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Abstract 

 

 

Clinical outcomes in focal brain injury reflect the interactions between two distinct 

anatomically distributed patterns: the functional organisation of the brain and the 

structural distribution of injury. The challenge of understanding the functional 

architecture of the brain is familiar; that of understanding the lesion architecture is 

barely acknowledged. Yet, models of the functional consequences of focal injury are 

critically dependent on our knowledge of both.   

The studies described in this thesis seek to show how machine learning-enabled 

high-dimensional multivariate analysis powered by large-scale data can enhance our 

ability to model the relation between focal brain injury and clinical outcomes across 

an array of modelling applications. All studies are conducted on internationally the 

largest available set of MR imaging data of focal brain injury in the context of acute 

stroke (N=1333) and employ kernel machines at the principal modelling architecture.    

First, I examine lesion-deficit prediction, quantifying the ceiling on achievable 

predictive fidelity for high-dimensional and low-dimensional models, demonstrating 

the former to be substantially higher than the latter. Second, I determine the marginal 

value of adding unlabelled imaging data to predictive models within a semi-

supervised framework, quantifying the benefit of assembling unlabelled collections of 

clinical imaging. Third, I compare high- and low-dimensional approaches to 

modelling response to therapy in two contexts: quantifying the effect of treatment at 

the population level (therapeutic inference) and predicting the optimal treatment in an 

individual patient (prescriptive inference). I demonstrate the superiority of the high-

dimensional approach in both settings. 
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Impact Statement 

 

 

Fundamentally, the series of studies carried in this PhD project is to propose a 

high-dimensional multivariate approach methodologically and conceptually so as to 

improve our understanding on focally damaged human brain, including but not 

limited to the contexts of lesion prediction, therapeutic and prescriptive inference. 

The complex distributed structural architecture of human brain lesions is the principal 

reason for adopting this high-dimensional multivariate analysis to revolutionise the 

stereotyped conventional mass-univariate methods. To parameterise the intrinsic 

complexity of brain lesions, we applied machine learning techniques to provide 

feasible solution for the corresponding computational complexity. In this way, the 

inextricably intertwined voxels of brain lesions were modelled as a whole to reveal 

the hidden patterns and interactions that could be responsible to the neurological 

deficits.  

The results derived from the series of experiments dedicated to this PhD 

program showed their impacts in a few aspects. Firstly, they revealed the reality that 

the complexities of the architecture of lesions is comparable to that of the 

macroscopic functional organisation of the brain. Explicitly, to characterise lesion 

architecture with high-dimensional modelling becomes the crucial prerequisite to 

capture the relationships between lesion and outcome not only for clinical prediction 

but functional mapping. This compels us to conclude the conventional studies of 

inferences about human brain lesion-deficit mapping should be re-evaluated with the 

approaches involving the complexity of lesion architecture sufficiently. Secondly, the 

results shown in our therapeutic inference study have substantial implications for 

translational research, providing one remediable explanation for the common failure 

of interventional studies in humans involving agents shown to be effective in simpler 

animals. In other words, by applying machine learning techniques, to model the full 

complexity of human brain with the proposed high-dimensional multivariate approach 

is expected to uncover the treatment effects that would otherwise be missed. We 

hope our methods can be widely used among both researchers and clinicians when 
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they run a clinical trial. Thirdly, our study of prescriptive inference demonstrated the 

complexity of the human brain interacts with the complexity of the pathological 

process determining the intrinsic dimensionality of brain lesions, which would be 

applicable to a wide range of prediction and inference in medical domain to 

contribute to the realm of personalised medicine. 

In the domain of neuroscience, the real value of machine learning is to 

formalise the complex decision, which perfectly matched the intrinsic complexity of 

human brain. Inevitably, we are motivated to apply the state-of-art computational 

techniques combined with a sustainably growing large-scale data set. Thus, we are 

encouraged to apply for further research grants to continuously emphasise and 

amplify the contribution of high-dimensional modelling in understanding of human 

brain. The positive findings from this PhD project will definitely enhance our position 

to do this. Meanwhile, based on the above contexts, our profile is strongly capable to 

establish a wide range of collaborations with both academic and industrial 

organisations nationally and internationally.  
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Chapter 1    Introduction 

 

 

 

1.1 Overview 

One of the major challenges of neuroscience is to identify the macroscopic 

functional architecture of human brain. Our current understanding of the 

relationships between brain anatomy and a specific function or deficit is derived from 

the studies conducted by a variety of techniques over the development of 

neuroscience. Lesion studies, usually referred as lesion-symptom mapping or lesion-

behaviour mapping, represent the first technique, traceable back to the middle of the 

19th century. For much of the history of neuroscience, it has been the most important 

means of localizing brain function by revealing the relation between brain lesions and 

clinical outcomes (Rorden et al., 2007, Timmann et al., 2016). Initially, lesion studies 

relied on post- mortem examination to investigate how the observed behaviours of 

patients could be linked with localised brain damage (Broca, 1861, Wernicke, 1874). 

Later, the invention of non-invasive brain imaging (typically, computed tomography 

(CT) and MRI) technology revolutionised our ability to visualise the human brain, 

facilitating group studies of both patients and control subjects, and significantly 

improving the spatial resolution for analysis (Bates et al., 2003). Nevertheless, in the 

last two or three decades, the dominance of lesion studies has faded owing to the 

emergence of more recent techniques such as transcranial magnetic stimulation 

(TMS) (Barker et al., 1985), transcranial direct current stimulation (tDCS) and 

especially functional and structural magnetic resonance imaging (sMRI and fMRI)  

(Rorden and Karnath, 2004, Rorden et al., 2007, Rorden et al., 2009). I wish to begin 

by evaluating the array of tools now available in order to conclude whether or not 

lesion-symptom mapping still retains its exclusive value for investigating the 

functional anatomy of the brain. Furthermore, I wish to examine whether or not its 

values can be enhanced by a methodologically and conceptually upgraded approach 

to analysis. 
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1.1.1 Transcranial magnetic stimulation and direct current 

stimulation 

Founded on the principles of electromagnetic induction, TMS is a non-

invasive technique widely applied to investigate the functional consequences of focal 

brain disruption. In practice, an electromagnetic coil held over the exterior surface of 

the cranium is discharged with a pulse of current, producing a transient magnetic 

field in the brain, which induces a small current within the tissue itself. As the living 

tissue is electrically conductive, the induced electric field causes the depolarisation 

and hyperpolarisation of the underlying neurons, which transiently disturbs brain 

function (Sack and Linden, 2003, Walsh and Cowey, 2000).  

From a methodological perspective, TMS can be experimentally designed to 

address a wide of range of hypotheses in terms of localisation, timing and functional 

relevance. Multiple trains of repetitively delivered pulses (rTMS) can disrupt activity 

over longer time periods, and has been used to induce plasticity through after-effects 

(Klomjai et al., 2015). As a tool for anatomical inference, the induced focal 

depolarisation and hyperpolarisation during TMS sessions enables within-subject 

comparisons between two functional states, which can increase the inferential power 

dramatically (Mah, 2014b).  

Nonetheless, TMS is constrained in anatomical range, and its effects are 

difficult to interpret. The technical limitation is the depth of penetration and spatial 

accuracy owing to the anatomy of the skull and the greater impedance of grey matter 

compared with white matter. The effects of TMS are consequently restricted to 

superficial cortex and cannot reach the tissue in deep medial and subcortical 

structures (e.g. basal ganglia and thalamus) (Klomjai et al., 2015, Walsh and Cowey, 

2000). Although stimulation could be powered to penetrate subjacent white matter, 

the size of the induced current may result in epileptic seizures or harm to brain tissue 

(Wassermann and Lisanby, 2001). In addition, as the electric field is induced by an 

annulus current beneath the coil, the stimulation is not tightly focal. Hence, spatial 

accuracy will be affected (Ridding and Rothwell, 2007). The difficulty of interpretation 

arises from the transient and ill-defined nature of the disruption, typically confined to 
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a single location, generated in the context of the extremely complex functional 

organisation of the underlying neuronal activity. Diaschisis of functional connectivity, 

for example, potentially allows for multiple interpretations (Ruff et al., 2009, Sack and 

Linden, 2003).  

To counteract these limitations, “oversampling” with multiple stimulations 

applied to overlapping regions may improve spatial accuracy. Multi-site stimulations 

may also extend the spatial range, and to examine the impact of simultaneous and 

synchronous focal deactivation. Nonetheless, the maximum number of concurrent 

stimulations is a practical limitation to the effectiveness of such an approach. 

Temporal resolution is equally important. Multiple neurons will be activated 

simultaneously in the delivery of a TMS pulse, the highest signal-to-noise ratio 

theoretically achieved at the moment of maximal activation. There will likely be non-

linear effects here, disruption potentially giving way to facilitation in a way that varies 

with time. In other words, the exact timing is difficult to control to ensure the best 

signal-to-noise ratio (Walsh and Cowey, 2000). 

Transcranial direct current stimulation (tDCS) is another non-invasive 

technique to interfere with the human brain through an intact scalp. Direct current is 

delivered at low density between two surface electrodes in order to facilitate or inhibit 

neuronal activity (Brunoni et al., 2012). In contrast to TMS, which induces transient 

depolarisation and hyperpolarisation to disrupt the brain, tDCS is a neuro-modulatory 

intervention that modifies neuronal excitability (Nitsche et al., 2008). In particular, 

tDCS can induce antagonistic effects to modulate cortical excitability. This unique 

characteristic, coupled with its low-cost and portability, has made tDCS a common 

tool for exploring neuroplasticity and especially neuropsychiatric disorders (Wagner 

et al., 2007, Brunoni et al., 2012, Nitsche et al., 2002). Nonetheless, it is severely 

limited in its spatial resolution, lacking both focality and accuracy. The electric field 

yielded by tDCS is non-focal and the affected range can cover the whole area 

between the electrodes. Moreover, in order to assure a weak current through the 

scalp and minimise the sensation, the size of electrodes is usually designed to be 

relatively large – typically, approximately 2500 mm2. Although smaller electrodes 

have become available in the recent years, their safety has not been sufficiently 

demonstrated (Priori et al., 2009). Therefore, the use of tDCS for anatomical 
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inference is bound to be associated with poor precision of localisation and highly 

uncertain inference.    

 

1.1.2 Functional and structural neuroimaging 

Functional MRI (Ogawa et al., 1990a) has enabled us to visualise the 

functioning of human brain tissue in response to a variety of tasks, including vascular 

and metabolic reactions (Kropotov, 2016). Technically, blood oxygenation level 

dependent (BOLD) contrast is measured to identify the local changes in brain activity 

that are presumed to drive the vascular changes that generate it. BOLD reflects the 

complex associations and interactions between neuronal activity, oxygen saturation, 

and as well as blood flow and volume. Compared with brain stimulation, fMRI 

provides excellent spatial resolution and accuracy of localised activation (Huettel, 

2017) over the entire extent of the brain.  

Nonetheless, fMRI is limited in its temporal resolution because of the 

properties of task-related BOLD changes and their complex relation to the underlying 

neural physiology (Brunoni et al., 2012). Consequently, neither absolute nor resting 

function derived from the signal change can be confidently interpreted. This is an 

especially important limitation in clinical studies (Kropotov, 2016). For example, a 

functional deficit might be confounded by baseline or other task-unrelated effects. 

Moreover, the BOLD signal is prone to be affected by many factors that cannot be 

captured by the experimental design. Hence, whether or not, or to what extent, the 

BOLD signal can reliably reflect the neuronal activity to function is not easily 

confirmed. 

Crucially, a correlation between neuronal activity and a cognitive function 

does not indicate the activity is critical or even relevant to its performance. A task 

whose execution involves multiple components need not allow us to distinguish 

between the marginal contribution of each. As a result, any anatomical inference will 

be limited because correlation here does not imply causation. The criticality of a 

specific region for a given function can only be established by a unidirectional causal 

relationship between region inactivation and loss of function (Sack and Linden, 2003, 

Mah, 2014a, Raichle, 1998).  
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In fact, the network of activations commonly identified by functional imaging 

during any reasonably ecologically-valid task tends to be so complex as to allow 

multiple possibilities of interpretation. For example, neuronal activity may increase 

not only owing to excitation, but because the region is being deliberately inhibited. 

Moreover, brain mechanisms widely enable competitive interactions between neural 

substrates. A successfully executed function may require on neural substrate to 

overcome the activity of a field of other, competing ones. In addition, incidental or 

epiphenomenal activation of a brain region cannot be excluded. It is possible a 

region is not directly related to a particular function, but is activated by some other 

region that is critical. Activation merely demonstrates a change in neuronal activity, 

and need not disclose its nature (Sack and Linden, 2003). For studying both the 

healthy and the focally injured human brain, functional imaging leaves of room for 

improvement. 

 

1.1.3 Lesion studies 

I have not introduced every available technique exhaustively, but the 

techniques taken into consideration are primary representatives that cover the major 

approaches in the current era. Neither transcranial stimulation nor functional imaging 

can sustain strong claims about the role of a specific brain region for a particular 

function. Each is inherently limited in its spatial accuracy and inferential power. By 

contrast, the loss or impairment of a brain function constitutive of lesion studies is 

theoretically capable of determining that a specific brain region is required by a 

particular function, which is indeed a much stronger assertion. This intrinsic causal 

strength of the lesion approach makes it more powerful than the other tools at our 

disposal.  

Lesion-symptom mapping retains its value as potentially the most powerful 

technique to provide accurate functional localisation in human brain, which is vital to 

model the relationships between anatomical architecture and behavioural expression 

(Lomber, 1999, Rorden and Brett, 2000). Nevertheless, the performance of previous 

lesion studies has been unsatisfactory. One important constraint is the ethical 

impossibility of inducing human brain lesion experimentally, restricting study design 
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and data collection. Another, more important constraint arises from the 

computational difficulties of analysis. Many studies have now shown that the distinct 

spatial distributions of lesions and the underlying functional anatomy are highly 

complex, and their interaction therefore doubly so. The causal relationships between 

focal damage and functional deficit will be determined by their interactions (Glasser 

et al., 2016a, Mah et al., 2014b, Mah et al., 2015, Nachev, 2015, Xu et al., 2017a, Xu 

et al., 2017b, Zhang et al., 2014). In the contemporary clinical domain, a wealth of 

neuroimaging scans and fully digitalised clinical records dramatically alleviate the 

difficulty to acquire a proper sample collection of focally damage human brain. 

Moreover, with the rapid progression of computing technology, computational 

complexity that is used to enforce the two sets of interactions mentioned above to be 

neglected is not an issue any more. Thereby, a crucial question we need to examine 

is how lesion data can be best modelled to reveal the anatomical interactions so as 

to improve lesion-function inference. With regards with the extremely complex 

underlying anatomical structure and high individual variability, a critical pre-requisite 

is the lesion data must be sufficiently parameterised to assure the detectability of the 

anatomical interactions and adequate characterisation of individual differences and 

similarities. To tackle a model including many variables, high-dimensional 

multivariate inferential tools are required.  

I will now proceed to unpack the ideas introduced in the foregoing paragraph, 

in which is justified the inferential approach developed and illustrated in this thesis.   
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1.2 Individuality: a high-dimensional characteristic 

In medicine, research is usually performed in the form of group studies. 

Typically, a cohort of many patients presumed to be more or less homogeneous is 

used to derive inferences about the population as a whole. By contrast, the subject 

of clinical interventions is almost always an individual. A question therefore arises 

here about how to tackle the differences between individuals and the group. 

Conventionally, most differences are treated as noise, tacitly assuming that they are 

either uninformative or too complex to be modellable. But if we treat individuals 

merely as accidental deviants from some kind of group mean, we naturally lose the 

information that defines their individuality. Consequently, any intervention will be 

optimal not for the individual but for a non-existent ideal average of the group. Figure 

1.1 illustrates this point with an analogy to a part of the body whose information 

structure we are intuitively familiar: the face.  
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Figure 1.1 Absence of individuality 

The face on the top was averaged from a plausibly homogenous group. The faces on the bottom line illustrated 
an individual from ‘healthy’ to ‘ill’ and how his face would be distorted after treatment with the crude group 

mean. 

If we are to model individuality successfully, we need to understand how it is 

biologically constituted. Examined at a clinically-material scale, individuals vary a 

great deal even across what might be thought of as highly homogeneous groups, 

such as, for example, a set of male patients over 60 with stroke-induced aphasia. 

This variability arises from the fundamental nature of biology.  First, the development 

of the human brain, along with the rest of the body, is guided by genetic plans 

deliberately shuffled at each generation, injecting diversity at the very point of 

conception. Second, the disparity between the maximal information content of the 

genome and the minimal plausible information content of the body is so great that 

much of the biology of an individual will have been dictated by environmental factors 

as variable as the world that surrounds us (Bartley et al., 1997, Baaré et al., 2001, 

Peper et al., 2007, Pol et al., 2006, Wright et al., 2002, Thompson et al., 2002, 

Thompson et al., 2001). It is implausible that this complexity should be purely 

accidental, and if it is not accidental, a high-dimensional parameterisation is 

necessary to apprehend it at the individual level. 

The characteristics of the human face can be used as an illustration here. 

