✓
0.92
±0.05

7.56
±4.04

5.98
±3.50

2.45
±1.59

4000
0.91
±0.05

8.24
±4.06

6.53
±3.51

2.78
±1.57

4000 ✓
0.92
±0.05

7.79
±4.10

6.10
±3.44

2.53
±1.58

All
0.91
±0.05

8.16
±4.04

6.53
±3.50

2.78
±1.57

All ✓
0.92
±0.05

7.99
±4.28

6.32
±3.63

2.63
±1.57
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Number of SDF observations

100 2, 000 4, 000

Figure 6.7: Three examples (columns one to three) of high-resolution left ventricle (LV) reconstruction

(proposed) using three ({100, 2000, 4000}) different number of SDF observations taken from the

same low-resolution LV reference segmentation (UKDHP dataset, section 6.2.2). First row depicts

SDF observations taken from low-resolution LV reference shape (green) and high-resolution LV

reconstruction (yellow). Second row shows comparison between reference high-resolution LV

shape (blue) and high-resolution LV reconstruction (yellow, same as in first row) using our proposed

approach. Best viewed in color.

Table 6.6: Indirect comparison of proposed method with high-resolution reconstruction approach

by Wang et al.20 Results were directly taken from Wang et al.,20 Table 3. The evaluation in Wang et

al.20 using CMRI segmentations of the UK Biobank dataset was identical to ours on the M&Ms-2

dataset (see Figure 6.4b). Dice similarity coefficient (DSC) specifies overlap between high-resolution

2D CMRI 4-chamber long-axis (LAX) left ventricle (LV) reference segmentation and cross section

taken from high-resolution 3D short-axis (SAX) LV reconstruction. In addition, both approaches

were evaluated using a combination of short- and long-axis segmentations for the reconstruction

task (include LAX column).

Method Test set DSC include LAX

ours M&Ms-2 0.91±0.05
0.96±0.04 ✓

Wang et al. (2021)20 UK Biobank 0.91±0.08
0.92±0.05 ✓
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Table 6.7: Indirect comparison of proposed method with bi-ventricular high-resolution reconstruc-

tion approaches by Beetz et al.21 Results were taken from Beetz et al.,21 Table 3. The evaluation in

Beetz et al.21 on CMRI segmentations of the UK Biobank was identical to ours on the UKDHP dataset

(see Figure 6.4a). Left ventricle (LV) end-diastolic volume (LVEDV) was computed for reference LV

shapes (reference) and high-resolution LV reconstructions (recon.). Furthermore, Beetz et al.21

report LVEDV separately for females and males. Values indicate mean±standard deviation.

Method Test set
Reference
LVEDV
(mL)

Recon.
LVEDV
(mL)

Remark

ours UKDHP 146±36 150±37
Beetz et al. (2022)21 UK Biobank 124±21 129±21 Female

166±32 166±38 Male

(see section 6.1). The approach described inWang et al.20 was trained on high-resolution
CMRI bi-ventricular reference segmentations of the UKDHP dataset. The evaluation
procedure described in Wang et al.20 was identical to our experimental evaluation
depicted in Figure 6.4b, section 6.5.3. Therefore, high-resolution reconstruction results
of our proposed approach listed in Table 6.3 can be indirectly compared with results
reported by Wang et al.20 using anisotropic CMRI segmentations of the UK Biobank
dataset36 (original work Table 3). Results of the indirect comparison listed in Table 6.6
reveal that performance of the method proposed in Wang et al.20 is comparable to ours
in terms of overlap measure. During testing, both approaches can combine information
from multiple cardiac views to find an optimal latent shape vector. Results listed in
Table 6.6 show that our approach clearly outperforms the approach by Wang et al.20

when high-resolution CMRI LV long-axis segmentations were incorporated in the
reconstruction task. Furthermore, one should note that compared with the M&Ms-2
dataset, subjects in the UK Biobank dataset represent mainly healthy subjects and
therefore, one might expect that cardiac shape variability is larger in the M&Ms-2
dataset compared with cardiac shapes of the UK Biobank dataset.