Generally, it is hardly possible to recognise an individual’s face from the bland 

average of any collection of faces. In other words, a simple comparison of the 

difference between an individual face and any crude averaged face is rarely 

informative. Figure 1.2 illustrates how an individual face fails to be captured by the 

group mean or a single variable (the intraocular distance), no matter how great its 

precision of measurement. Far better individuation can be achieved by modelling a 

pixelated version of face with many more, even if less precise, parameters. 

Admittedly, in certain circumstances, an individual face may have a simple 

idiosyncratic feature, such as a scar, that could be captured by a univariate measure. 

But such circumstances will be exceptional. Analogically, to identify the individuality 

of a human brain we need to capture the underlying complex high-dimensional 

patterns as well. Human brains are high-dimensional constitutively: each individual 
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brain represents a solution to the problem of creating a working brain, and no 

solution need me identical with any other. 

The approach widely pursued in clinical research is to look for small sets of 

measures— “biomarkers”—rather than to construct high-dimensional models that 

involve all or many features. In a high-dimensional model, the inference will not only 

benefit from the entire set of features, but further information can be obtained from 

the interactions between them. Crucially, features that are uninformative in isolation 

may be powerfully illuminating in combination. 

 

Figure 1.2 Reproduction of individual face 

Conventionally, the analysis is highly relied on group mean. The difference between individuals and group 
mean is thus treated as noise. However, the presentation of human face apparently includes numerous 

features and can’t be described with any crude measurement though the measure is in extreme precision. To 
reproduce an individual face, sufficient parameterisation is inevitable, hence, high-dimensional analysis.  
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The importance, indeed the necessity, of modelling individuality within high-

dimensional models is already obvious in the existing literature. One of the 

remarkable instances is in the field of translational medicine. Many of the positive 

interventional results observed in animal experiments have not been replicated in 

human studies (Brodie, 1962, Wang and Johnson, 2008, Bracken, 2009, Jucker, 

2010), or found to be substantially less effective (Cummings et al., 2014, Sabbagh et 

al., 2013, Li et al., 2013, M Wilcock, 2010, Geerts, 2009). In the domain of 

biomedical research, audits have shown that only 8% of translational studies 

successfully pass Phase I. Although many factors are bound to contribute to this 

limited success rate—including molecular and physiological differences between 

man and experimental animals—the observed failure of translation may also be 

caused by insufficiently rich modelling of the underlying biology. A few studies have 

suggested the poor reproducibility of rodent research arises from insufficient 

similarity with human disease settings (Xu and Pan, 2013, Mak et al., 2014, Perel et 

al., 2007), but the importance of adequate model capacity has been widely 

neglected. It is plausible to expect that the discrepancy between animal and human 

studies could be ameliorated if the analysis is sufficiently high-dimensional. Precision 

medicine, involving individually tailored strategies of diagnosis, prognosis and 

therapy for each single patient is increasingly fashionable (Collins and Varmus, 

2015, Mirnezami et al., 2012, Katsios and Roukos, 2010, Hamburg and Collins, 

2010), but there is little recognition of the inevitable mathematical implications of the 

approach. The desire nonetheless reflects an awareness of the complexity arising 

from individuality and diversity, and the need to adopt novel approaches to 

understanding the disease and customizing individual interventions.  

Over the history of neurology, one of the major obstacles to better 

understanding of brain mechanisms has been the complex and non-linear 

relationships between brain lesions and clinical outcomes. What I have said about 

the brain in general applies here with special force. The set of questions I would like 

to examine in this thesis agglomerate around the use of high-dimensional modelling 

for lesion-function inference. 
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1.3 Large-scale studies of the focally damaged human 

brain 

Conceptually and methodologically, high-dimensional models are needed to 

characterise individuality with the precision needed to obtain optimal diagnosis and 

prognosis in the focally damaged human brain. To model high dimensionality, we 

need sufficient samples to cover the diversity of possible anatomical and 

pathological variations. Simply put, a highly parameterised model requires a 

commensurately large sample size. In this section, I shall enumerate the detailed 

reasons for large-scale data in this context, and what its characteristics should be; 

then, how to establish a large-scale dataset in the clinical domain and how to make 

its growth sustainable, not only for a specific research projects but a diversity of 

possible studies; lastly, what the challenges of managing a large-scale dataset 

containing sensitive clinical information are. 

 

1.3.1 The rationale for “big data” 

High-dimensional modelling and a large-scale data are indispensable and 

complementary. At the population level, the full diversity of complex patterns must be 

adequately sampled to characterise individuality. The more complex the patterns, the 

larger the necessary datasets.  

We have proposed a novel approach to parameterizing the human brain with 

much greater richness than conventional approaches. For example, the most widely 

used approach—statistical parametric mapping (Friston et al., 1994, Ashburner and 

Friston, 2005)—models the brain with a very limited number of parameters, 

emphasizing regional specificity, and assuming an inherent smoothness of 

anatomical organisation. Under this assumption, simple univariate statistics, 

performed voxel-wise in a mass-univariate manner, are adequate for group inference 

(Friston et al., 1994). We have seen the observed complexity of the human brain, 

both functionally and anatomically, does not easily justify this assumption, though the 

exact level of complexity we must deal with is yet to be determined. To decipher this 

unknown complexity compels us to gather as wide an array of data samples as 
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possible. Surveying large scale data can reveal clusters of relatively homogeneous 

instances, accessible to nearest neighbour modelling techniques that characterise 

each instance in relation to the centroid of its local neighbourhood rather than the 

group mean. The aim of such analysis—critically distinguishing it from other kinds of 

“big data” research, e.g. epidemiological research—is to use scale for better 

individuation rather than to power small effects into statistical significance. It requires 

us to collect not a fixed number of data samples, estimated from some kind of power 

calculation, but as much data as possibly can, for the number of clusters defining 

each individually informative centroid will generally be unknown. 

If high-dimensional multi-parameter modelling is indeed necessary, we need 

to devise a solution for deal with the difficulty of high dimensionality. Generally, we 

may classify data into three categories by the number of samples (N) and 

dimensions (P): large N and small P; small N and large P; large N and large P (Lee 

and Yoon, 2017). Datasets with large N and small P tend to be tractable with 

classical statistical methods, at least with respect to simple properties of the data. 

Datasets with large P and small N are much harder to analyse, suffering from what is 

commonly described as the curse of dimensionality (Nasrabadi, 2007, Sinha et al., 

2009, Lee and Yoon, 2017, Verleysen and François, 2005, Indyk and Motwani, 1998, 

Chen, 2009, Bellman, 2015). This is elegantly illustrated in the analysis presented in 

Figure 1.3. Random samples of synthetic data in the range -0.5 to 0.5 were drawn, 

divided into two equal groups of 1000 samples, with dimensionality varying from 1 to 

1000. (https://www.biorankings.com/tech-reports/High-Dimensional_Data.pdf). The 

higher the dimensionality, the easier it was to separate the two samples, both from 

each other and from the origin, despite the fact that they are drawn from the same 

distribution centred on the origin. In short, with complex models the curse of 

dimensionality causes overfitting: learning of random patterns of the data with no 

plausible generalisation. The best protection against this problem is the acquisition of 

datasets in form of large P and large N: the larger the N, the better. 

https://www.biorankings.com/tech-reports/High-Dimensional_Data.pdf
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Figure 1.3 The difficulties of high-dimensional data 

1000 data points in range of -0.5 and 0.5 were randomly generated for 100 iterations, 10th percentile was 
shown within the solid reference lines and 90% points were expected outside of it (left). The higher 

dimensions the data set had; the more complexity induced. The distance between samples and the distance 
from centre were both enlarged, which meant data points became more distributive and harder to tackle 

(right – upper left and right). With the increasing dimensions, the higher prediction rate indicated the wrong 
results induced due to complexity, and decreasing distance between maximum and minimum data points 

revealed they tended to be more difficult to be distinguished between each other (right – low left and right). 
The figures was sourced form: https://www.biorankings.com/tech-reports/High-Dimensional_Data.pdf. 

 

1.3.2 Obtain large-scale data 

To obtain large-scale data samples, we must first define the space of possible 

data sources. In the realm of human brain imaging, two general routes are open. The 

first and commonest route is to create a dedicated, externally-funded research 

project to collect and manage the data. Examples over the past decade include UK 

Biobank (http://www.ukbiobank.ac.uk/); the Human Connectome Project 

(http://www.humanconnectomeproject.org/) and the Human Brain Project 

(https://www.humanbrainproject.eu/en/). The number of human brain initiatives that 

generate neuroimaging associated with behavioural phenotype on various 

populations is rapidly rising. A non-exhaustive list includes Alzheimer’s Disease 

Neuroimaging Initiative (http://www.adni-info.org/); the Thousand Functional 

Connectomes project and International Neuroimaging Data-sharing Initiative 

(http://fcon_1000.projects.nitrc.org/); the IMAGEN study of teenagers and mental 

health (http://www.imagen-europe.com); the AGES Reykjavik Study of Healthy Aging 

(http://www.hjarta.is/english/ages); and the Rotterdam study of aging 

(http://www.epib.nl/research/ergo.htm) (Van Essen et al., 2012). Predicated on large-

https://www.biorankings.com/tech-reports/High-Dimensional_Data.pdf
http://www.ukbiobank.ac.uk/
http://www.humanconnectomeproject.org/
https://www.humanbrainproject.eu/en/
http://www.adni-info.org/
http://fcon_1000.projects.nitrc.org/
http://www.imagen-europe.com/
http://www.hjarta.is/english/ages
http://www.epib.nl/research/ergo.htm
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scale financial support, such projects generally necessitate long-term planning and 

cooperation between many partners, accruing data over relatively long time-scales. 

This approach has the advantage of ensuring quality, homogeneity and 

completeness of the data, and the instruments and protocols used to acquire it. But 

there are disadvantages arising from the—typically high—cost, the length of time it 

takes to collect the data, and the organisational complexity of the necessary 

infrastructure. Where the data is sensitive, as tends to be true of brain imaging, the 

infrastructure is further complicated by security considerations which academic 

institutions are generally not optimally equipped to deal with. But perhaps the 

greatest problem is data selectivity. Obviously only data from those capable and 

willing to participate can be collected. This naturally excludes, or at least severely 

sub-samples, those incapacitated by disease, including many conditions of great 

interest to the neuroscience researcher. 

An alternative approach is to make better use of data collected routinely for 

other purposes: in the context of our interest, clinical neuroimaging and 

corresponding clinical records. The volume of such routine clinical data is 

considerable if we can collect data retrospectively, enabling large datasets within 

relatively short time scales, and also continuous, as clinical activity naturally persists 

indefinitely. This approach then potentially yields large and securely growing 

datasets. Moreover, selection bias in the data is now introduced mostly by pathology, 

for a patient will generally not exercise the choice not to be treated. Crucially, 

drawing data from the clinical stream affords access to dynamic clinical contexts—

such as acute focal brain injury—that leave little if any logistical space for research-

specific investigation, and renders large-scale collections achievable at much lower 

cost, held within the secure digital environment of a hospital. 

This approach is nonetheless far from easy to implement. Access to sensitive 

clinical data is administratively and technically complex, difficult to justify to the 

source—the hospital—on scientific grounds alone. Dual-use installations of joint 

operational value to the hospital are a solution, but it is one yet to be tested at scale. 

Regarding to the data themselves, challenges arise from two aspects. The 

first is data integration. Data in clinical practice tends to be instrumentally 

heterogeneous, in the imaging domain derived from a mix of scanners employing a 
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wide range of sequence types and acquisition parameters. The resultant variability 

complicates data aggregation, especially when it is non-random, biased by the 

clinical context. The second aspect concerns the administration and management of 

clinical data. Novel solutions for data retrieval, storage, and management are 

required. How to overcome these challenges and manage a large-scale clinical data 

warehouse is what this thesis in part seeks to determine.  

 

1.3.3 The characteristics of large-scale data 

Nowadays, big data is ubiquitous. Since the term big data was introduced, 

sometime in the late 1980s, infrastructural and analytic techniques have dramatically 

improved. Over the past decade in particular, mobile and wearable devices 

combined with commodity digital networks have vastly expanded the volumes of 

available data. Correspondingly, frameworks and algorithms have emerged to exploit 

the value inherent in large-scale data. 

A widely-quoted description of big data was originally introduced by Gartner: 

high volume, high velocity, and high variety – Three Vs for short (Laney, 2001). 

Later, veracity was added as an additional characteristic to form a Four Vs model 

(Beyer and Laney, 2012); then, value and variability were appended to form a Six Vs 

model (Gandomi and Haider, 2015). These dimensions capture the essential 

features of big data. Yet, it is notable that they are associated and complementary 

rather than independent of each other (Gandomi and Haider, 2015). All the attributes 

are equally important to form a valuable dataset.  

Besides these global attributes of a large scale dataset, medical big data has 

some additional distinctive features (Lee and Yoon, 2017). First, volumes in 

medicine are usually smaller and more variable in size than in other fields. For 

instance, datasets in epidemiology are usually much larger than those in neurology. 

The factors that limit the volume of a dataset in medicine are generally as follows: 

safety, expense and discomfort. To be specific, the context of safety in medical 

environment, particularly, in clinical domain, requires all the activities to be supported 

by a clinical need. Clinical data often involves expensive equipment and running 

costs. If the data is generated for clinical trials, the involvement of personnel is costly 
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as well. Where an investigation causes the patient discomfort or presents a risk the 

volume of data derived from it will naturally be lower. Second, the high variety of data 

sources in medicine tend to make datasets extremely complex. For example, 

relevant data may include administrative records, clinical registries, patient recorded 

summary by physicians, imaging sessions, imaging reports by radiologist, biomarker 

data, genetic data, clinical trials and so on. It requires sophisticated management to 

match and link the variety of individual data efficiently, securely and precisely. Third, 

the sensitivity of clinical data imposes a requirement for secure storage and 

considerate usage. Sharing between hospitals and other institutions is typically 

difficult. Finally, clinical data is usually acquired and collated by inflexible, clinically-

determined protocols. On one side, it is helpful to have the data in relatively 

structured formats; on the other, as clinical data is not reproducible in some 

situations, the certainty and validity of dataset can be affected by measurement 

errors or errors of inputting wrong codes (Lee and Yoon, 2017). 

To draw benefit from high-dimensional modelling of large-scale datasets we 

need to solve an array of challenges. These span data collection and retrieval, 

storage, processing, an analysis (Wang and Krishnan, 2014).  

A large-scale clinical database needs to be cost-effective, but it also needs to 

be stable and efficient. For instance, in terms of data collection and retrieval, data 

security and automation are high priorities. But also supremely important is 

minimizing the risk of disruption to clinical systems, avoiding data flow congestion 

and conflicts. In terms of data storage, we must consider security, access and 

sustainable extension. We also need a framework combining disparate types of data 

as necessitated by research objectives. Additionally, flexibility and extensibility are 

key to establishing and maintaining a scalable framework.  

To be more specific, technically, the database needs to be supported by file 

server and backup server with sufficient storage and reliability. All communication 

should be limited to a secure intranet to ensure high security. For data retrieval, an 

automated pipeline must be built to access the clinical data stream safely and 

robustly. Once acquired, the data must be reorganised and integrated to form a 

comprehensive record for each patient. Meanwhile, the resources in clinical 
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environment are extremely competitive. Such a system must operate without 

disturbing information flows necessary for clinical service delivery and maintenance.  

In short, this is a complex task, requiring substantial human and technical 

resource. But it is a necessary task: the next question is how to maximise the value 

of the collated data. 

Data itself is nothing if it is locked in a vacuum. It acquires value only when we 

extract intelligence from it, conditionally on the power of the methods we use. 

Conventional studies select small samples from the population and compare them 

within models with small numbers of parameters to examine a particular hypothesis, 

relying on simplicity to generalise to the entire population  (Gandomi and Haider, 

2015). Our interest here is not in such simple models, but the much more complex 

modelling large scale data potentially enables. Let us now consider what this entails. 

 

1.3.4 The challenge of a large-scale, multi-site, cross-sessional 

imaging studies 

The heterogeneity of clinical data is a product of the biological heterogeneity 

of the clinical population and the instrumental heterogeneity of data acquisition 

systems (Van Essen et al., 2012). In conventional research imaging studies, data 

tends to be collected on the same scanner, with a set of standardised acquisition 

parameters, ensuring consistency and reproducibility. Participants are specifically 

chosen, matched to the required demographic and clinical variables. In a real-life 

clinical environment, however, population characteristics will be widely distributed 

and outside the researcher’s control, introducing potentially great variability. A variety 

of scanner manufacturers, field strengths, and sequence characteristics are likely to 

have been used, especially when a dataset has accrued over a long period of time, 

introducing a great deal of instrumental variability. Even for a single scanner, the 

replacement of hardware components and software upgrades may alter the 

characteristics of the acquired image (Focke et al., 2011). 

The impact of using instrumentally heterogeneous MR data has been 

previously explored (Han et al., 2006, Jovicich et al., 2009, Joshi et al., 2009, Chen 
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et al., 2014, Rohrer et al., 2005), including comparison of the differences between 

inter-scanner and intra-scanner MRI sessions (Focke et al., 2011, Pardoe et al., 

2008, Jovicich et al., 2013). In one study, a group of old participants (mean age 

69.5), and two younger groups (mean age 34 and 36.6), were multiply scanned, both 

on the same scanner and across different scanners and field strengths. Regional 

volumes, such as hippocampal, thalamic and lateral ventricular volumes scanned by 

the same scanner on different days varied by less than 4.3% and 2.3% on older and 

younger groups, and comparable results were obtained across scanners (Jovicich et 

al., 2009). A similar study sought to identify the variability of cortical thickness with 

the manufacturer, field strength, and sequence characteristics of the image. The 

results showed within-scanner acquisitions to be negligibly variable; across scanners 

and field strengths, however, a slight bias was observed, reflected in thicker 

estimated cortex on 3 T scans. The impact by different acquisition sequences was 

larger; neither effects can be ignored in the design and analysis of cross-platform 

and longitudinal studies (Han et al., 2006). 