In addition, quantitative results listed in Table 6.7 show an indirect performance
comparison between our method and the approach of Beetz et al.21 While the latter
approach was trained on synthetic data using the statistical shape model dataset,22 high-
resolution reconstruction performance of the method was assessed using anisotropic
CMRI bi-ventricular segmentations of the UK Biobank dataset. These results can be
carefully compared with performance assessment of our method using sparse-view
CMRI LV shapes from the UKDHP dataset (section 6.5.2 and 6.5.2). Hence, quantitative
results in Table 6.7 were taken directly from the work of Beetz et al.,21 Table 3. Because
high-resolution CMRI short-axis reference segmentations are not available in the UK
Biobank dataset, Beetz et al.21 report high-resolution reconstruction performance only
in terms of LV end-diastolic volume. Results in Table 6.7 reveal that high-resolution
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reconstruction performance of our approach is on par with the method described in
Beetz et al.21

It is fair to note that approaches of Wang et al.20 and Beetz et al.21 perform high-
resolution reconstruction for both ventricles and the LV epi-cardial structure. However,
the upsampling factor of the approaches20,21 depends on the resolution of the training
set while our approach performs high-resolution reconstruction using any desired
spatial resolution.

(a) (b)

Figure 6.8: Examples of combining coordinates of low-resolution short-axis left ventricle (LV)

reference shape (orange) with (a) coordinates of two cross sections of high-resolution short-axis

LV reference shape (blue), and (b) surface coordinates of high-resolution 4-chamber long-axis LV

reference shape. Best viewed in color.

6.8 Discussion

To mitigate shortcomings of highly anisotropic short-axis LV segmentations in CMRI,
we proposed a deep learning-based method for high-resolution reconstruction and
completion of LV shapes. Since high-resolution CMR images and segmentations are
impracticable or even impossible to acquire, the approach is trained on high-resolution
CCTA segmentations of the LV. The presented results demonstrate that the method can
exploit properties of high-resolution cardiac segmentations in CCTA to infer missing
shape information and improve spatial resolution of typically incomplete low-resolution
segmentations in short-axis cardiac MRI.

Evaluation of the proposed approach on two publicly available cardiac MRI datasets
revealed that, compared with low-resolution LV volumes, high-resolution LV recon-
structions improved in terms of smoothness and anatomical plausibility. Furthermore,
the results illustrate that the approach can recover missing shape information and
consequently, global cardiac function can be approximated more accurately with recon-
structed high-resolution shapes compared with low-resolution LV reference volumes.
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Therefore, applying the proposed approach to anisotropic short-axis LV segmentations
in CMRI might improve the analysis of cardiac function, morphology and motion. This
could be especially beneficial for assessing cardiac motion in longitudinal direction,
which is currently hampered by the low through-plane resolution of short-axis CMRI.
This direction will be investigated in future work.

Experiments conducted in this work illustrated that our approach can represent
multiple (unseen) LV shapes using a single deep implicit function. Therefore, the rep-
resentation is compact and can reduce the computational cost in simulations of cardiac
electrophysiology and mechanics.3 However, because the auto-decoder approach23

lacks an explicit shape encoder, high-resolution shape reconstruction requires latent
shape optimization during inference. It has been argued that this limits the efficiency
and capability of the approach.37 Nevertheless, we conjecture that, compared with the
low-resolution LV reference segmentations, the improved quality of the high-resolution
reconstructed LV shapes justifies the additional computational effort. In this study,
latent shape optimization took on average seven seconds of GPU processing time (using
1,000 iterations and 2,000 SDF observations).

Furthermore, in contrast to a standard encoder-decoder the chosen auto-decoder
approach23 can handle any form of partial observations such as sparse-view short-axis
LV segmentations in CMRI. This is a major advantage over the auto-encoder frame-
work whose encoder expects a test input similar to the training data.23 However, the
auto-decoder approach lacks an explicit encoder and therefore, it does not have local
shape features at its disposal. Instead, high-resolution reconstruction is performed
by conditioning the model’s output on coordinates and a learned global shape em-
bedding. Therefore, to extract spatial regularities from the shapes’ coordinates, the
approach requires that each shape is represented in a shared reference coordinate
system (section 6.3.3). Consequently, reconstruction of a shape might fail if it cannot
be correctly aligned with the shared reference coordinate frame. For example, our
approach requires that the center of mass of the LV is aligned with the origin of the
reference coordinate system. For incomplete or rare anatomical LV shapes this might
be infeasible. Future work could investigate whether it is feasible to predict affine
transformation parameters that improve shape alignment with the reference coordinate
system, e.g., by adopting a deep implicit template38 or deformed implicit field.39