Besides identifying the impact of multi-site and different acquisition 

parameters on anatomical quantification, studies have also suggested methods for 

correcting instrumental variability and otherwise mitigating its effects. One study 

showed the variability of phantom data could be reduced by 20% - 50% with high 

frequency correction and 20% - 25% with low frequency correction (Joshi et al., 

2009). Another showed magnetic field strength, pulse sequence and radio-frequency 

receiving coil resulted in significant effects on variability and suggested a source-

based morphometry model was effective to reduce the effects in some certain on 

multi-sites (Chen et al., 2014). 

While such corrections may help, they cannot resolve the problem 

fundamentally, especially where scanner and biological variability are co-linear: any 

correction will consume both instrumental and biological variance. In voxel-based 

morphometry, for example, it is widely recommended to analyse data acquired on a 

single scanner with a specific sequence, even though multi-site studies will help to 

form a larger dataset and enhance statistic power (Focke et al., 2011, Pardoe et al., 

2008). Voxel-based morphometry is a voxel-wised mass-univariate method, in which 

the voxel-wised comparison is limited by the variation of scan sessions derived from 
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multi-site. This inspires us to seek a novel approach to overcome the heterogeneity 

stem from the instrument-related factors to have cross-sectional study possible. 

One approach is to focus on the covariance between features, which then 

allow global effects such as the instrumental factors mentioned above to drop out of 

the consideration. To illustrate the proposed approach, we can return to the face 

example introduced earlier in this thesis. If human faces are measured by a few 

discrete features, recognizing and compare them will be seriously affected by 

measurement bias. For instance, if the precision of inter-ocular distance is biased 

across tests and the bias cannot be modelled, inter-ocular distance cannot be used 

as a cross-sectional measurement. But if the face is represented as a pixelated 

image, in which each pixel is an independent feature contributes to the 

measurement, information across all pixels will be less susceptible to distortion by 

the largely affine transforms instrumental variability will tend to introduce. High-

dimensional modelling thus theoretically enables us to overcome instrumental 

effects, allowing us to extract biological signals from relatively low-quality, 

instrumentally heterogeneous data. We shall explore this idea further in subsequent 

sections. 
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1.4 Lesion-function inference 

The major focus of this thesis is the combination of high-dimensional 

modelling with large-scale data to make inferences about the relation between focal 

brain injury and clinical outcomes, revealing the brain’s functional architecture in the 

process. There are two broad approaches to modelling here: univariate analysis and 

multivariate analysis. Univariate methods analyse data one variable at a time for 

descriptive, predictive of inferential purposes. By contrast, multivariate methods 

model more than one variable, including their potentially complex interplay.  

The human brain is arguably the most complex biological system we know, 

composed of multiple, densely connected, non-linearly interacting elements, at both 

the physical and functional level (Lessov-Schlaggar et al., 2016, Raichle et al., 2001, 

Power et al., 2011, Fox et al., 2005, Bassett and Gazzaniga, 2011, Sporns et al., 

2005, Brett et al., 2002, Meyer-Lindenberg, 1996, Mah, 2014b). Yet most previous 

investigation of human brain, particularly those employing lesion-function mapping, 

tend to use univariate analysis and statistical approaches that are only appropriate 

for linear relationships within a relatively simple system. As we shall see, this may 

explain why many experimental studies succeed in simpler animals, but fail to 

replicate in humans (Van der Worp et al., 2010, Mak et al., 2014, Xu and Pan, 2013, 

Jucker, 2010).  

In the following two sections, I will describe the univariate methods in 

widespread used through the evolution of lesion-symptom mapping studies; then 

introduce a few multivariate based approaches adopted in the empirical sections of 

this thesis. 

 

1.4.1 Univariate modelling 

Lesion-function mapping can be traced back to the 19th century, when Paul 

Broca inspected two patients who lost the ability to produce more than one syllable 

and subsequently conducted post-mortem examinations of their brains (Broca, 

1861). He identified an association between injury to the posterior inferior frontal 

gyrus of the brain and language production. Although Broca is not the first person to 
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propose a relationship between language production and the left hemisphere of the 

brain, his approach of using the anatomical location of brain injury together with the 

behavioural deficit to localise human brain function founded a tradition that has 

influenced neuropsychological research ever since (Broca, 1861, Rorden and 

Karnath, 2004, Dronkers et al., 2007). Broca’s approach was rooted in examining 

numerous brain injuries and identifying the commonalities of lesion volume and 

location. He treated the brain components discretely, in other words, each unit 

location was treated as an independent region spatially correlated with the 

behavioural disorder. This reveals it as a univariate approach, essentially examining 

the relation between a single variable and a behavioural outcome. The studies to 

emerge in the following decades share the same fundamental inferential basis. For 

instance, Carl Wernicke published on the relationship between brain injury to the left 

posterior temporal cortex and language comprehension (Wernicke, 1874). In the 

mid-20th century, loss of memory was discovered to be related to bilateral damage to 

the medial temporal lobes (Scoville and Milner, 1957, Penfield and Milner, 1958). 

Studying split-brain patients revealed the dominance of the left hemisphere in 

language and calculation, and the right in spatial tasks (Vinken and Bruyn, 1969).  

Lesion-symptom mapping studies began to flourish with the emergence of 

technologies for in vivo anatomical study, using Computed Tomography and 

Magnetic Resonance Imaging, to visualise, quantify and monitor the focally lesioned 

human brain in the living patient. The technical innovation has not been matched by 

conceptual innovation: univariate approaches still dominate the field. Two typical 

univariate methods that are most used are template overlay method and voxel-wise 

lesion-symptom mapping (Frey et al., 1987, Damasio and Damasio, 1989, Bates et 

al., 2003). 

 

1.4.1.1 Region of interest (ROI) based lesion-symptom mapping (overlap-

subtraction method) 

The advent of neuroimaging enabled anatomical studies to be performed in 

advance of the patient’s death, giving rise to group studies of the relationship 

between brain injury and behaviour. The first technique to make use of the enhanced 
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data scale was template overlay (Frey et al., 1987). The technique involves 

transferring the lesions observed on individual imaging imaging onto a standard 

anatomical template. The extent of lesion overlap across the group can then be used 

to define the anatomical location common to those sharing the same behavioural 

deficit. Inferences drawn from this approach remain influential in the literature: for 

example, that language production and comprehension is related to the left 

hemisphere; and the spatial cognition is related to the right hemisphere (Rorden and 

Karnath, 2004, Rorden and Brett, 2000). 

The approach nonetheless exhibits an array of obvious defects. The pattern of 

focal damage need not match the functional architecture of the underlying human 

brain. The underlying assumption of modularity is clearly naïve, for the reasons 

already discussed. There is an unwarranted assumption that the structure of 

functional modules is distributed in the same anatomical structure across individuals: 

intrinsic differences in brain anatomy exist between individuals (Brett et al., 2002, 

Hawrylycz et al., 2012), confounding group studies with template overlap method.  

Brain lesions do not respect the boundaries of the functional networks 

reflected in the connectional structure of the human brain – the human brain 

connectome  (Sporns et al., 2005, Bullmore and Bassett, 2011). When the brain is 

affected by a focal lesion, on the one hand, the inherent plasticity and adaptability of 

the human brain enables a mechanism of reconfiguration to mediate recovery, 

obscuring the causal connection between structure and function; on the other hand, 

structurally intact areas may be impaired owing to disconnection, as the patterns of 

anatomical connections are not visible from CT or MRI scans (Sporns et al., 2005, 

Rorden and Karnath, 2004). Therefore, the common region extracted from 

superimposed brains need not be representative of the underlying neural 

dependence.  

Another critical concern is differential vulnerability. In stroke, the structure of 

the vascular supply makes some areas more prone to injury than others; similar 

effects render damage from other pathologies non-random. This not only alters the 

sensitivity for detecting lesion-function relationships across the brain, it also 

introduces spatial biases, as I discuss at length below. 
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A natural remedy is to introduce control populations (Rorden and Karnath, 

2004, Karnath et al., 2001a, Weiller et al., 1993, Karnath et al., 2002), giving rise to 

the subtraction overlay method. A lesioned group expressing the behavioural 

disorder is here matched with another lesioned group without the disorder. 

Analogously to the template overlay method, two overlay plots are created by 

superimposing the brain lesions from the two groups. Subtraction of the overlays 

then yields three regional categories. First, regions commonly damaged in the test 

group but spared in the control group emerge with positive values, and are inferred 

to be critical in proportion to the degree of positivity. Regions commonly damaged in 

the control group but spared in the test group yield negative values, and are inferred 

to be irrelevant. Regions damaged equally or not at all are inferred to be irrelevant or 

untested respectively. Though better than the simple version, the subtraction overlay 

method still relies on the assumption of modularity and simple localisation in human 

brain. 

    

1.4.1.2 Voxel-based lesion-symptom mapping (VLSM) 

Overlap studies are performed at a given voxel resolution, and imply a set of 

voxel-wise operations. An explicitly voxel-wise approach to lesion mapping was 

nonetheless first applied to investigate verbal fluency and auditory comprehensive 

after brain damages on 101 chronic stroke patients with lesions in the left 

hemisphere (Bates et al., 2003). Each voxel was treated as an independent variable, 

and binarised as either damaged or intact. Behavioural performance—here fluency 

scores and auditory comprehension measures—was adopted as the dependent 

variable. A t-statistic was calculated for the strength of association of each voxel. 

Voxels located in the region of the insula and the deep parietal white matter (e.g. 

arcuate or superior longitudinal fasciculus) affected the performance of fluency most. 

For the auditory comprehension tasks, voxels within middle temporal gyrus showed 

the strongest association; in addition, regions of dorsolateral prefrontal cortex and 

parietal association cortex were involved. Previously identified areas within the 

inferior frontal gyrus—Broca’s area—and superior temporal gyrus—Wernicke’s area 

—where also shown. A set of analyses of covariance (ANCOVAs) were conducted 
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among the relevant a priori regions of interest (ROIs) to clarify the relative 

contribution of each highlighted area. 

Unlike overlap subtraction-based methods, which rely on binarised deficit 

scores, VLSM can model continuous behaviours. Most cognitive skills tend to be 

intrinsically continuous rather than binary. Operating voxel-wise is superior to 

operating across larger ROIs that may be comprised of multiple sub-regions 

unequally contributing to the deficit (Gleichgerrcht et al., 2017). VLSM generates a 

brain map indexed by a voxel-wise parametric test, such as the two-sample t-test, or 

the measurement of effect size, without requiring any a priori regional parcellation. 

More complex tests can be applied at each voxel, for example ANCOVAs that 

enable the removal of multiple confounds. VLSM thus addresses lesion-symptom 

relationships with greater finesse, but it still assumes a simple modularity of 

organisation essentially the identical with that assumed by ROI based methods. 

Several critical issues remain unaddressed. First, dysfunction arising from 

disconnection of regions remote from the lesion (diaschisis) will remain undetected 

(Price et al., 2001, Feeney and Baron, 1986, Carrera and Tononi, 2014), unless the 

connectivity of white matter is taken into account outside the standard voxel-wise, 

mass-univariate statistical framework. Moreover, the complex patterns of differential 

vulnerability will distort inferred maps in response to lesion convariances driven by 

the vascular tree, at least in the case of vascular lesions (Rorden et al., 2007, Mah et 

al., 2014b, Gleichgerrcht et al., 2017, Zhao et al., 2017, Kimberg et al., 2007). 

Theoretically and conceptually, the inherent limitation of this mass univariate 

approach is to ignore the spatial dependencies between voxels (Ge et al., 2014).  

Complex confounding dependencies might also arise from registration error, 

especially when the quality of registration co-varies with the parameters of the lesion, 

as is inevitable unless the patient has been scanned both before and after the 

appearance of the lesion. This is a problem not only with VLSM, but any massively 

univariate approach that assumes a simple covariance structure. Functional imaging 

and VBM escape it only because covariance patterns of functional activation and 

non-pathological structural variation happen to be well-behaved. SPM suggests 

Gaussian smoothing as a remediable solution for this problem. To be more specific, 

the smoothness is required to be greater than the voxel size to reach homology in 
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term of functional structure between inter-subjects. However, this will not resolve the 

fundamental problem but merely reduce the impact of highly correlated locations 

(Kimberg et al., 2007, Ashburner and Friston, 2000, Good et al., 2001, Friston et al., 

1994, Penny et al., 2011). 

There have been attempts to remedy VLSM’s defects (Kimberg et al., 2007, 

Kinkingnéhun et al., 2007, Medina et al., 2010, Rorden et al., 2009, Rorden et al., 

2007, Groppe et al., 2011). For example, Rorden et al. suggested the use of different 

voxel-wise statistical tests—Liebermeister test and Brunner-Munzel test—with higher 

sensitivities to replace the traditionally used Yates-corrected chi-square test for 

binomial behavioural outcome and Student’s t-test for continuous degree of 

behavioural symptom, respectively. The excessive conservatism of Bonferroni 

correction for multiple comparisons has been mollified with the use of permutation 

thresholding and false discovery rate (FDR) instead. But none of these modifications 

addresses the most fundamental problem: the failure to model the complex 

covariance structure of lesions. 

 

1.4.2 Multivariate approaches 

We need an approach that can deal robustly with the complexities of lesion 

data. This requires modelling architectures flexible enough to adapt to the 

peculiarities of the data, making the fewest assumptions about their distribution. In 

general, we need architectures that can handle multiple parameters, because the 

human brain is intrinsically high dimensional in its structure. Only multivariate 

methods can combine the information distributed across different dimensions, 

spatially and temporally, that describes the structure and function of the brain.  

Multivariate analysis is a mature discipline (Badiru, 1992, Palmer, 1993, 

Sternberg et al., 1984). The established consensus on the complexity of the human 

brain justifies its adoption across neuroscience (Nandy and Cordes, 2003, McIntosh 

and Lobaugh, 2004, Norman et al., 2006, Mourao-Miranda et al., 2005, Friston et al., 

2008, Friston et al., 2003). For example, canonical correlation analysis (CCA) 

reveals hippocampal activation on fMRI in a memory-related task better than 

conventional methods (Nandy and Cordes, 2003). Similarly, partial least squares 
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(PLS) can take advantage of spatial and temporal dependencies across voxels to 

identify the distributed patterns of task performance or functional connectivity 

(McIntosh and Lobaugh, 2004). Norman et al. (Norman et al., 2006) have surveyed 

multi-voxel pattern analysis (MVPA) analysis, including feature selection and pattern 

classification with a wide range of a linear or nonlinear classifier, demonstrating 

greater sensitivity compared with conventional methods. Though more powerful, 

multivariate approaches are constrained by the cost of computation, and the 

necessity for large scale data, at least where high-dimensional or otherwise complex 

models are employed.  

The rapid rise in the computational power over the past decade has rendered 

large-scale studies tractable, transforming the applicability of multivariate methods in 

neuroscience as elsewhere (Mah et al., 2014b, Zhang et al., 2014, Zhao et al., 2017, 

Xu et al., 2017a, Xu et al., 2017b).  

For example, Mah et al. studied a cohort of 581 acute ischemic lesions 

segmented from diffused-weighted imaging (DWI) and modelled at 2 x 2 x 2 mm 

resolution, yielding 90 469 within-brain voxels. The authors used a set of 

hypothetical lesion-deficit models to compare their anatomical fidelity of univariate or 

multivariate approaches. Assuming an asymptotically simple lesion-deficit relation—

single voxel dependence—the maps derived from mass univariate analysis were 

displaced from the ground truth by a mean distance of 15.7 mm (SD = 9.15 mm), 

unsurprisingly following the stereotyped patterns of the vascular supply. A more 

physiologically plausible lesion-deficit model based on Brodmann areas showed a 

similar extent of mislocalisation but larger variation (15.9 mm; SD = 17.6 mm). By 

contrast, SVM models exhibited much less distortion (Mah et al., 2014b).  
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Figure 1.4 The systematic bias of template overlay method (Mah et al., 2014b) 

Due to the bias of vascular structure existing in human brain, some areas in the brain are more vulnerable and 
tend to be affected collaterally. Thereby, the most overlapped area (B) extracted from a stereotyped pattern 
of brain injury was conventionally mislocalised as critical area. Whereas, the real critical area (A) that hidden 

behind complex anatomical patterns was thus ignored. 

This study comprehensively demonstrated how the complexity of the lesion 

distribution results in mislocalisation when mass univariate methods are used. From 

a fundamental methodological standpoint, it firmly entrenched the necessity and 

superiority of high dimensional methods of lesion-function mapping. Naturally, brain 

lesions can rarely be described by a single voxel at any commonly used resolutions. 