Quantitative results of the additional experiments listed in Tables 6.4 and 6.5 demon-
strate that our approach can reconstruct a high-resolution LV shape from a sparse-view
input. Determining the optimal latent shape vector with 100 SDF observations, the
deep implicit function can instantiate a complete and plausible short-axis LV shape
(see first column Figure 6.7). This finding illustrates the strong LV shape prior that is
encoded in the multi-layer perceptron. Results presented in Tables 6.4 and 6.5 also show
that excellent high-resolution reconstruction performance can be achieved using sparse
SDF observations originating (i) from two orthogonal 2D high-resolution short-axis
cross sections (Figure 6.8a), and (ii) from the 2D high-resolution 4-chamber long-axis
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segmentations (Figure 6.8b). However, performance starts to decrease when including
SDF observations taken from the low-resolution short-axis LV shapes. On the one
hand such results illustrate that, to achieve high reconstruction performance, samples
in through-plane direction are favourable. On the other hand it demonstrates that
SDF observations taken from the low-resolution LV representations do not accurately
describe the LV in through-plane direction. This is potentially caused by large slice
spacing and motion-induced inter-slice misalignment. Nevertheless, the additional
experiments exemplify the method’s ability to improve reconstruction by seamlessly
integrating SDF observations from different cardiac views.

Although the results presented in this work demonstrate the method’s potential to
correct motion artifacts, Example 2 in Figure 6.5 reveals that severe motion artifacts
hamper model performance. In those cases, high-resolution reconstructions still appear
smooth in through-plane direction, butmight deviate from the high-resolution reference
shapes in terms of morphology and volume. Future work could extend the proposed
training approach by encouraging explicit correction of simulated inter-slice motion
artifacts added to the high-resolution reference CCTA segmentations during training.

Previous work33,40 has argued that deep implicit functions with fixed-length la-
tent shape vectors have a limited capacity to represent complex shapes, e.g., human
shapes. In Figure 6.1 (Examples 1 and 2) one can indeed observe that reconstructed
shapes sometimes appear excessively smoothed. As a result, reconstructions can lack
fine anatomical details that are present in the LV reference segmentations (first col-
umn Figure 6.1). Future work could use local implicit functions and structured latent
codes33,40–43 to potentially improve the performance of implicit representations and
high-resolution reconstructions of cardiac shapes. Furthermore, in this work, a deep
implicit function was used to represent one cardiac structure. Future work could extend
the model to simultaneously predict signed distance values of multiple structures,44

e.g., LV endo- and epicardial structures. Finally, we surmise that our approach is
likely not limited to LV segmentations in CMRI, but can be used for high-resolution
reconstruction of other cardiac chambers and time frames of the cardiac cycle e.g., at
end-diastole, if high-resolution examples are available during training.

To conclude, our proposed method can reconstruct high-resolution short-axis LV
shapes from low-resolution incomplete CMRI segmentations. A single continuous deep
implicit function can encode multiple LV shapes and can interpolate and extrapolate
LV shapes. Finally, using the method for high-resolution reconstruction of anisotropic
CMRI short-axis segmentations has the potential to improve assessment of LV function,
morphology and motion.
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7.1 They are just not that into us

I would like to make a modest attempt, and link the work in chapters 2 and 3 to the
societal discussion about the impact of information technology and digitization on
human life. At the time of writing the Dutch philosopher of law, Maxim Februari,
published an essay1 that describes how especially the raise of artificial intelligence
influences our democratic constitutional state. Februari warns himself and us that
until now we have built machines that do not care about us and points us to the fact
that we do not form a moral community with them (the machines). Hence, if we ask
a neural network to make a decision it will do so without any moral concerns. This
is what the title of this section refers to (with courtesy to Februaris work). In the
same vein, the famous American cultural anthropologist and writer Mary Catherine
Bateson stated2 that until nowwe have not (yet) built one of our most essential elements
of human wisdom into our devices, i.e., humility. I would like to claim that this is
what chapters 2 and 3 in this thesis are about, but I am afraid, that would dishonor
human humility. Nevertheless, I agree with Februari and Bateson and hope that future
efforts succeed in building modest machine learning approaches that augment human
intellect.3 One aspect of modesty, I think, is aiming to know what we do not know
and reasoning carefully if we are uncertain. Therefore, machine learning algorithms
that make predictions should have a notion of uncertainty that can be trusted, i.e., is
calibrated.

Research presented in chapters 2 and 3 made an attempt to increase trustworthiness,
i.e., reliability of automatic cardiac segmentation methods, by exploiting predictive
uncertainties. By separating the obvious uncertainties, e.g., at the borders of the
cardiac structures, from the not-so-obvious uncertainties, we established a human-in-
the-loop, i.e., a semi-automatic approach to increase accuracy of cardiac segmentations
and therefore, accuracy of, e.g., global cardiac functional indices like left and right
ventricular stroke volumes.

Since then, the community was able to develop even more accurate and robust
approaches for automatic biomedical image segmentation.4 However, automatic seg-
mentation followed by manual correction is the common practice in clinical settings.5

To reduce manual effort and make automatic segmentation approaches more reliable,
it is still desired to equip our models with a mechanism to warn us humans when it
(the software) might have failed. A recent benchmark study6 confirmed that CMRI
segmentation uncertainty is correlated with segmentation accuracy and therefore, can
be exploited for segmentation quality control. Furthermore, the authors conclude
that to quantify segmentation uncertainties, currently, Deep Ensembles7 outperform
competing methods.8–14 By hindsight, it might have been valuable and satisfying to
spend more of my PhD time on the development of a human-in-the-loop framework
that enables uncertainty-guided semi-automatic cardiac image segmentation.15 Such
a software product is also very useful when segmentation models are deployed in
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environments that are different from the training environments, i.e., when training and
real-life data originate from different data distributions (out-of-distribution data). Gen-
eralization to out-of-distribution data is a capability natural to humans yet challenging
for machines to reproduce.16 Although, I am convinced, one day, we can trust fully
automatic segmentation algorithms in the same way, we currently rely on anti-lock
braking systems. However, I agree with many other researchers in the community that
we are not so far yet. More training data with a larger variety of cardiac anatomies
and shapes is a well known way forward. Therefore, collecting publicly available
CMRI datasets through e.g., large scale cohort studies17,18 is valuable. In addition,
federated learning approaches19–22 that enable training of our methods on distributed
data without data sharing, is another way to improve robustness and accuracy of any
deep learning based image analysis approach.

7.2 Simplicity sometimes works

In Chapter 4 we applied our previously developed automatic deep learning CMRI
segmentation approach to assess right ventricular (RV) function in subjects suspected
of Arrhythmogenic right ventricular cardiomyopathy (ARVC). We reveal that a fully
automated approach is not good enough because our method struggles to accurately
segment the RV in the most basal slices. Nevertheless, RV function can be accurately
assessed by our method if the automatic segmentation of the most basal slice is replaced
with the corresponding manual reference. Hence, despite our effort in chapters 2 and
3 to develop an uncertainty-guided semi-automatic CMRI segmentation approach,
we show in Chapter 4 that a simple quality control and correction step can achieve
significant segmentation improvement. Furthermore, this result also indicates that
current state-of-the-art CMRI segmentation methods could be used in a clinical setting
if combined with a straightforward manual quality control step. However, based
on our findings from Chapter 4 one cannot conclude that our uncertainty-guided
semi-automatic approach (Chapter 3) is inferior compared with the simple quality
control step i.e., to always manually correct only the last basal slices of the automatic
segmentations. Although, such an approach can be sufficient to assess global cardiac
function, it neglects automatic segmentation errors in mid-ventricular or apical slices
that might hamper assessment of functional and anatomical abnormalities.