But equally, damage to a set of voxels cannot be adequately modelled by a simple 

Gaussian field because the dependence between voxels is made complex by the 

inherent inhomogeneity of anatomical structures, particularly, the vascular tree. To 

map the lesion-symptom associations, it is crucial to capture the complexity of the 

structural architecture of lesions, which demands a high-dimensional multivariate 

framework implemented by machine learning techniques and powered by large scale 

data (Herbet et al., 2014, Nachev, 2015, Karnath and Smith, 2014, Mah et al., 2015).  

In the following section, a set of multivariate machine learning techniques that 

fit high-dimensional dataset and related inferential tools involved into the studies in 

this thesis will be introduced though they are not exhaustive. 
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1.5 Multivariate based machine learning algorithms 

Broadly speaking, machine learning can be grouped as supervised machine 

learning, unsupervised machine learning and reinforcement learning. Simply put, 

supervised learning can provide direct feedback as predicted outcome by learning 

labelled data sources. Unsupervised learning will not give any feedback but can 

reveal hidden structure behind data sources. Between supervised and unsupervised 

learning, the kind of problems with only a part of input data labelled is called semi-

supervised learning. Reinforcement learning is used to learn a set of actions to gain 

optimal cumulative rewards. There are many different algorithms for each type of 

machine learning. The performance of learning algorithms is largely decided by the 

data size and structure: rather than simply judge one algorithm is superior to the 

others, it is necessary to introduce insight into the specific machine learning problem 

to choose the most appropriate algorithm.  

 

1.5.1 Supervised learning algorithms 

Supervised learning is to infer a function that can generalise as the 

transformation of a set of known inputs into a set of predicted outputs in the form of 

categories or real values (classification or regression). During the learning process, 

the algorithm iteratively learns and does prediction from training data until the 

performance is acceptable by some criterion of fidelity.  

 

1.5.1.1 Datasets for learning algorithms 

Essentially, a supervised learning algorithm is a data-driven process to fit 

multiple datasets at different stages. Initially, the model learns from a training dataset 

that is comprised of a collection of labelled examples pairing input features and 

desired outputs―also known as supervisory signals― to approximate a mapping 

function generalised from the training examples to determine the categories or 

values on new examples. During the training phase, the relations, associations and 

dependencies amongst the features of input objects are generalised as an inferred 
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function whose parameters are iteratively adjusted until the function can predict the 

new input.  For any learning algorithm, the quality of the training data ultimately 

determine performance, which demands thoughtfulness and care in collecting and 

labelling each instance. The difficulties of assembling a suitable training set of data 

derive from two aspects: one is the data quality; the other is dataset size. Data 

quality is crucial for training, as any inconsistencies between the pairs of input 

features and labels will be learnt through the training process, and propagate to the 

new, unseen instances so as to weaken the learning algorithm’s predictive power. 

On the other aspect, dataset size is important for learning an optimal mapping 

function, particular for the high-dimensional inputs (e.g. brain imaging scans). The 

generalizability of a mapping function is sensitive to the scale of the training dataset; 

and improved by increasing training dataset volume. But there tends to be a quality-

size tradeoff in the real world, making it difficult to assemble datasets of both high 

quality and large scale within reasonable time and resource.  

A trained classifier model can be applied to predict the characteristics of new, 

unseen examples. The typical following stages are thus validation and testing. There 

are two aspects worth noting here: one is the necessity of separating validation and 

test sets; the other is the question of whether or not the test phase can be skipped. 

During the validation process, an independent dataset is used to evaluate the error 

function and estimate the model fit on the training dataset by tuning the 

hyperparameters so as to optimise the performance of prediction on new examples. 

Since, the validation dataset is used to determine the final model by minimizing the 

error rate, in order to avoid overfitting, the final validation of model performance 

needs to be derived from another independent dataset―the test 

dataset―quantifying performance by some standard measure (such as accuracy, 

sensitivity and specificity) so as to establish the generalizability of the final model. 

Validation is usually performed with the hold-out method or cross-validation (Kohavi, 

1995, Whitney, 1971).  

1.5.1.2 The choice of learning algorithms 

As aforementioned, there are a wide range of options for supervised learning 

algorithms. Each algorithm may work well on a specific type of supervised learning 

problem; but worse than the others on other supervised learning problems. Besides 
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improving the amount and quality of training dataset and conducting validation to 

avoid overfitting, in order to obtain proper performance, it is critical to choose the 

appropriate learning algorithm, matched to the specific problem. Broadly, the choice 

could be guided by considering the major aspects as follows: bias-variance tradeoff / 

dilemma (Platt, 1999); properties of the input data (Caruana et al., 2008); and 

presence of interaction or nonlinearity (Tu, 1996).  

 

1.5.1.2.1 Bias and variance 

Essentially, to estimate the performance of a learning model is to understand 

the prediction error of a learning model. Bias and variance are two essential types of 

prediction errors that quantify the performance of a supervised learning algorithm; 

and indicate a major difference in performance that distinguishes one algorithm from 

another. Theoretically, the error due to bias is related to the differences between 

predicted values and the correct answers, in other words: accuracy, which reflects 

the flexibility of an algorithm to fit new examples learnt from a training dataset. The 

error due to variance is related to the extent of difference between the predicted 

values learnt from different sets of training data in multiple times, in other words: 

consistency, which reflects the sensitivity of an algorithm to a specific training 

dataset. Bias and variance usually present a trade-off. This is because both bias and 

variance are highly sensitive to algorithmic complexity. If the structure of an 

algorithm tends to be simple and rigid, the algorithm will not be sufficiently flexible to 

learn new instances in training, leading to consistently incorrect prediction. This is 

knowns as high bias and low variance and can be illustrated with a “bull’s eye” 

diagram in Figure 1.5. By contrast, if the underlying structure of an algorithm is made 

very complex, for example, by adding more parameters to the model, these over 

flexible models will cause high sensitivities of each specific trained model, in other 

words, the models will treat different sets of training data very differently. This may 

result in the acceptable average accuracy; but varied and inconsistent prediction 

among the prediction models. This is known as low bias and high variance (Figure 

1.5). 
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Figure 1.5 Bias-variance trade-off 

This “bull’s eye” diagram illustrates the relation of bias and variance. Theoretically, a predictive model in low 
bias and low variance would be ideal to any learning problem though it is hardly possible in practice. The 

trade-off between bias and variance determined the choice of learning algorithm needs to be adapted to the 
particular learning problem.   

The trade-off between bias and variance corresponds to the contrast between 

under-fit and over-fit, which is critical for understanding the behaviours of prediction 

models. The total error of an algorithm can be broken down as follow: 

Err(x) = Bias2 + Variance + Irreducible Error 

The irreducible error is a noise term capturing variability that is truly random. 

So, the critical concern is to balance bias and variance so as to obtain a prediction 

models with optimal fit. In figure 1.6, the relationships between model complexity and 

error indicates it is necessary to reconcile the errors due to bias and variance and 

look for minimizing the overall error rate of bias and variance.  
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Figure 1.6 The complexity versus prediction error (Fortmann-Roe, 2012) 

This figure shows the relation between total error and model complexity. Total error is composed of the errors 
arising from bias and variance. The trade-off between bias and variance is decided by the complexity of model. 

Specific to each particular problem, model complexity should be optimised by minimizing the total error.  

 

1.5.1.2.2 Properties of the input data 

Given the fundamental aspects of bias and variance arising in choosing an 

algorithm, some issues about training data need to be considered. Firstly, we need 

to consider the volume of training data and the number of features involved in each 

case. If the features are irreducibly many, distributed in a high-dimensional space, 

the true learning function will tend to be complex and require a prediction model to 

be tuned with low bias and high variance; hence, a large volume of training data is 

crucial to enable the prediction model to be learnable. If the features are few, or 

reducible to a few, we shall only require a less complex learning function with high 

bias and low variance to be learnt by a relatively small volume of data. 

The dimensionality of the data aside, the interactions between the features 

also affect the complexity of the optimal learning function. For example, if each 

feature independently contributes to the desired output value, the model can be 

simple, incorporating only linear functions. If the features are complicated by 
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interactions and dependencies, the optimal models will need to cope with non-

linearity and complex parameter tuning is likely to be required.  

It is clear within which category human brain data is likely to fall. As already 

discussed, we need large volumes of data, and algorithms capable of dealing with a 

high-dimensional input space involving the complex interactions. In the following 

sections, I review dominant, exemplar approaches to such modelling, including 

Support Vector Machine (Vapnik and Chervonenkis, 1968, Boser et al., 1992, Cortes 

and Vapnik, 1995) and decision trees (Quinlan, 1986, Utgoff, 1989).  

1.5.1.3 Support vector machines (SVMs) 

SVMs are a class of predominantly supervised learning models that learn 

labelled examples, then assign labels to new, unseen cases for either classification 

or regression purposes. Though they can be adapted to semi-supervised learning or 

unsupervised clustering (Bennett and Demiriz, 1999, Winters-Hilt and Merat, 2007), 

their main application is within a supervised context. As a classification approach, 

the Support Vector Machine (SVM) was initially proposed by Boser et, al., in which a 

high-dimensional decision plane, named a hyperplane, was introduced to separate 

the different class memberships of learnt instances with the maximum possible 

margin (Boser et al., 1992). The training instances are distributed in a multi-

dimensional feature space, in which the learning algorithm seeks to find a 

hyperplane that separates into the target groups such that the distance between the 

hyperplane and nearest objects from each group is maximised. SVMs then use the 

hyperplane as a decision boundary to enable classification of unseen instances. 

In essence, an SVM model can be treated as a mathematical entity which 

employs an algorithm to optimise a mathematical function with a particular maximum 

value with regard of a dataset. In order to understand the essential theory of SVMs, 

a few aspects of SVMs will be introduced in the following sections. 

 

1.5.1.3.1 The separating hyperplane and kernel trick 

We begin with the simplest case: two classes of data points represented as 

red points (negative class) and blue points (positive class) are continuously 
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distributed in a line shown in Figure 1.7 (a). They can easily be separated by a single 

point on the single axis here. A more complex scenario is illustrated in Figure 1.7 (b), 

where two classes of values are linearly distributed in a two-dimensional feature 

space. The graphical illustration shows the data points can be classified by any of 

the straight lines depicted in the figure.  

However, such a separation is not always straightforward. For example, to 

separate the elliptically distributed data points in Figure 1.7 (c - left), a non-linear 

solution has to be applied. SVMs solve such non-linearly separable problems by 

transforming the native input space to a higher dimensional feature space via a 

kernel. As shown in Figure 1.7 (c - right), by escalating the input two-dimensional 

space to three dimensions, the data points become linearly separable. 

Mathematically, the kernel employed in SVMs is essentially a mapping (transform) 

function to project the data points from a low dimensional space to a higher 

dimensional space while preserving their similarity.  

As a demonstration, let us take two data points x = (x1, x2) and x’ = (x’1, x’2) in 

the original space, and then apply a nonlinear function φ to map x = (x1, x2) and x’ = 

(x’1, x’2) to the transformed higher dimensional feature space represented as (z1, z2, 

z3) and (z’1, z’2, z’3) by computing their inner product as the inner product is a 

measure of similarity. 

φ (x) → φ ((x1, x2) → φ (z1, z2, z3) → (x12, √2x1x2, x22)  

φ (x’) → φ (x’1, x’2) → φ (z’1, z’2, z’3) → (x’12, √2x’1x’2, x’22)  

We can formulate the mapping function - φ (x) in a three-dimensional space 

as below: 

β0 + β1x12 + β2√2x1x2 + β3x22 = 0 

As mentioned above, in SVMs, the dot products between the two data points 

are required to measure the similarity. First, we perform calculation below:   

< φ (x1, x2), φ (x’1, x’2) > = < (x12, √2x1x2, x22), (x’12, √2x’1x’2, x’22) >  

= x12x’12 + 2x1x2x’1x’2 + x22x’22 
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Then, we can also compute the dot product as follows: 

<x, x’>2 = < (x1, x2), (x’1, x’2) >2 = (x1x’1 + x2x’2)2 = x12x’12 + 

2x1x2x’1x’2 + x22x’22 

Another example illustrates how to transform the data points in the original 

space to a five-dimensional space. 

Similarly, for the same data points: x = (x1, x2) and x’ = (x’1, x’2), a mapping 

function - φ (x) can transform them from the original space to a five-dimensional 

space as follows: 

φ (x) → φ (x1, x2) → φ (z1, z2, z3, z4, z5) → (1, √2x1, √2x2, x12, √2x1x2, x22)  

φ (x’) → φ (x’1, x’2) → φ (z’1, z’2, z’3, z’4, z’5) → (1, √2x’1, √2x’

2, x’12, √2x’1x’2, x’22)  

β0 + β1x1 + β2x2 + β3x12 + β4√2x1x2 + β5x22 = 0 

Again, the computations are conducted in the same two ways, respectively. 

First, 

< φ (x1, x2), φ (x’1, x’2) >  

= < (1, √2x1, √2x2, x12, √2x1x2, x22), (1, √2x’1, √2x’2, x’12, √2x’1x’2, x’

22) >  

= 1 + 2x1x’1 + 2x2x’2 + x12x’12 + 2x1x2x’1x’2 + x22x’22 

Then, 

(1 + <x, x’>)2 = < (1 + (x1, x2), (x’1, x’2))>2 = (1 + x1x’1 + x2x’2)2  

= 1 + 2x1x’1 + 2x2x’2 + x12x’12 + 2x1x2x’1x’2 + x22x’22 

The kernel functions for three- and five-dimensional space can then be 

described as: 
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K (x, x’) = < φ (x), φ (x’)>2 

K (x, x’) = (1 + < φ (x), φ (x’)>)2  

This approach can be used to map data points in a space of arbitrary 

dimensionality. The kernel method provides a general solution to transforming data 

to a higher dimensional space infinitely wherever they are separable by a 

hyperplane. Surprisingly, we discover that we actually need not focus on the forms of 

the mapping functions other than maintain similarity by computing the inner product 

of two vectors in the original space then raising the result to a power for the 

corresponding higher dimensional space. In other words, we need not be concerned 

about the forms of φ but merely K. This surprisingly powerful tool is called the “kernel 

trick”. A kernel function defined as above can replace wherever an inner product is 

used. In applying the kernel function, it is not necessary for the algorithm to explicitly 

map the input data points into a higher dimensional space, which is particularly 

desirable if the transformed feature space is unfeasible to compute, such as an 

infinite dimensional space.  

 

(a) 
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(b) 

 

 

(c) 

Figure 1.7 Separating planes of SVM 
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Occasionally, for some easy cases, the spatial distribution of a dataset can be separate linearly (a and b). But, 
as a more often case, a dataset tends to be not separable in a low-dimensional space linearly (c). A kernel 
function transforms the original distribution of a dataset to a higher dimensional space, which allows for a 

hyperplane to separate the dataset upon their membership. 

Continuousness and symmetry are two essential requirements for a kernel 

function. In addition, based on Mercer’s theorem, a kernel function is preferred to a 

positive semi-definite Gram matrix. This is not a necessary but a sufficient condition, 

which means the functions that are not satisfied Mercer’s theorem can also be used 

as kernel function. The typical instances include Gaussian Kernel and Polynomial 

Kernel. Further details will be introduced in subsequent sections. 

 

1.5.1.3.2 The hyperplane with maximum margin 

In this section, we return to the separating hyperplane. We have seen that the 

classification of two sets of values may have multiple solutions when they are linearly 

separable. In order to choose the best amongst the potential solutions, SVM selects 

a plane that separates the points according to their class while ensuring the distance 

from closest points in each class is maximised and equalised. As shown in Figure 

1.8, the chosen plane is defined as the hyperplane. The points closest to the 

hyperplane in each sub-group are referred as the Support Vectors (SVs) and the 

total distance between SVs in each sub-group and the hyperplane is referred as 

maximum margin of separation. 

SVMs reasonably assume the test data set belong to the same distribution as 

the training data. In terms of statistical learning theory, SVMs select the hyperplane 

with the maximum margin as the decision boundary so as to maximise the ability to 

classify test examples correctly (Noble, 2006). In other words, SVMs adopt the 

hyperplane with maximum margin as a classifier that provides the most stable 

prediction against perturbations of the input data. To illuminate the choice of maximal 

margin, for a set of data points (xi, yi), i = 1, 2, …, n, where xi is a input sample and yi 

∈ (-α, + α), a formalised SVM with algebra for a given hyperplane is defined as 

below: 

w T∙ x + b = 0 
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This represents the location of the hyperplane in feature space, in which w 

and b are both known as adjustable parameters: weight vector and bias. For a two-

class classification problem, two flat planes along the outer margin of either class is 

defined as follows: 

class 1: w T ∙ x + b = α ∀x of class 1 

class 2: w T ∙ x + b = -α ∀x of class 2 

We set the constant α = 1, by subtracting the outer margins of two classes, 

the margin with maximal width can be calculated as follows: 

maximum margin w, b = maximise 
2

∥𝑤∥2
 

To obtain a classifier with the maximum margin, from the discriminant function 

above, is to maximise the geometric margin 1 / ||w||; equivalently, to minimise ||w||2. 