7.3 Prerequisites for accurate assessment of cardiac anatomy

and function

Ideally, to accurately assess cardiac anatomy and function, one would like to have high-
resolution 4D cardiac MRI volumes at one’s disposal. Moreover, to enable advanced
morphological and functional assessment of the heart, personalized high-resolution
representation of cardiac anatomy is considered a prerequisite [23, 24]. Unfortunately,
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until now acquisition of high fidelity CMRI volumes with high spatial and temporal
resolution is not yet feasible. Moreover, currently, short-axis CMR scans with high
temporal resolution are often highly anisotropic, lack whole-heart coverage, and suffer
from respiratory motion-induced inter-slice misalignment. Therefore, in Chapter 5 we
developed an unsupervised deep learning method to increase spatial resolution of short-
axis CMR volumes in through-plane direction. Our methodological contribution was
driven by the fact that although clinical practice lacks 3D high-resolution CMRI volumes,
a large amount of anisotropic CMR images is typically produced in daily clinical
workflow. Using the latter images to train our approach, i.e., given the unsupervised
nature of the method, high-resolution training data is not required and hence, the
method can be readily applied in clinical settings. While the method can synthesize
new CMR slices in-between two adjacent slices, the approach cannot infer missing
shape information at the apex or base of the heart, if the acquisition does not include a
slice below the apex or above the base, respectively. Furthermore, synthesized slices
only contain anatomical structures that are present in at least one of the two adjacent
slices and therefore, the model does not hallucinate new content.

Moreover, the approach does not correct for respiratory motion induced inter-
slice misalignment. Although, the method can synthesize semantically meaningful
intermediate slices for CMR volumes with inter-slice misalignment, 3D geometry of
ventricle shapes still exhibits unrealistic deformations. To accurately assess cardiac
anatomy and function, slice alignment is an essential prerequisite because motion
induced inter-slice misalignment (i) hinders CMRI short-axis segmentation using state-
of-the-art 3D convolutional neural networks (CNN), (ii) complicates super-resolution
of short-axis CMRIs, and (iii) hampers accurate registration of cardiac cine MRIs to
assess cardiac motion. Certainly, other researchers have addressed the issue of CMR
slice misalignment.25–28 Nevertheless, they all require additional CMRI LV long-axis
segmentations that are often not available in clinical settings.

To tackle some of the above mentioned shortcomings of our CMRI super-resolution
approach, in Chapter 6, we described a method for high-resolution 3D LV reconstruc-
tion and anatomical shape completion using anisotropic CMRI segmentations. Unlike
the previous approach (Chapter 5) that operates in image space, the latter method
performs super-resolution in shape space. Furthermore, the approach (chapter 6) can
complete anatomical shape information missing in the sparse-view CMRI segmenta-
tions, especially at the apex and base of the heart, and can correct for some of the
motion induced inter-slice misalignment. This is accomplished by training our ap-
proach on high-resolution LV segmentations from cardiac computed tomography (CT)
angiography (CCTA), and hence, exploiting the high-resolution and fast acquisition
of CT. In addition, compared with automatically obtained low-resolution CMRI LV
segmentations, reconstructed high-resolution LV shapes are geometrically smooth and
might be less susceptible to anatomical implausibilities, i.e., topological errors, due to
the strong LV shape prior that was learned during model training. This might be of
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advantage in computational cardiac electrophysiological simulations which require
geometrical smoothness and topological correctness of cardiac shapes.29

7.4 Clinically useful reconstructions of cardiac anatomy

Bi-ventricular shapes obtained from deep learning-based voxel-wise CMRI segmen-
tations often contain anatomical inconsistencies, e.g., fragmented cardiac structures
or holes.30,31 Whilst such automatically obtained bi-ventricular shapes often suffice
to derive volumetric measurements of the structures of interest (e.g., stroke volume),
they might preclude assessment of local functional and anatomical abnormalities.32

Moreover, topological correctness of acquired cardiac shapes are potentially important
for applications like motion and strain analysis33–35 or cardiac electrophysiological sim-
ulation.29 However, topological correctness of automatically obtained cardiac anatomy
from CMRI is typically not evaluated. Instead, performance evaluation of automatic
segmentation and/or high-resolution reconstruction methods predominantly comprises
overlap and surface distance metrics computed between automatically obtained cardiac
shapes and their corresponding references. What follows is not new but reverberates
what has been proclaimed before. To potentially reduce the gap between research and
practical use, it might be beneficial if we, the research community, would sometimes
manage to be less fixated on improving specific metrics. Instead, evaluation approaches
for the aforementioned methods should depend on the requirements of the clinical
task. Finally, sometimes novel promising methods should be granted some space on
the publication podium although, they may not yet surpass current state-of-the-art
approaches.
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Summary

Cardiovascular magnetic resonance (CMR) imaging is the reference modality for mor-
phological and functional assessment of the heart. Typically, obtaining a high-resolution
(HR) image and shape of the cardiac anatomy is crucial for such assessment. Short-
axis CMR imaging, covering the entire left and right ventricles is routinely used to
determine quantitative parameters of both ventricles’ function. For this, manual or
(semi-)automatic segmentation of the left and right endo- and epicardial structures in
short-axis CMR images (CMRI) for at least end-diastole and end-systole is a key task.
Manual segmentation of CMRIs is laborious (≈20 minutes for both time points) and
prone to intra- and inter-observer variability. Moreover, to quantify parameters of
cardiac motion requires segmentation across a complete cardiac cycle, comprising 20
to 40 phases per patient. Due to the required workload, this is practically infeasible
and hence, precludes comprehensive routine analysis. Over the last few years many
state-of-the-art deep learning segmentation approaches for short-axis CMRI have been
developed. For automatic left ventricle segmentation such methods can achieve perfor-
mance level of human experts. However, even the best performing methods generate
anatomically implausible segmentations, mainly, in the most basal and apical slices.
Therefore, existing semi-automated or automated segmentation methods for CMRIs
regularly require (substantial) manual intervention. Furthermore, conventionally, to
acquire stacks of short-axis 3D cine CMR images simultaneous multi-slice 2D cine CMR
imaging is performed under multiple breath-holds. To mitigate the risk for motion
artifacts and to sustain patient comfort fast scanning is often required. As a result,
short-axis CMR scans with high temporal resolution are often highly anisotropic and
suffer from respiratory motion induced inter-slice misalignment (example depicted in
Fig 6.1). Moreover, caused by the low through-plane resolution ranging between 5 and
10mm, short-axis CMR volumes often lack whole-heart coverage predominately at the
apex and base of the heart. These shortcomings may hamper correct assessment of
cardiac anatomy and subsequently hinder accurate analysis of cardiac function. This
thesis presents approaches to tackle the aforementioned challenges.

CHAPTER 2 presents a method for automatic segmentation of cardiac anatomical
structures in cardiac magnetic resonance images (CMRI). The Bayesian dilated convo-
lutional network generates segmentation masks and spatial uncertainty maps for the
input image at hand. Combining segmentations and uncertainty maps, we observed
that image areas indicated as highly uncertain, regarding the obtained segmentation,
almost entirely cover regions of incorrect segmentations. Furthermore, we found
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that a model trained with the soft-Dice loss produces inferior calibrated probabilities
compared to Brier and cross-entropy loss functions.

Based on these findings, in CHAPTER 3 we present an approach that combines auto-
matic CMRI segmentation with detection of image regions containing local segmenta-
tion failures. To predict regions in the automatic segmentation mask that potentially
contain local segmentation failures, a detection network takes a cardiac MR image
together with the corresponding spatial uncertainty map as input. We found that
(simulated) manual correction of detected segmentation failures resulted in increased
segmentation performance.

In CHAPTER 4, we applied our previously developed automatic deep learning CMRI
segmentation approach to assess right ventricular function in subjects suspected of Ar-
rhythmogenic right ventricular cardiomyopathy (ARVC). ARVC is diagnosed according
to the Task Force Criteria (TFC) in which assessment of right ventricular function using
CMRI segmentations plays an important role. We found that automatic segmentation
of CMRIs in combination with correction of the most basal slice results in accurate
CMR TFC classification of subjects suspected of ARVC.