So, it can also be formulated in the other way: 

maximum margin w, b = minimise 
1

2
∥ 𝑤 ∥2 

subject to  

yi (wT∙ xi + b) ≥ 1  

By adjusting the parameters w and b, the equation above can be minimised to 

obtain an optimal classifier. If we assume the data is linearly separable, then, it is 

reasonable to expect each unseen test data point to be classified correctly. For a 

linearly separable data set, we have seen a larger margin yields better prediction. In 

reality, for some linearly separable problems, a greater margin could be obtained, 

and better performance overall, if some points are allowed to be misclassified (Ben-

Hur and Weston, 2010). Moreover, in some sense, a trade off exists between the 

width of margin and the number of misclassified input data points. To investigate this 

aspect further, we need an understanding of the idea of a soft margin adopted by 

SVMs.  
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Figure 1.8 The maximum margin 

A linearly separable data set can be divided into sub-groups by multiple flat planes. The optimal plane referred 
to as a hyperplane with a maximum margin is obtained by the trained classifier, which ensures the distance 

between either sub-group of support vectors and the plane is equally maximised. 

 

1.5.1.3.3 Soft margins 

We have seen that the optimisation problem for obtaining maximum 

separation is equivalent to minimizing ½ ||w||2. To solve this problem of primal 

minimisation, the Lagrange multipliers (αi) can be introduced to obtain the dual 

formulation: 

L (w, b, α) = 
1

2
wT w - ∑ 𝛼𝑁

𝑖=1 i [yi (wT xi + b) - 1] 

 

In practice, to obtain an optimal classifier there is benefit in allowing some 

data points to go beyond the margin or to be misclassified so as to achieve a greater 

margin. Thus, the slack variable (ξi) is introduced and the problem of optimizing the 

classifier becomes: 
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maximum margin = minimise 
1

2
∥ 𝑤 ∥2 + C ∑ 𝜉𝑁

𝑖 i 

subject to  

yi (w T∙ x + b) ≥ 1 - ξi for i = 1, 2, …, N 

As shown in Figure 1.9, where ξi = 0, the points on the margin are identified 

as support vectors. Where ξi > 0, points may be located outside the margin or 

hyperplane to some extent. In the case of 1 ≥ ξi > 0, they are between the margin 

and the hyperplane, which is named margin violation; in the case of ξi > 1, they are 

beyond the hyperplane and identified as misclassified. C is a regularisation 

parameter that sets the balance between maximum achieved margin and minimum 

permitted slack. When the value of C is small, the constraint is weak, allowing a 

greater margin; when the value of C is large, a narrow margin is achieved. If C is 

infinite, maximum constraint will be enforced, which is referred to as a hard margin. 

This parameter enables a trade-off between the size of the margin and the number 

of margin / hyperplane violations. The upper bound of a classifier’s error rate is then 

determined by the extent of misclassification. The formulation above, initially 

proposed by Cortes and Vapnik, is known as soft-margin SVM (Cortes and Vapnik, 

1995). 

To be more specific, by applying the method of Lagrange multipliers, this 

optimisation problem can be solved with a convex quadratic transformed to a higher 

dimensional space: 

L (w, b, ξi, αi, βi) = 
1

2
∥ 𝑤 ∥2 + C ∑ 𝜉𝑁

𝑖 i  -  ∑ 𝛼𝑁
𝑖=1 i [yi (wT φ(xi) + b) – 1 + ξi] -

∑ 𝛽𝑁
𝑖=1 i ξi 

Then, partial derivative is conducted on w, b, ξi to simplify the problem as 

follows: 

𝜕𝐿

𝜕𝑤
 = 0 → w =  ∑ 𝛼𝑁

𝑖=1 i yi φ (xi) 

𝜕𝐿

𝜕𝑏
 = 0 → 0 =  ∑ 𝛼𝑁

𝑖=1 i yi 
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𝜕𝐿

𝜕𝜉𝑖
 = 0 → C –αi – βi = 0 

The optimisation problem thus becomes: 

Minimise w, b, ξi 𝐿(𝑤, 𝑏, 𝜉𝑖, 𝛼𝑖, 𝛽𝑖) =  ∑ 𝛼𝑁
𝑖=1 i – 

1

2
 ∑  𝑁

𝑖=1 ∑  𝑁
𝑗=1 αi αj yi yj φ(xi) φ

(xj) 

And the dual formulation becomes: 

Minimise αi   
1

2
 ∑  𝑁

𝑖=1 ∑  𝑁
𝑗=1 αi αj yi yj φ(xi) φ(xj) - ∑ 𝛼𝑁

𝑖=1 i 

Subject to  

∑ 𝛼𝑁
𝑖=1 iyi = 0 

 C –αi – βi = 0 

0 ≤ αi ≤ C, i = 1, 2, …, N 

Exploiting the kernel method, we can replace the nonlinear mapping function 

φ(xi) φ(xj) with a kernel function K (xi, xj). 

Q(α) =  
1

2
 ∑  𝑁

𝑖=1 ∑  𝑁
𝑗=1 αi αj yi yj K (xi, xj) - ∑ 𝛼𝑁

𝑖=1 i 

If the value of α can be determined, w and b can be calculated as follows: 

wT = ∑ 𝛼𝑁
𝑖=1 i yi φ(xi) 

b = yi - ∑ 𝛼𝑁
𝑖=1 i yi <φ(xi)∙ φ(xi)> 

Then, we can obtain the hyperplane and the decision function for 

classification as follows: 

w ∙ x + b = 0 

F(x) = sign (w ∙ x + b) 
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Figure 1.9 Soft-margin of SVMs 

In contrast with a hyperplane that completely separates the data points into two groups, a hyperplane with a 
soft margin allows for some slack for points positioned between the margin and the hyperplane (violation), or 
even beyond the hyperplane (misclassification). The number of slack points is adjustable with a regularisation 

parameter. There is a trade-off between the size of the margin and the number of slack points. 

 

1.5.1.3.4 Kernel functions and the selection of kernels 

We have seen that SVMs derive an optimal hyperplane, with maximum 

separation between the classes, based on methods of structural risk minimisation 

(Vapnik, 2013). Specifically, data sets that are not linearly separable can be made so 

by applying a kernel function on the input data, removing the need to conduct the 

computation in feature space. The classification performance of a classifier is highly 

dependent on the kernel function, as that determines the structure of the transformed 

feature space (Liu et al., 2005). It is critical to select a kernel function that maps the 

data set into a feature space neither too rich nor too impoverished, to avoid over-

fitting or under-fitting respectively (Anthony et al., 2007).  

A wide range of kernel functions has been proposed and evaluated in the 

literature. The four most widely adopted kernels are listed in the Table 1.1. Crudely, 

linear kernels tend to fit linear problems well; and non-linear problem tend to require 
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non-linear kernels. A Gaussian kernel, commonly named Radial Basis Function 

(RBF) kernel, tends to suit linear problems as well as a linear kernel, because the 

latter is actually a special form of the former (Keerthi and Lin, 2003). Since the 

computational cost of using an RBF kernel, both during training and prediction, is 

higher, a linear kernel is nonetheless preferred for linear problems. For non-linear 

problems, RBF kernel is usually the first choice, as it is most versatile. The sigmoid 

kernel performs similarly in many settings (Lin and Lin, 2003) but is rarely better; a 

polynomial kernel requires more parameters than RBF, increasing the risk of over-

fitting. Furthermore, there are numerical difficulties of using the polynomial and 

sigmoid kernels, limiting their usefulness (Hsu et al., 2003). Admittedly, the RBF 

kernel is not always ideal. When the number of attributes is very large, in particular 

when the number of attributes is far greater than the number of instances, a linear 

kernel will often provide better performance. In the case where both the number of 

instance and attributes are very large, linear and RBF kernels offer similar 

performance, but linear the kernel is much more efficient (Hsu et al., 2003) where the 

underlying data structure is suited to it.  

When using the RBF kernel, optimal prediction performance can be achieved 

by tuning the adjustable parameter gamma appropriately(Souza, 2010).   

Table 1.1 Common kernel functions 

 

1.5.1.3.5 Extensions of SVMs 

SVM classifiers can be generalised to deal with a broader range of learning 

problems. For instance, Support Vector Clustering (SVC), which is also based on a 

kernel function, is designed to solve unsupervised learning problems (Ben-Hur et al., 

Kernels Mathematical demonstration 

Linear K (x, x’) = xT x’ + C 

Polynomial K (x, x’) = ( γ xT x’ + C) d 

RBF K (x, x’) = exp (-γ ∥ x − x′ ∥2) 

Sigmoid K (x, x’) = tanh (γ xT x’ + C) 
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2001). Multiclass SVMs learn the assignment of multiple labels to a set of data by 

breaking down what is a complicated multiclass problem into several simple two-

class classification problems (Hsu and Lin, 2002). Transductive Support Vector 

Machines (TSVMs) can deal with semi-supervised learning problems where the data 

are partially labelled (Joachims, 2006). Regression can be solved by Support Vector 

Regression (SVR) (Drucker et al., 1997) and Least Squares Support Vector Machine 

(LS-SVM) regression (Suykens and Vandewalle, 1999) employing kernels suitable 

for predicting continuous outputs. The following sections provide more details on 

these extensions.  

 

1.5.2 Semi-supervised learning algorithms 

In supervised learning algorithms, a set of input data are paired with a 

corresponding set of labels during training as a precondition for creating a model that 

predicts the label from test data where the label is unknown. In practice, it not always 

possible to have each training input instance labelled with the correct answer. 

Unlabelled data is common for a variety of practical reasons, especially where the 

label is generated by a human expert and so often either not recorded or captured in 

a form, such as free text, that is not easy to parameterise. Semi-supervised learning 

can take advantages of partially labelled datasets for training, making it potentially 

valuable in real world practice.  

Semi-supervised learning may be thought to lie between supervised and 

unsupervised learning and can be treated as an extension of either. However, most 

algorithm development here focuses on making use of unlabelled data in a 

discriminative setting. Its origins are to be found in the realm of self-training, 

developed in 1960s (Chapelle et al., 2009), thereafter further elaborated as 

transductive learning and inductive learning in 1970s (Vapnik and Chervonenkis, 

1974, Pellegrino and Glaser, 1979). The combination of labelled and unlabelled 

information within semi-supervised models has been shown to improve predictive 

power compared with either purely supervised or unsupervised models across a 

range of tasks and model architectures (Zhu, 2006, Turian et al., 2010, Ando and 

Zhang, 2005, Bennett and Demiriz, 1999, Joachims, 2006). By drawing intelligence 



Chapter 1    Introduction 

64 

 

from both labelled and unlabelled instances, semi-supervised learning can improve 

reproducibility and increase stability (Sindhwani and Keerthi, 2006, Zhu and 

Goldberg, 2009). The constraints of modern clinical environments, where unlabelled 

data is far commoner than the labelled kind, make a semi-supervised approach 

important to consider for any healthcare application. This is not merely a resource 

issue: reliance on labelled data alone risks the entrenchment of biases arising from 

(typically human expert-derived) labels. Large-scale unlabelled data is therefore of 

significant potential value to clinical research.  

Figure 1.10 illustrates the principle of deriving benefit from learning unlabelled 

data in addition to labelled samples, where the original decision boundaries are 

adjusted in response to the intrinsic structure of the data. 

Analogously to supervised learning, semi-supervised learning can be grouped 

by semi-supervised classification, semi-supervised regression, semi-supervised 

clustering and semi-supervised dimensionality reduction. This thesis will focus on 

semi-supervised classification, though the principles apply more broadly. 
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Figure 1.10 The contribution of unlabelled data examples in semi-supervised learning 

The decision boundary showed in dotted line is determined by labelled data samples alone. When more data 
points without labelling are modelled, a better decision boundary can be found. 

 

1.5.2.1 Inductive learning and transductive learning 

In the realm of machine learning, the problem that yields the expected labels 

for a set of unlballed examples can be solved by two philosophies: induction and 

transduction.  

Inductive learning is instantiated by algorithms whose goal is to learn a 

function for predicting unseen examples from observed instances. In other words, a 

universal model makes generalisations to understand or label the unseen instances. 

Concretely speaking, supervised learning can be generalised as a specific form of 

inductive learning. On the other hand, transductive learning algorithms are based on 

instance learning (Gammerman et al., 1998), which exploits unlabelled examples to 

extract information that can be transferred to labelled examples so as to infer the 

correct labels for unlabelled examples more easily.  

The major difference between them is that inductive learning aims to induce a 

generalised function or rule to fit any new unseen examples. Whereas, for a specific 

data set, transductive learning can be thought as a procedure that learns the 

observed (labelled) training set, whist trying to predict the expected labels on the 

observed (unlabelled) test set. In the context of learning, transduction is in a less 

ambitious manner with respect to the induction (Bianchini et al., 2016). The 

characteristic of transduction is to avoid building a general model. Instead, it takes 

advantage of the information implicit in the observed unlabelled instances to 

understand them better. Admittedly, the obvious disadvantage is it is not appliable to 

the unseen examples as it is learnt for generalisations.  

Overall, an extension of either supervised learning or unsupervised learning, 

semi-supervised learning is also based on a model driven by the data, but one where 

both labelled and unlabelled examples are used in the learning process. There are 

two ways for conducting semi-supervised learning: one approach is based on 

unsupervised learning associated with additional labelled data to improve the 
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resultant representations such as characteristic clusters (induction); the other is 

based on supervised learning with extra unlabelled data to improve the accuracy of 

classification (transduction). In this thesis, we focus on the latter approach to 

optimise the prediction directly (Demiriz and Bennett, 2001, Sindhwani et al., 2005, 

Zhu and Goldberg, 2009, Van Engelen and Hoos, 2020).  

 

1.5.2.2 Semi-supervised learning assumptions 

The assumptions underlying semi-supervised learning algorithms are critical 

to the success and effectiveness of a semi-supervised learning model. Where a 

dataset is only partially labelled, correct assumptions about the underlying structure 

and distribution of the data can make unlabelled data more effectively learnable, 

thereby improving the reliability of estimates of the decision boundary (Zhu and 

Goldberg, 2009). Selecting the right set of assumptions is, however, an open 

question, and requires consideration in multiple aspects both empirically and 

theoretically. The assumptions commonly applied in semi-supervised learning 

methods include the smoothness assumption, the cluster assumption and the 

manifold assumption. The smoothness assumption encourages the model, on the 

one hand, to assign the same membership to data points that are in a high-density 

region and continuously close to each other; and, on the other, to place the decision 

boundary in low-density regions. The cluster assumption is actually a special 

occasion of smoothness assumption, where the data points located in each 

concentrated cluster tend to be of the same group. Compared to the smoothness 

and cluster assumptions, the manifold assumption is more widely employed in 

various semi-supervised learning methods (Belkin et al., 2006, Niyogi, 2013, Belkin 

and Niyogi, 2004, Goldberg et al., 2009), as it can be treated as a generalised 

extension of the smoothness assumption. In essence, the manifold assumption is the 

same as the smoothness and cluster assumptions in terms of similarity detection and 

comparison; but further assumes the data lie in a manifold of a lower dimensionality 

than the input space, where learning both labelled and unlabelled data can focus on 

the structure of the manifold so as to avoid the curse of dimensionality. We may 

understand the manifold assumption as an implication of the possibility of 

dimensionality reduction. On the positive side, operating in a lower dimensional 
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space is easier; negatively, the fidelity of the resultant model will be limited by the 

quality of the lower dimensional embedding. Moreover, the distribution of the data 

need not be unified, requiring multiple manifolds to capture its structure.  

The manifold assumption is particularly important for semi-supervised 

learning. It allows us to learn the structure of manifolds from unlabelled data alone, 

thereby gaining some insights into the learning problem, and to incorporate what we 

have learnt from the unlabelled data into the process of discriminating between the 

labelled examples.  

 

1.5.2.3 Semi-supervised learning methods 

We have already seen that in semi-supervised learning, strong assumptions 

need to be made to use unlabelled data effectively. So, in solving any one problem, it 

is critical to choose a method best suited to the structure of the data. In other words, 

an uniformed choice of semi-supervised method is risky, and a poor choice may 

result in worse prediction performance than learning the labelled data alone (Zhu 

and Goldberg, 2009).  

In the following section, we will introduce several methods that are commonly 

used to tackle semi-supervised learning problems; and outline how these methods 

make different assumptions to link the marginal distribution and the conditional 

probability distribution to improve predictive performance. An inclusive, but not 

exhaustive, list of semi-supervised learning methods is self-training, co-training, 

probabilistic generative models, graph-based models, and Transductive Support 

Vector Machines (TSVMs) (Zhu and Goldberg, 2009, Zhu et al., 2003).  

 

1.5.2.3.1 Self-training 

In the middle 1990s, a method that treats learning algorithms as evaluation 

function searches for a good subset of relevant feature selection was proposed as a 

wrapper approach (John et al., 1994, Kohavi and John, 1997). Self-training as a 

typical instance of the wrapper approach is recognised as an incremental algorithm 
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(Nigam and Ghani, 2000). It is probably the simplest semi-supervised learning 

technique, which initially appeared around 1960s and 1970s but was firstly published 

in 1995 for solving word sense disambiguation within different contexts (Yarowsky, 

1995). The basic idea of self-training is to prepare for a set of data samples with 

labels and another set of data samples without labels, and to allow the model to 

teach itself with its own predictions. The initial classifier is trained with the whole set 

of labelled samples; then it is used to classify the unlabelled data samples. A subset 

of unlabelled data samples that are learnt with most confident weights together with 

their assigned labels are then transferred from the original unlabelled dataset to the 

labelled dataset. By repeating this process of self-teaching or bootstrapping, the 

classifier can be trained iteratively until all the unlabelled samples are classified or 

discarded as uncertain.  

The advantages of self-training are straightforward and intuitive. As the choice 

of learner is completely open, self-training can be either inductive or transduction 

learning (Zhu and Goldberg, 2009). Moreover, it is flexible enough to adopt either a 

simple or complex classifier, as the task demands. In common with wrapper 

methods, the disadvantages are the high cost of computation. This is because the 

learning algorithm has to be conducted iteratively for each featured subset, and is 

hard to analyse in general (Jelonek and Stefanowski, 1997). To optimise the 

performance of the self-training process, it is suggested that the unlabelled samples 

should be randomly selected at a relatively small proportion of the dataset, which 

means self-training usually requires multiple rounds of operation (Culp and 

Michailidis, 2008).  

As a method of semi-supervised learning, self-training makes strong 

assumptions. It is possible to improve classification where the learner is optimal and 

selection metrics are good, but it is also possible to degrade prediction by polluting 

the original labelled dataset. We can imagine that an initial incorrect prediction may 

be reinforced by itself during the re-training over multiple iterations, resulting in 

worse performance. As the selection metrics determine the criteria on which weakly 

labelled or unlabelled examples can be confidently refined and combined with 

labelled dataset for training and re-training, the selection metrics in practice are very 

crucial for the success of self-training (Rosenberg et al., 2005). 
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1.5.2.3.2 Co-training 

Co-training was initially proposed as a means of boosting the learning 

performance achievable with a small set of labelled data samples by combining with 

a relatively large set of unlabelled data examples, applied to the task of classifying 

web pages (Blum and Mitchell, 1998, Mitchell, 2004). In common with self-training, 

co-training aims to augment the labelled data by learning the unlabelled data 

iteratively. In addition, co-training and self-training are both wrapper methods (Zhu 

and Goldberg, 2009), which means co-training is also a computationally intensive 

process but flexible enough to fit a wide range of learning tasks. Co-training can 

apply any appropriate learning algorithms to produce classifiers as long as a 

confidence score can be assigned to the prediction on which a decision if the 

unlabelled data example can be confidently labelled or not can rest. 

In contrast with self-training, co-training requires two distinct “views” of the 

data on which predictions with two separate classifiers are made over multiple 

iterations. The views are created by splinting the data into two feature sets naturally, 

or randomly as an alternative. Co-training is a method that relies on strong 

assumptions. Its success requires the two views to be good enough in two respects: 

firstly, the characteristics of the data can be partitioned into two sets of different and 

complementary features, and each set of features encompassed in a view must be 

sufficient for good used for classification. Second, both views must be conditionally 

independent in relation to the target class (Zhu, 2006, Zhu and Goldberg, 2009, 

Prakash and Nithya, 2014). Conditional independence can be stated as below: 

P (x (1) | y, x (2)) = P (x (1) | y); 

P (x (2) | y, x (1)) = P (x (2) | y). 

From this statement, we can see knowing the true label (y) and either of the 

view (x (1) or x (2)) have no effects on observing the other view (x (2) or x (1)). In 

particular, conditional independence assumption is critical for co-training to learn 

unlabelled data objects (Zhu and Goldberg, 2009, Zhu, 2006).  
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Co-training begins by applying the original labelled data set to two separate 

classifiers that learn from each view. Then, each classifier is used to predict the 

unlabelled data and refine the most confident instances to enrich the training data 

set for the other classifier. In other words, for each iteration, the newly labelled data 

examples from unlabelled data set predicted by one classifier will be used to further 

enhance the learning of other classifier and vice versa. Iteratively, the process is 

repeated until all the unlabelled data examples are exhausted or no more unlabelled 

data examples can be assigned a label confidently. 

 

1.5.2.3.3 Generative models 

Generative models are possibly the first learning method proposed for semi-

supervised learning (Zhu, 2006, Prakash and Nithya, 2014). As generative models 

assume that all the data are generated by the same model, for a given training data 

set, generative models understand the data by learning to recreate it.  

In machine learning, a generative model is a statistical model of the joint 

probability distribution of a set of random variables: an observable variable (x), and a 

target variable (y), where the joint probability distribution is the probability distribution 

for the simultaneous behaviours of x and y that falls in within a specified range. 

Specifically, the joint probability distribution that actually describes the relationships 

and interactions between the variables can be formulated as a cumulative 

distribution function, a joint probability density function, or a joint probability mass 

function. The fundamental assumption of generative models can be stated as: p (x, 

y) = p (y) p (x | y) (Zhu, 2006). In generative models, p (x | y) is an identifiable 

mixture distribution, which can be in a variety of forms. The concept behind mixture 

models is critical for semi-supervised or unsupervised learning that incorporates 

unlabelled data into the models. This is because unlabelled data represents the 

distribution and of all instances, mixed together. In order to have the instances 

classified, it is ideal to decompose the mixed entity into individual classes by 

identifying the instance distribution from each class (Zhu and Goldberg, 2009). 

Frequently used mixture models include mixture of Gaussian distribution (GMM) 

which is suitable for image classification (Permuter et al., 2006, Kim and Kang, 

2007); mixture of multinomial distributions (Naïve Bayes) which is commonly used 
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for text categorisation (McCallum and Nigam, 1998, Baker and McCallum, 1998, 

Kibriya et al., 2004); and hidden Markov models (HMM) which is more often applied 

to speech recognition (Rabiner, 1989, Bahl et al., 1986, Huang et al., 1990). As our 

tasks are in relation to learning images, we mainly focus on GMM to introduce how 

generative models contribute to semi-supervised learning in this section. 

For a training dataset (X), the problem we are interested is to predict the label 

(y) by giving a data example (x ∈ X). A generative model is a probabilistic approach 

that applies Bayes rule to maximise the conditional probability p (y | x) to assign a 

label to the give data example; and meantime to minimise the expectation loss. The 

definition of posterior probability and conditional probability (Zhu and Goldberg, 

2009) can be stated as follows: 

p (y | x) = 
𝑝 (𝑥 | 𝑦) 𝑝 (𝑦)

∑𝑦′𝑝 (𝑥 |𝑦′) 𝑝 (𝑦′)
; 

p (y | x) ∈ [0, 1]; ∑y p (y | x) = 1. 

To demonstrate a GMM, we assume the training dataset is drawn from a 

multivariate Gaussian distribution. Thus, by estimating the mean of feature vector 

among the instances (µy) and the covariance matrix (∑y), the probability density 

function (Zhu and Goldberg, 2009) of class conditional distribution can be stated as 

below: 

p (x | y) = N (x; µy, ∑y) = 
1

(2𝜋)𝐷/2 |𝛴𝑦|1/2
 exp (−

1

2
(𝑥 −  𝜇𝑦)𝑇 ∑ (𝑥 −  𝜇𝑦)−1

𝑦 ). 

From the equations above we can see the prediction can be worked out with 

the conditional probability (p (x | y)) and prior probability (p (y = Ci)). Specifically, the 

conditional probability of classes is determined by the mean of feature vector (µ) and 

covariance matrix (∑) as model parameters. Thereby, the set of related parameters 

is usually defined as initialisation of a mixture model: θ = [p (y = Ci), µ, ∑], 

accordingly, the conditional probability and prior probability can be notated as p (x | 

y, θ) and p (y = Ci, θ), respectively. The process of training is to optimise θ, which 

involves another term: maximum likelihood estimation (MLE). Briefly, MLE is 

commonly used as a criterion while optimizing a problem by maximizing the 
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logarithm likelihood (Zhu and Goldberg, 2009). Intuitively, MLE is the parameter that 

makes log (p (D | θ)) largest for a given training dataset (D). In semi-supervised 

learning, as the likelihood is contributed by both labelled and unlabelled instances, 

the MLE can be combined as bellow:  

log p (D | θ) = log (∏ 𝑝 (𝑥𝑖 , 𝑦𝑖 | 𝜃) 𝑙
𝑖=1 ∏ 𝑝 (𝑥𝑖| 𝜃) 𝑙+𝑢

𝑖=𝑙+1 ) 

                                            = ∑ 𝑙𝑜𝑔 𝑝 (𝑦𝑖 | 𝜃)  𝑝 (𝑥𝑖 | 𝑦𝑖, 𝜃) +  ∑ 𝑙𝑜𝑔 𝑝 (𝑥𝑖  | 𝜃)𝑙+𝑢
𝑖=𝑙+1

𝑙
𝑖=1 , 

where the training data (D) is composed by labelled data (xi) and unlabelled 

data (xu); p (xi | θ) refers as the probability of an unlabelled data sample generated 

by any of the classes.  

MLE in semi-supervised learning is not as straightforward as the procedure in 

supervised learning, but a local optimum can be achieved by the expectation-

maximisation (EM) algorithm (Zhu, 2006, Zhu and Goldberg, 2009, Baum et al., 

1970, Dempster et al., 1977). Based on the procedure for prediction introduced 

above, a general EM algorithm makes use of an initialised parameter (θ) whose 

maximised likelihood is estimated from the original labelled data to assign provisional 

labels (“soft labels”) to the unlabelled data; then the original parameter (θ) combined 

with newly labelled data is used to further improve the maximised likelihood. The two 

steps are referred as expectation and maximisation which is an iterative procedure 

until p (D | θ) converges. For a training data (D) including labelled data and labels (xl, 

yl), and unlabelled data (xu), the initial parameter is θ and the MLE is log (p (xl | θ)). 

The derivation of the labels (yu) for unlabelled data can be done by repeating the 

expectation and maximisation steps iteratively as follows: 

Initialisation: D = (xl, yl, xu); 

Expectation step: q(yu) = p (yu | D, θ); 

Maximisation step: 𝜃′ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

∑ 𝑞 (𝑦𝑢) 𝑙𝑜𝑔 𝑝 (𝐷, 𝑦𝑢 | 𝜃)𝑦𝑢
. 

Ultimately, EM maximises p (xl, yl, xu | θ), which is similar to self-training. In 

each iteration, the EM algorithm takes the current classifier (θ) to label the unlabelled 

data and augments the labelled data by refining the most confident instances of 



Chapter 1    Introduction 

73 

 

unlabelled data so as to improve the classifier (θ) for the next iteration. The EM 

algorithm is highlighted in this section because it is widely recognised as a standard 

method for optimisation in the context of generative models (Zhu and Goldberg, 

2009). But, in machine learning, there are a wide range of optimisation methods, 

such as variational approximation (Jaakkola, 2001), combinatorial optimisation 

(Chapelle et al., 2008) and continuous optimisation (Hadley et al., 1990), which are 

beyond the scope of this thesis.  

Generative models offer a mature probabilistic framework for semi-supervised 

learning as long as the assumptions made by the mixture models are correct or 

close to the truth. Nonetheless, for every plus there is a minus. It is not always easy 

to identify or even verify the applicability and correctness of a model. Consequently,  

prediction fidelity may be hurt by considering the unlabelled data with incorrect 

models (Zhu, 2006, Castelli and Cover, 1996). The problem can be especially acute 

where only a small proportion of training data labelled. To minimise the risk of model 

error, for a specific task, an intuitive way is to select the model that fits the task best 

with the aid of domain knowledge. Another way is introducing a weight parameter (w 

∈ [0, 1]) to weaken the role of unlabelled data during training process (Corduneanu, 

2002).    

Even if the underlying model is right, performance could still be inferior owing 

to the difficulty of avoiding purely local optima with EM (Dayan and Hinton, 1997). A 

local optimum might present the optimal solution within a focal space. The problem 

can be alleviated by selecting different initialisation parameters (θ) and maximizing 

the likelihood with the EM algorithm multiple times. That way, the parameter (θ) that 

leads to the best likelihood is more likely to correspond to the global optimum. An 

alternative remedy is to select better initialisation (θ) informed by prior domain 

knowledge.   

 

1.5.2.3.4 Discriminative models 

For classification, besides the generative model introduced in the last section, 

discriminative modelling is the other major approach. In contrast with generative 

models, discriminative algorithms discard the generation assumptions to categorise 
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instances by estimating the posterior probability (p (y | x)) directly. It has been 

claimed the straightforward approach adopted by discriminative models theoretically 

and empirically delivers superior performance in classification tasks, in particular, 

when the training data is large in proportion to the number of features (Ng and 

Jordan, 2002, Vapnik, 1998). However, generative models can make use of the joint 

probability (p (x, y)) to create synthetic instances similar to those in the labelled data, 

revealing complex relationships between the independent and dependent variables. 

So, in some circumstances, generative models can perform better than 

discriminative models for classification and regression tasks (Bernardo et al., 2007).  

Generative and discriminative approaches differ from each other, but they are 

complementary. In the following section, we will introduce two methods based on 

discriminative models: graph-based methods and Transductive Support Vector 

Machines (TSVMs).  

 

1.5.2.3.4.1 Graph-based methods 

In semi-supervised learning, the idea of graph-based methods is to construct 

an affinity graph from the given training data, including both labelled and unlabelled 

data, and assume smoothness of the labels over the graph to capture the similarity 

between instances simply. Graph-based methods are non-parametric, discriminative, 

as well as transductive (Zhu, 2006, Zhu and Goldberg, 2009). In a constructed 

graph, any vertex that represents an instance either labelled or unlabelled will be 

connected to another vertex by an undirected edge. The length of the edge between 

two instances indexes their similarity. In graph-based algorithms, a weight parameter 

(wij) is usually introduced to use the edges to assign labels to unlabelled instances. 

Specifically, the weight parameter increases as the Euclidean distance between two 

instances decreases. Two instances thus tend to be in the same sub-group if the 

weight of the edge connecting them is large. The Gaussian kernel function (Zhu and 

Goldberg, 2009) shows the relationships between weight and Euclidean distance 

when defining similarity thus: 

wij = 𝑒𝑥𝑝 (− 
‖𝑥𝑖− 𝑥𝑗‖

2

2𝜎2
) , 
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where σ is a bandwidth parameter to control the amplitude of weight changes.  

Graph-based methods assume any two instances connected by an edge tend 

to be of the same label. Figure 1.11 presents a simple example of applying graph-

based methods to a two-class classification semi-supervised learning problem. The 

training process begins with fixing the labelled instances, then the vertices that 

represent unlabelled instances are connected to the labelled instances with sparse 

edges, assigning similar vertices to the same class. Over training iterations, newly 

classified vertices are used to measure the similarity between instances that 

establish further connections. Each newly classified, (originally unlabelled) vertex is 

thus used as a stepping stone to propagate and proliferate the labels until all the 

unlabelled instances are assigned. In short, graph-based methods exploit the 

similarity between neighbors in a graph, employing a process of propagation from a 

neighbor to a neighbor’s neighbors. For example, in Figure 1.11, xu is assigned the 

negative class owing to its graph neighborhood even though it is closer to a positive 

instance in terms of Euclidean distance. 

In the following section, a few commonly used graph-based algorithms for 

semi-supervised learning will be briefly introduced including Mincut, harmonic 

function and manifold regularisation (Zhu, 2006, Zhu and Goldberg, 2009). Two 

aspects must be optimised in training these graph-based algorithms: one is the loss 

function; the other is the smoothness through the whole graph. In the context of this 

thesis, we do not focus on the mathematical details behind these algorithms in 

depth; but rather survey the underlying concepts and assumptions to help stimulate 

ideas on modelling the relationships between brain lesions and cognition and 

behaviour.  
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Figure 1.11 Basic concept of graph-based methods in semi-supervised learning 

In essence, graph-based method assumes any two instances connected by an edge tend to be the same label. 
In this figure, the vertex of xu is a typical instance that is positioned much closer to a positive instance but 

labelled as negative due to graphical connection. 

 

1.5.2.3.4.1.1 Mincut 

Mincut is a graph-based algorithm for semi-supervised learning, where a 

graph is split into sub-groups by removing minimal relationships. To be more 

specific, for a set of data that include instances with are unlabelled and labelled with 

a binary value, Mincut aims to identify the most effective edges that can “block”, if 

removed, the routes connecting any positive instance to any negative instance. The 

optimisation seeks to minimise the cuts required to separate positive and negative 

instances, measured by the weights between connected instances. By splitting the 

graph, the unlabelled instances are then assigned the same labels as the originally 

labelled instances in the corresponding sub-graph.  
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Mathematically, Mincut can be presented as a loss function associated with a 

regulariser to minimise the risk of overfitting (Zhu and Goldberg, 2009) as below: 

𝑚𝑖𝑛
𝑓: 𝑓(𝑥)∈(−1,1)

∞ ∙ ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2

+ 𝑙
𝑖=1 ∑ 𝑤𝑖𝑗 (𝑓(𝑥𝑖) − 𝑓(𝑥𝑗))

2
𝑙+𝑢
𝑖,𝑗=1  . 

In the equation above, the first term is a loss function for the labelled vertices 

in the graph whose value is zero if prediction is the same as original labels; 

otherwise, the value will be infinity. The second term is risk regularisation by 

minimizing cut size for the unlabelled vertices in the graph. For any pair of vertices, 

on one side, the risk is theoretically zero if they are not connected with an edge 

(dissimilar) as the weight (wij) between them is zero; on the other, there is no risk or 

misclassification if f(xi) equals to f(xj). Pairs of vertices that are confidently predicted 

to be different classes (small wij) are then considered cut.     