CHAPTER 5 presents an deep learning semantic interpolation approach to increase
through-plane resolution of anisotropic CMR short-axis images. Accurate analysis of
cardiac function using CMRI is typically hampered by low through-plane resolution
of CMR short-axis images. The approach synthesizes new intermediate slices from
encoded low-resolution examples. Evaluation on cardiac, neonatal and adult brain MRI
revealed that the approach outperforms cubic B-spline interpolation in terms of Peak
Signal-to-Noise Ratio and Structural Similarity Index Measure.

CHAPTER 6 describes a deep learning approach to learn a continuous implicit function
representing 3D left ventricle shapes. The model is trained using high-resolution
segmentations from cardiac CT angiography. We found that such a model can be
used to perform high-resolution reconstruction and anatomical shape completion of
anisotropic incomplete cardiac MRI segmentations. Furthermore, the evaluation on
segmentations in CMR short-axis images revealed that the approach can correct motion
artifacts.

Finally, CHAPTER 7 provides a general discussion of the presented approaches and
discusses possible future directions.
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Cardiovasculaire magnetic resonance imaging (CMRI), in het Nederlands soms aan-
geduid met kernspintomografie, is een non-invasieve beeldvormingstechniek die in
de kliniek vaak wordt toegepast indien het vermoeden bestaat dat een patiënt een
aandoening heeft aan de hartspier. In vergelijking met andere modaliteiten beschikt
MRI beeldvorming over een superieure weke-delen contrast. Verder bestaat de moge-
lijkheid om in een enkel onderzoek zowel anatomie als functie te evalueren. Dit heeft
ertoe geleid dat MRI beeldvorming van het hart inmiddels de referentiemodaliteit is
geworden om de morfologie en functie van het hart accuraat te beoordelen. Hiervoor
is delineatie, d.w.z. segmentatie, van linker (LV) en rechter ventrikel (RV) in driedimen-
sionale (3D) CMR beelden een vereiste. Manuele segmentatie van deze structuren is
zeer bewerkelijk en tijdrovend. Bovendien leidt manuele segmentatie tot grote intra-
en inter-waarnemer variabiliteit. Op grond hiervan zijn er in het verleden automati-
sche segmentatie methoden ontwikkeld. De meeste methoden maken daarbij gebruik
van deep learning met zogenaamde convolutionele neurale netwerken (CNN). De best
presterende CNNs voor automatische segmentatie van het linker ventrikel in CMR
beelden bereiken inmiddels het prestatieniveau van menselijke experts. Desalniettemin
produceren dezelfde methoden vaak vormen van hartstructuren die anatomisch gezien
niet plausibel zijn, vooral in de meest basale en apicale segmenten. Daarom vereisen
bestaande (semi-)automatische segmentatiemethoden voor CMR beelden regelmatig
(aanzienlijke) handmatige controle en interventie.

Voor een betrouwbare en accurate diagnose is een hoge spatiële en temporele reso-
lutie van de 3D MR beelden van belang. In de praktijk is het verkrijgen van dergelijke
beelden meestal onmogelijk, voornamelijk, omdat het CMR beeldvormingsproces te
langzaam verloopt. De meest gebruikte scanprotocollen zijn zo opgebouwd dat er een
serie afzonderlijke 2D slices van het hart wordt geacquireerd in verschillende anato-
mische oriëntaties.1 Deze tijdrovende 2D-acquisitietechniek is deels nodig omdat een
3D-acquisitie te veel tijd kost en niet compatibel is met een korte ademstilstand van de
patiënt.1

Als gevolg hiervan zijn CMR beelden hoog anisotroop, d.w.z., de spatiële resolutie
in de richting van de z-as ligt tussen de 5 en 10mm (voorbeeld in Figuur 6.1). Bovendien
worden de linker en rechter ventrikel vaak niet volledig door de beelden afgedekt.
Doordat de patiënt en het hart gedurende de beeldopname kunnen bewegen, vertonen
cardiale korte-as MR beelden regelmatig bewegingsartefacten. Deze tekortkomingen
kunnen een correcte beoordeling van de anatomie en functie van het hart belemmeren.
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Desalniettemin worden deze beelden in de dagelijkse klinische praktijk gebruikt om
meetbare indicatoren van de hartfunctie te bepalen (b.v. het slagvolume en de ejectie
fractie). Dit proefschrift presenteert benaderingen om de bovengenoemde uitdagingen
aan te gaan.

HOOFDSTUK 2 presenteert een methode voor automatische segmentatie van cardi-
ale anatomische structuren in cardiale magnetische resonantiebeelden (CMRI). Het
Bayesian dilated convolutional network genereert segmentatiemaskers en ruimtelijke
onzekerheidskaarten voor het ingevoerde beeld. Door segmentaties en onzekerheids-
kaarten te combineren, hebben wij vastgesteld dat beeldgebieden die als zeer onzeker
zijn aangeduid, met betrekking tot de verkregen segmentatie, bijna volledig gebieden
van onjuiste segmentaties omvatten. Voorts hebben wij vastgesteld dat een model dat
is getraind met de soft-Dice verliesfunctie inferieur gekalibreerde waarschijnlijkheden
oplevert in vergelijking met de Brier en cross-entropy verliesfuncties.

Op basis van deze bevindingen presenteren wij in HOOFDSTUK 3 een benadering die
automatische CMRI segmentatie combineert met detectie van beeld regionen die lokale
segmentatiefouten bevatten. Om regionen in het automatische segmentatiemasker te
voorspellen die mogelijk lokale segmentatiefouten bevatten, neemt een detectienetwerk
een cardiaal MR beeld en bijbehorende ruimtelijke onzekerheidskaart als input. De re-
sultaten hebben aangetoond dat (gesimuleerde) handmatige correctie van gedetecteerde
segmentatiefouten heeft geresulteerd in een betere segmentatieprestatie.

In HOOFDSTUK 4 hebben we onze eerder ontwikkelde automatische deep learning
CMRI segmentatie methode toegepast om de functie van de rechter ventrikel te be-
oordelen bij personen waar het vermoeden bestaat van aritmogene rechter ventrikel
cardiomyopathie (ARVC). ARVC wordt gediagnosticeerd volgens de Task Force Crite-
ria (TFC) waarbij beoordeling van de rechter ventrikel functie met behulp van CMRI
segmentaties een belangrijke rol speelt. De resultaten van ons onderzoek toonden
aan dat voor de CMR TFC classificatie van personen met aanwijzingen voor ARVC,
automatische CMRI segmentatie gebruikt kan worden, indien de meest basale slice
manueel ingetekend wordt.

HOOFDSTUK 5 presenteert een op deep learning gebaseerde semantische interpolatie
methode om de transversale spatiële resolutie van anisotrope cardiale MR beelden te
verhogen. Nauwkeurige analyse van de hartfunctie met behulp van cardiale korte-as
MR beelden wordt doorgaans belemmerd door de lage transversale resolutie van deze
beelden. Demethode genereert nieuwe tussenliggende slices uit gecodeerde beeldenmet
lage resolutie. We hebben de methode op cardiale MR beelden, neonatale en volwassen
MR hersens-scans geëvalueerd. De resultaten tonen aan dat de voorgestelde methode
beter presteert als cubic B-spline interpolatie in termen van Peak Signal-to-Noise Ratio
en Structural Similarity Index Measure.

In HOOFDSTUK 6 beschrijven we een deep learning-benadering die leert om bestaan-
de vormen van de linker hartkamer te representeren en met hoge spatiële resolutie
te reconstrueren. Het model is getraind met behulp van hoge-resolutie segmentaties
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van cardiale computertomografie (CT) angiografie scans. Wij ontdekten dat een der-
gelijk model gebruikt kan worden voor hoge-resolutie reconstructie en anatomische
vormaanvulling van anisotrope onvolledige cardiale MRI segmentaties. Bovendien
bleek uit de evaluatie van segmentaties in cardiale korte-as MR beelden dat de aanpak
bewegingsartefacten kan corrigeren.

Ten slotte geeft HOOFDSTUK 7 een algemene bespreking van de gepresenteerde be-
naderingen en de belangrijkste bevindingen, inclusief beperkingen, mogelijke klinische
toepassingen en toekomstige richtingen.
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