 

1.5.2.3.4.1.2 Harmonic function 

Harmonic Function is another graph-based semi-supervised learning 

algorithm, which assigns a real value to each unlabelled vertex in the graph by taking 

all its neighbors’ values and calculating their weighted average. Optimisation can be 

presented in a form similar to Mincut algorithms; but Harmonic function returns a real 

value rather than the discrete values of Mincut algorithms (Zhu and Goldberg, 2009):  

𝑚𝑖𝑛
𝑓: 𝑓(𝑥)∈ℝ

∞ ∙ ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2

+ 𝑙
𝑖=1 ∑ 𝑤𝑖𝑗 (𝑓(𝑥𝑖) − 𝑓(𝑥𝑗))

2
𝑙+𝑢
𝑖,𝑗=1  . 

Training involves a process of label propagation, which is an iterative 

procedure. At the initial iteration, it ensures f(xi) equals yi for the labelled vertices and 

assign an arbitrary value to each unlabelled vertex; then f(xi) returned on each 

unlabelled vertex will be iteratively improved with its neighbors’ weighted average in 

the form as below) until the procedure has converged. 

𝑓(𝑥𝑖)  ←  
∑ 𝑤𝑖𝑗𝑓(𝑥𝑗)𝑙+𝑢

𝑗=1

∑ 𝑤𝑖𝑗
𝑙+𝑢
𝑗=1
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As harmonic function satisfies Laplace equation, the graph-based undirected 

Laplacian matrix can be worked out for a closed form solution (Zhu et al., 2003). An 

adjacency is defined by edge weights; and a degree matrix is a diagonal matrix, in 

which, for each vertex, the element is filled with the sum of its neighbor’s weights. 

Adjacency matrix: Aij = wij, 

Degree matrix: Dii =  ∑ 𝑤𝑖𝑗
𝑙+𝑢
𝑖,𝑗=1  , 

Laplacian matrix: L = D – A, 

𝐹 = (𝑓(𝑥1), … , 𝑓(𝑥𝑙+𝑢))𝑇. 

The risk regulariser can then be presented as:  

∑ 𝑤𝑖𝑗 (𝑓(𝑥𝑖) − 𝑓(𝑥𝑗))
2

= 2𝑙+𝑢
𝑖,𝑗=1 𝐹𝑇 ∙ 𝐿 ∙ 𝐹 . 

The labels of unlabelled vertices can be assigned by setting a threshold at 

zero; thus, the signs of the returned values are used as indicators of positive or 

negative labels. 

 

1.5.2.3.4.1.3 Manifold regularisation 

Both Mincut and harmonic function learn a function to fit labelled and 

unlabelled vertices that are only involved in the given graph, so their learning 

processes are intuitive transduction. By constrast, manifold regularisation is an 

inductive learning algorithm that fits the data globally rather than with the given 

training data alone. This relies on the manifold assumption, taking a subset from the 

whole feature space to determine the regularisation norm; it also relies on the 

fundamental assumption of smoothness. In a manifold regularisation algorithm, 

similarly to harmonic function, Laplacian norm is the common choice to measure the 

smoothness of the function. In addition, to help generalise the function beyond the 

training data, a second regularisation term (Zhu and Goldberg, 2009) based on an 

integral function to involve the gradient on the manifold, is introduced:  
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∥ 𝑓 ∥2= ∫ ∥ 𝛻ℝ𝑓(𝑥) ∥2  𝑑𝑥 
 

𝑥∈ℝ
. 

The loss for manifold regularisation is stated as follows: 

𝑚𝑖𝑛
𝑓: 𝑓(𝑥)∈ℝ

∞ ∙ ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2

+ 𝑙
𝑖=1 𝜆1 ∥ 𝑓 ∥2+  𝜆2𝐹𝑇 ∙ 𝐿 ∙ 𝐹,  

where λ1 and λ2 are used to balance the two regularisation terms.  

Manifold regularisation is particularly useful when the number of test 

instances is large. Moreover, the loss function can accommodate label noise, which 

helps to improve training accuracy when the training data is imperfectly labelled.  

To sum up, graph-based methods are supported by clear mathematical 

framework and provide strong performance if the learning task fits the graph well. 

But, conversely, performance will be poor if the these prerequisites are not satisfied. 

 

1.5.2.3.4.2 Transductive support vector machines (TSVMs) 

Simply put, TSVMs can be treated as an extension of SVMs. Based on the 

SVMs we have introduced in the section of supervised learning algorithms, the 

intuition of TSVMs is to learn a training data including both labelled and unlabelled 

instances under the cluster assumption (Chapelle and Zien, 2005); then confirm a 

classifier that ensures the correct classification on labelled instances while 

maximizing the margin based on all (labelled and unlabelled) instances. S3VMs are 

commonly referred to as Transductive Support Vector Machines (TSVMs) in of the 

literature. This is because the original theory of SVMs applied to  semi-supervised 

learning proposes to improve performance by learning an additional set of unlabelled 

instances via transduction (Bennett and Demiriz, 1999, Joachims, 1999a, Joachims, 

1999b). Although SVMs’ learning process can be either induction or transduction 

(Tong and Koller, 2001), the learned function is actually generalised to any unseen 

test instances. So, some researchers assert that S3VMs is the more appropriate 

name for SVM applications in semi-supervised learning (Zhu, 2006, Zhu and 

Goldberg, 2009). In this thesis, S3VMs and TSVMs are treated as the same to avoid 

confusion. 
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Figure 1.12 illustrates how the margin between classes changes when 

considering additional unlabelled instances within a traditionally inductive SVM 

compared with a semi-supervised Transductive Support Vector Machine. TSVMs 

maximise the margin by considering both labelled and unlabelled instances, the 

decision boundary being guided by the unlabelled instances away from the high-

density regions so as to minimise the bounds of generalisation error. In SVMs, the 

discriminators learn the decision boundary explicitly by modeling the posterior 

probability (p (y | x)) from the labelled instances alone. In TSVMs, the only available 

estimates from unlabelled instances is p (x). Owing to the potentially strong impact 

on the final prediction of  prior assumptions derived from unlabelled instances, it is 

essential to establish the connection between p (y | x) and p(x), or identify the shared 

parameters between them, which is effectively to balance the impact of prior 

assumptions and judge how unlabelled instances can aid the training procedure 

(Zhu, 2006, Seeger, 2000).  

 

Figure 1.12 The comparison between TSVMs and inductive SVMs 

This figure shows how the decision boundary moves from an inductive SVM to a TSVM. In SVM, the decision 
boundary is based on the posterior probability explicitly modelled by labelled data instances. In TSVM, 

associated with the posterior probability, prior assumptions are taken into account to aid the optimisation 
procedure. 
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Mathematically, we recall the standard SVM hinge loss on labelled instances 

is as follows: 

𝑐 (𝑥, 𝑦, 𝑓(𝑥)) = 𝑚𝑎𝑥(1 − 𝑦(𝑤𝑇 ∙ 𝑥 + 𝑏), 0) , 𝑓(𝑥) = (𝑤𝑇 ∙ 𝑥 + 𝑏), 

where y denotes the raw labels. For the unlabelled instances, we use the 

prediction (ŷ = sign(f(x))) on instances instead of the raw labels. Thus, the loss 

function named as hat loss (Zhu and Goldberg, 2009) can be stated as below: 

𝑐 (𝑥, 𝑦,̂ 𝑓(𝑥)) = 𝑚𝑎𝑥(1 −  𝑦̂ (𝑤𝑇 ∙ 𝑥 + 𝑏), 0) = 𝑚𝑎𝑥(1 − 𝑠𝑖𝑔𝑛(𝑤𝑇 ∙ 𝑥 + 𝑏)(𝑤𝑇 ∙ 𝑥 + 𝑏), 0)

=  𝑚𝑎𝑥 (1 − |𝑤𝑇 ∙ 𝑥 + 𝑏|, 0) 

Now, the function does not rely on the pre-known labels, but is fully 

determined by the prediction (f(x)). Combining the labelled and unlabelled instances, 

and taking the minimum regularisation risk on hinge loss and a regulariser for hat 

loss into account, the learning function can be formulated as below: 

𝑚𝑖𝑛
𝑤,𝑏

∑ 𝑚𝑎𝑥(1 −  𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏), 0) +  𝜆1 ∥ 𝑤 ∥2+  𝜆2 ∑ 𝑚𝑎𝑥(1 −𝑙+𝑢
𝑗=𝑙+1

𝑙
𝑖=1

|𝑤𝑇𝑥𝑗 + 𝑏|, 0) ;     

subject to     
1

𝑢
 ∑ 𝑤𝑇𝑥𝑗 + 𝑏 =  𝛾 ,𝑙+𝑢

𝑗=𝑙+1  

where λ2 is a parameter provided empirically to control the influence of 

involvement with unlabelled instances. γ is used to estimate the fraction of positive 

labelled instances among the unlabelled data set, which can be finely tuned via 

cross validation. In practice, the formulation above is often constrained with the 

similar label proportion between labelled and unlabelled instances; otherwise, the 

prediction tends to be imbalanced to classify all the unlabelled instances to only one 

side (Zhu and Goldberg, 2009, Collobert et al., 2006, Chapelle and Zien, 2005).  

TSVMs were initially applied to solving  transductive problems with a mix of 

labelled and unlabelled instances, relying on the methods of overall risk minimisation 

(ORM); but this method requires more labelled than unlabelled samples to obtain 

sufficient information for estimating classification (Vapnik, 2006, Vapnik, 1998). In 

the implementation proposed by Bennet and Demiriz, ten independent datasets were 
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adopted to evaluate the effects of unlabelled instances during training. Three folds 

were observed to improve generalisation significantly by incorporating up to seventy 

unlabelled instances. No significant difference in terms of performance was detected 

in the other datasets (Bennett and Demiriz, 1999). This study successfully 

demonstrated the benefits of extra unlabelled data during training; but it left two 

unanswered questions: one is how to derive  prior knowledge of the connection 

between labelled and unlabelled instances; the other is how to incorporate more 

unlabelled instances in the context of great computational complexity.  S3VM-IQP 

(Demiriz and Bennett, 2001) and SVM-Light (Joachims, 1999a) are a couple of 

similar implementations that seek to solve these problems by beginning with an 

optimised inductive classifier, and then applying penalty terms  to optimise the switch 

from unlabelled instances to labelled. Iteratively, the margin is re-measured in 

response to new labelled instances, until all unlabelled instances are optimally 

labelled. The slight difference between the two implementations are the number of 

unlabelled instances switched in each iteration and the heuristic for avoiding sub-

optima. Theoretically, a global minimum is the best solution; but, Demiriz and 

Bennett suggested that it is worth exploreing  solutions based on local minima, which 

may be sufficient to improve the generalisation (Demiriz and Bennett, 2001). In a 

laterempirical study, (Joachims, 2006) showed that compared with inductive SVMs, 

performanceincreased in proportion to the the number of unlabelled instances in a 

text classification task. Critically, he showed high-dimensional learning problems 

typically fit TSVMs well; but not all  problems are suitable for TSVMs, dependent on 

the structure of hypothesis space and the difficulty of optimisation.  

We can see optimisation is a critical concern for TSVMs. The optimisation of 

the hinge loss in standard SVMs is convex, which provides a powerful regularisation. 

But, by adding a set of unlabelled instances, the optimisation in TSVMs becomes a 

non-convex and mixed-integer problem with multiple local maxima (Chapelle and 

Zien, 2005), which results in extreme high cost of computation. This is why early 

implementations of TSVMs struggled with large numbers of unlabelled instances 

(Collobert et al., 2006, Joachims, 1999b, Bennett and Demiriz, 1999). The major 

effort in TSVM development has therefore been to extend the established power 

standard SVMs to semi-supervised learning robustly and practicably. A variety of 

studies have focused on improving the efficiency of optimisation and alleviating the 
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burden of computation. For example, semi-definite programming, a method based on 

convex relaxation to reformulate non-convex TSVMs to enable convex optimisation,  

can reduce computational complexity from exponential to polynomial level (Xu et al., 

2008, Bie and Cristianini, 2004). Although it is still difficult to handle large data sets, 

it is competent at dealing with data of moderate size, which is a step forward 

compared with early TSVM implementations. ConCave Convex Procedure (CCCP) 

is another widely implemented method based on concave-convex programming. 

Collobert et al.’s study applied CCCP in TSVMs by taking advantages of scalability 

over convexity from objective non-convex function to deal with relatively large (up to 

40,000 unlabelled examples) training data. Moreover,  steady improvement is shown 

in the experiments compared with standard SVMs (Collobert et al., 2006). A more 

recent study that is also based on CCCP proposed a robust and fast TSVM 

(RTSVM) (Cevikalp and Franc, 2017). In this study, instead of the conventional hinge 

loss, ramp loss was applied on the labelled examples; and for the unlabelled 

examples, the non-convex objective function was decomposed into parts as either 

convex or concave, then CCCP was achieved by solving each part with stochastic 

gradient. The experiments showed the implementation was capable of handling 

linear problems with a large-scale training data though it was not markedly superior 

to the other implementations while dealing with nonlinear problems. Sindhwani and 

Keerthi proposed a set of TSVM classifiers dedicated to handle  large-scale, sparse 

datasets with high-dimensionality (Sindhwani and Keerthi, 2006, Sindhwani and 

Keerthi, 2007), which is particularly suited to the context of research on human brain 

imaging, including focal brain injury. For example, a set of brain images with focal 

damage are may be spatially registered to a common space for the purpose of group 

comparison. At any specific resolution, each voxel is naturally treated as an 

independent variable, yielding a high-dimensional feature space within which 

anatomy—both normal and pathological—will vary widely. In their study, a multiple-

switch TSVM based on Modified Infinite Newton algorithm (Keerthi and DeCoste, 

2005) was implemented in the software package SVMLin to provide higher efficiency 

and scalability, mitigating the effects of searching for multiple local minima during 

optimisation. Remarkably, experiments on six different test datasets demonstrated 

the performance of multi-switch TSVM to be superior to both standard SVM and 

SVMlight. Moreover, across the test datasets, it was faster by at least two orders of 
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magnitude compared with SVMlight (Sindhwani and Keerthi, 2006, Sindhwani and 

Keerthi, 2007). 

Besides the initial Branch-and-Bound method of global optimisation 

implemented in the original TSVM (Joachims, 1999b) and the more recent 

optimisation methods introduced above, a few other implementations are also worth 

considering, such as difference convex programming (Wang and Shen, 2007), 

deterministic annealing (Chapelle et al., 2008), and entropy minimisation (Grandvalet 

and Bengio, 2005). 

 

1.5.3 Multi-label algorithms 

In the last two sections, our focus has been on methods of solving classic 

pattern recognition problems with either supervised or semi-supervised learning 

models. In such problems, the classes are mutually exclusive, exhibiting no overlap. 

In our research context, however, we must deal not only with single-label problems, 

but with multi-label problems too, where a multiplicity of non-exclusive class labels 

may be attached to each data instance. The development of multi-label classification 

algorithms has been powerfully driven by problems in the field of medical diagnosis 

and bioinformatics (Boutell et al., 2004, Tsoumakas and Katakis, 2007, Elisseeff and 

Weston, 2002, Vens et al., 2008, Sorower, 2010). For example, a patient with focal 

brain damage may suffer from multiple deficits at the same time, or may need to 

receive multiple treatments or interventions simultaneously. From a clinical 

perspective, it may be critically important to identify which one or more treatments 

are effective or co-effective in any one patient. In other words, it may not be sufficient 

to model the deficit or recovery of a patient by each material factor separately. In this 

section, we will introduce multi-label classification for the purposes of predicting 

multiple targets so as to reveal the relations and interactions between treatments. 

We begin by clarifying three terms of art here: multi-label classification, multi-

output learning and multi-class classification. Multi-label classification denotes a 

scenario where a set of target labels may be assigned to each instance 

simultaneously, for there is no mutual exclusion among the prediction features in 

each instance. Multi-label classification has strong relations with multi-output 
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learning. In multi-output learning, the supervised learning problem has a response 

variable with more than one dimension, whether discrete or continuous. Multi-label 

problems denote a subset of a multi-output problems when the response variables 

are discrete. Note these two are sharply distinct from multi-class classification, also 

known as multinomial classification, where to each input instance one of three or 

more classes is exclusively assigned. Multi-label classification can be understood as 

a generalised extension of multi-class classification, without the constraint of a single 

label; instead, each instance may be assigned more than one labels from the three 

or more classes. 

For a formal definition of multi-label classification, we can suppose a d-

dimensional feature space, denoted as χ = ℝd, where the set of labels can be 

denoted as Ỿ = [ỿ1 … ỿn]. The learning procedure for a multi-label problem is to 

generalise a function h: χ → Ỿ from a training data D = (Xi, Yi), where i = 1 … l, X ∈ χ 

and Y ∈ Ỿ, to predict any unseen given instance. The outputs of a multi-label 

function can be either binary, or more commonly real values. The real-valued 

classifier may involve an extra function for threshold calibration to determine a 

confident label boundary (Barutcuoglu et al., 2006, Zhang and Zhou, 2014). 

With regards to the character of multi-label classification, a few key properties 

require consideration before the approach is adopted in the solution of any given 

problem. Label cardinality (LCard(D) = 
1

l
∑ Yi

l
i=1 ) yields the average number of labels 

for each instance in a given dataset, indicating the degree of multilabelledness in a 

dataset. Accordingly, label cardinality can be normalised as label density: LDen(D) = 

1

|Ỿ|
 LCard(D). A further two properties are label diversity (LDiv), indicating the unique 

list of label sets in the training data, and proportion of label diversity (PLDiv = 

1

|D|
LDiv), which is normalised by the number of instances to identify the contribution 

of each label set.  
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1.5.3.1 The key concerns in multi-label classification 

Compared with classic binary classification tasks, the challenge of multi-label 

classification is dealing with the overwhelming complexity of possible label outputs. 

Label diversity obviously grows exponentially with increasing number of labels. For a 

training data with n distinct labels (Ỿ = [ỿ1 … ỿn]), the full permutation for all possible 

distinct label sets is 2n. The effective exploitation of label correlations or 

dependencies is essential to alleviate this complexity (Zhang and Zhou, 2014). The 

approach to exploiting the correlations between labels can be generally categorised 

into first-order strategy, second-order strategy, and high-order strategy (Zhang and 

Zhang, 2010, Zhang and Zhou, 2014). The first-order strategy decomposes a multi-

label classification task into a set of binary classification tasks regardless of the 

correlations among labels. This straightforward approach provides simplicity and 

efficiency, and is widely adopted in problem transformation methods (Boutell et al., 

2004, Tsoumakas and Katakis, 2007, Zhang and Zhou, 2014). Ignoring label 

correlations, however, may result in a suboptimal solution. The second-order 

strategy involves a pairwise solution with regards to the relations and interactions 

between each pair of labels. The high-order strategy comprehensively considers the 

relation between each label and all others. This strategy models a full spectrum of 

label correlations, providing theoretically optimal fidelity, but relies heavily on 

computation and makes the model less flexible (Zhang and Zhang, 2010, Zhang and 

Zhou, 2014). All these strategies are widely applied across multi-label classification 

tasks, which will be detailed in the next section. 

 

1.5.3.2 The overview of methods for multi-label classification 

General speaking, multi-label classification methods can be mainly 

categorised as problem transformation methods and algorithm adaptation methods 

(Tsoumakas and Katakis, 2007, Sorower, 2010, Madjarov et al., 2012b, Zhang and 

Zhou, 2014). The former decomposes multi-label classifications problem into multiple 

simpler single-label classification problems. In other words, its core philosophy is to 

tailor the data to the algorithm. By contrast, the latter extend single label algorithms 
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to make them fit multi-label learning problems, tailoring the algorithm to the data 

instead. 

 

1.5.3.2.1 The problem transformation methods 

As mentioned above, problem transformation methods change the form of 

multi-label data so that it can be learnt by well-established, single-label algorithms. 

Three sub-categories of transformation are recognised: transforming to binary 

classification problems, transforming to label ranking problems, and transforming to 

multi-class classification problems. 

Early strategies in the literature are very simple. For example, one method is 

to choose one from the multiple labels for each multi-label instance, and discard the 

others either manually or randomly. Another way is to discard the multi-label 

instances from the data and merely retain the single-label ones (Tsoumakas and 

Katakis, 2007, Boutell et al., 2004). Both methods readily transform a multi-label 

classification problem to a classic single-label learning problem; but at the cost of 

discarding a great deal of information. In the following sections, concerned with the 

order strategies proposed by Zhang and Zhou (Zhang and Zhang, 2010, Zhang and 

Zhou, 2014), we introduce a few problem transformation methods in more detail to 

show how these methods with different strategies and generalizability fit a broad 

spectrum multi-label classification tasks. 

 

1.5.3.2.1.1 Transforming to binary classification  

Binary relevance (Boutell et al., 2004, Zhang and Zhou, 2005, Tsoumakas 

and Katakis, 2007, Zhang and Zhou, 2014) is a first-order approach that 

decomposes each label (l) from a multiple set of labels into a pair of binary labels ([l, 

-l]). In this way, the original multi-label learning problem is transformed to be a set of 

independent two-class classification learning problems. During the training 

procedure, each instance is trained by the set of binary models in turn and treated as 

relevant if the output is positive, otherwise irrelevant. This process is also named 

cross-training (Boutell et al., 2004). For any unseen instance, predictions are 
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combined with the status of relevance from the set of binary classifiers. If the outputs 

from the set of classifier are all irrelevant, multi-label testing criteria can be applied to 

decide the outputs. For example, P-Criterion treats this kind of situation as 

‘unknown’. T-Criterion selects the least negative outputs as predictions (Boutell et 

al., 2004). As a common first-order approach, binary relevance is straightforward to 

implement in parallel and build up a set of classifiers independently. The 

disadvantage is that the correlations between labels are not considered, and the 

decomposition may lead to marked imbalance for some labels. For this reason, the 

number of labels in the training data and its label density are worth checking before 

adopting this approach. 

In an attempt to deal with the ignorance of label correlations in binary 

relevance-based methods, the classifier chains-based method (Read et al., 2009, 

Read et al., 2011) employs a high-order strategy to transform a multi-label 

classification task into a chain of binary classification tasks. To be similar to binary 

relevance methods, a multi-label classification problem is decomposed into a set of 

binary classification problems, in which each binary classification tasks corresponds 

with one label. In the classifier chains model, however, a binary label relevance 

predicted by a classifier will be appended as an extra dimension in the feature space 

of all input instances, contributing to the prediction for the next classifier. In other 

words, among the set of decomposed binary classification models, each classifier is 

learnt in a feature space augmented by adding the prediction of all the preceding 

classifiers, which forms a chain of classifiers that take account for the label 

correlations as a whole. To avoid the effect of the chain’s order on prediction 

accuracy, iterative ensembles of classifier chains have been proposed (Read et al., 

2009, Read et al., 2011). At each iteration, a set of randomly sampled training 

instances with a chain ordering allocated by a random permutation function are 

prepared for learning a classifier. The final predictions create a confidence vector by 

averaging across the iterations of classifiers, thereafter applying a strategic threshold 

function to dichotomise the relevance and irrelevance. An alternative approach is 

presented by Bayes-optimal probabilistic classifier chains (Dembczynski et al., 2010) 

where the classifier chains are formulated within probability theory. Here instead of 

binary relevance within ensembles of classifier chains, the feature space is 

appended by conditional probability. Compared with binary relevance methods, 



Chapter 1    Introduction 

89 

 

classifier chains-based methods preserve label correlations though they are hard to 

implement in parallel (Zhang et al., 2014). This increases computational complexity 

linearly rather than exponentially, which is acceptable. 

 

1.5.3.2.1.2 Transforming to label ranking  

Calibrated label ranking (Fürnkranz et al., 2008) applies a second-order 

strategy to address a multi-label classification problem with the techniques based on 

pairwise comparison, transforming the original problem into a label ranking problem.  

For a set of labels (Ỿ = [ỿ1, … ỿn]) in a multi-label training data, the 

permutation of pairwise comparison can generate n · (n-1) / 2 binary classifiers in 

total. For each pairwise comparison, the training instances have opposite relevance 

on the pair of labels (e.g. [ỿj, ỿk]) included to generate a binary classifier. Specifically, 

a pairwise comparison can be stated as follows (Zhang and Zhou, 2014):  

Djk= (xi,ψ(Yi, yj, yk)) , 1 ≤ i ≤ m,  

where ψ(Yi, yj, yk) =  {
+1, if ϕ(Yi, yj) = +1 and ϕ(Yi, yk) = −1;

−1, if ϕ(Yi, yj) = −1 and ϕ(Yi, yk) = +1.
 

Then, a learning algorithm can be applied on the binary training subset (Djk) to 

yield a classifier (fjk(x)). The total n · (n-1) / 2 classifiers generated by the procedure 

above iteratively can yield a vector of votes for any unseen instance. Subsequently, 

by incorporating a virtual label (ỿv) (Zhang and Zhou, 2014), the ranked labels 

included in the voting vector can be further dichotomised into relevance and 

irrelevance by a threshold function.  

The pairwise comparison adopted in calibrated label ranking is helpful to 

reduce the effects on class imbalance; but the computational complexity is in 

quadratic scale though it can be alleviated in some extent by pruning approaches 

(Mencía et al., 2010, Madjarov et al., 2010, Madjarov et al., 2012a). 
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1.5.3.2.1.3 Transforming to multi-class classification 

The first method of transforming a multi-label classification problem to a multi-

class classification problem is label powerset (Boutell et al., 2004, Tsoumakas and 

Katakis, 2007), in which each subset of multiple labels (‘labelset’) is converted to a 

single label. Consider, for example, a patient suffering from acute ischemic stroke 

complicated by hemorrhage. Ischemic acute stroke and hemorrhage are here two 

labels which can be combined to generate a single-label – ‘ischemic acute stroke ^ 

hemorrhage’. This method transforms a multi-label learning problem to a multi-class 

problem with no information loss; but it necessarily increases the number of classes 

significantly. Furthermore, the sparsity and imbalance of some classes may make 

prediction very difficult. Additionally, this method only involves the ‘labelsets’ 

observed in the training data but not the full permutation of possibilities, some of 

which may be found in any unseen test data (Tsoumakas et al., 2011).  

To cope with the limitations of label powerset mentioned above, random k-

labelsets (Tsoumakas and Vlahavas, 2007) have been proposed. The concept here 

is to split the original set of labels into multiple subsets of labels chosen randomly. 

For each subset of labels, the method of label powerset is applied to achieve the 

problem transformation, generating a multi-class classifier. Here k is the parameter 

that determines the size of subset of labels; ‘disjoint’ and ‘overlapping’ are two 

strategies to break the labelset into a number of subsets (in size of k) of labels. Both 

strategies have demonstrated improvement in empirical testing. For data with a large 

number of labels, the strategy of overlapping is more effective in correcting 

uncorrelated errors (Tsoumakas et al., 2011). In any unseen test instance, the 

outputs predicted by the set of classifiers determine that a particular label is treated 

as relevant if the number of votes in relation to this label is more than half of total 

number of related classes.  

Random k-labelsets is an approach that takes into account the label 

corrections, flexibly controlled by the value of k within a high-order strategy.  
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1.5.3.2.2 Algorithm adaptation methods 

In contrast with algorithm independent problem transformation methods, 

algorithm adaptation methods rely on a specific learning algorithm, designed to fit 

multi-label data directly. There is a wide range of proposed approaches, employing 

decision trees (Vens et al., 2008, Clare and King, 2001), k-nearest neighbors (Zhang 

and Zhou, 2005, Zhang and Zhou, 2007), support vector machines (Xu, 2011, 

Elisseeff and Weston, 2002), boosting algorithms (Wu et al., 2010, Schapire and 

Singer, 2000), entropy calculation (Ghamrawi and McCallum, 2005),  Bayesian 

(Zhang et al., 2009, McCallum, 1999), and neural network (Zhang, 2009, Wei et al., 

2014).  

Our interest here is in connecting clinical outcome parameters with clinical 

imaging data, which—as we have argued—will tend to be a high-dimensional 

problem. In this section, we will introduce two algorithm adaptation methods based 

on the extensions of decision trees –  Multi-label Decision Tree (Clare and King, 

2001) – and support vector machines – Ranking Support Vector Machine (Elisseeff 

and Weston, 2002). Described in terms of order strategies (Zhang and Zhang, 2010), 

decision trees adapted for multi-label learning problems constitute a first-order 

approach, which is straightforward and relatively low in computational complexity in 

the context of a high-dimensional feature space. The SVM is a second-order 

approach, optimised for non-linear problems. 

 

1.5.3.2.2.1 Multi-label decision tree 

To deal with a multi-label classification problem within the classic decision 

tree algorithm (Quinlan, 2014), for a given training data (D (xi, Yi)), the measurement 

of uncertainty by entropy can be extended as follows (Clare and King, 2001): 

entropy(D) =  − ∑(pi ∙ logpi +  qi ∙ logqi

N

i=1

) , 

where, N is the number of classes in D (xi, Yi). pi is the fraction of instances in 

D belonging to class i; qi = 1 – pi is the fraction being of not class i (1 ≤ i ≤ N). 
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Then, by introducing a splitting value (ϑ), the information gain can be achieved in the 

formulation below (Zhang and Zhou, 2014): 

information gain(D, A, ϑ) = entropy(D) −  
|D+|

|D|
 ∙ entropy(D+) − 

|D−|

|D|
 ∙ entropy(D−) ,  

where A is an attribute in the feature space. D+ is subject to xiA ≥ ϑ; D- is 

subject to xiA ≤ ϑ. From the initial root node (D), the attribute and its according 

splitting value are identified by multi-label decision tree to maximise the information 

gain so as to generate leaves. The generated two leaves (D+ and D-) are treated as 

root nodes respectively, repeating the process described above. Multi-label decision 

tree training is a recursive procedure, converged by meeting an empirically specified 

stopping criterion.  

To reduce computational complexity, from the formulation of entropy above 

we can see multi-label decision trees present the problem as one label versus the 

rest. In other words, the approach assumes the set of labels are independent of each 

other. Hence, this is a first-order strategy, which does not take into account label 

correlations. Potential improvements proposed by other studies mainly focus on two 

aspects: one is pruning strategy (Clare and King, 2001, Zhang and Zhou, 2014); the 

other is to employ ensemble methods, shown in Kocev et, al.’s study to provide 

better predictive performance in both single-objective and multi-objective decision 

trees (Kocev et al., 2007).  

 

1.5.3.2.2.2 Multi-label support vector machines 

To address multi-label classification problems with a kernel method was firstly 

proposed by Elisseeff and Weston (Elisseeff and Weston, 2002). Here an SVM 

based ranking system learning model was adapted to retain a large margin with 

minimum cost. This method, also named a ranking support vector machine (Rank-

SVM), employs a second-order strategy (Zhang and Zhang, 2010) to take into 

account pairwise label correlations. It naturally has the properties of SVMs, a loss 

function – Ranking Loss (Schapire and Singer, 2000), defined as the fraction of 

incorrect ordering between pairwise comparisons on average – is used to optimise a 
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set of linear classifiers, and nonlinear problems are addressed via kernel tricks 

(Elisseeff and Weston, 2002). Specifically, for a multi-label training set (D = (xi, Yi), 

where 1 ≤ i ≤ m; Yi ∈ Ỿ, where Ỿ = (ỿ1 … ỿq)), each individual label is learnt to 

generate a binary classifier. As described in the preceding section on SVMs, a set of 

independent classifiers (Elisseeff and Weston, 2002) for the multi-label training set D 

can be stated as a sign function in the form of an inner product: 

fj(x) = sign(< w1, x > +b1), where 1 ≤ j ≤ q.  

In light of the need for pairwise comparison, the Ranking Loss (Schapire and 

Singer, 2000) is stated as below: 

RL(f, x, Y) =  
1

|Y||Y|
 |(yk, yl)  ∈ Y × Y, subject to fk(x) ≥  fl(x)|. 

To solve a multi-label classification problem with the kernel method ranking 

system, it is ideal to retain a large margin while minimizing the Ranking Loss. For 

each instance in the training set: (xi, Yi), between the label pair in relation to relevant-

irrelevant, the margin is the shortest signed Euclidean (L2) distance to the 

hyperplanes, which can be expressed as follows: 

min
(xi,Yi)∈D

min
(yk,yl)∈Yi×Yi

< wk − wl, xi > +bk − bl

∥ wk − wl ∥
 , 

where ỿk is within the labels sets (Yi) of xi; whereas ỿl belongs to the 

complementary label sets (Yi). In particular, a positive margin will be reasonably 

returned if the relevant-irrelevant label pair is well ranked. Thus, based on the 

formulation above, to obtain a maximum margin we proceed as follows: 

max
fi(x)

min
(xi,Yi)∈D

min
(yk,yl)∈Yi×Yi

1

∥ wk − wl ∥2
 ,  subject to:  < wk − wl, xi > +bk − bl ≥ 1 , 

which is equivalent to: 

𝑚𝑖𝑛
𝑓𝑖(𝑥)

𝑚𝑎𝑥
1≤𝑘≤𝑙≤𝑞

||𝑤𝑘 − 𝑤𝑙||
2 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  < 𝑤𝑘 − 𝑤𝑙 , 𝑥𝑖 > +𝑏𝑘 − 𝑏𝑙 ≥ 1, (𝑦𝑘, 𝑦𝑙) ∈

𝑌𝑖 × 𝑌𝑖.  
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The problem can be further simplified to use the sum operator to approximate 

the max operator as follows (Elisseeff and Weston, 2002): 

𝑚𝑖𝑛
𝑓𝑖(𝑥)

∑ ||𝑤𝑙||
2

𝑞

𝑘=1
, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: < 𝑤𝑘 − 𝑤𝑙, 𝑥𝑖 > +𝑏𝑘 − 𝑏𝑙 ≥ 1, (𝑦𝑘, 𝑦𝑙) ∈ 𝑌𝑖 × 𝑌𝑖.  

Lastly, instead of the hinge loss adopted in the binary SVMs, the adapted 

Rank-SVM incorporates the Ranking loss as the slack variable to complete the 

equation: 

min
fi(x),ξ

ikl

∑ ||wk||2 + C ∑
1

|Yi||Yi|
 ∑ ξ

ikl

(yk,yl)∈Yi×Yi

 ,
m

i=1

q

k=1
 

subject to:  < wk − wl, xi > +bk − bl ≥ 1 −  ξ
ikl,

 ξ
ikl

≥ 0, 1 ≤ i ≤ m. 

Rank-SVM is based on well-established and robust SVM machinery. A major 

advantage of Rank-SVMs is proper accounting for pairwise label correlations, a 

characteristic critical for any SVM-based algorithm here. This is because SVM is 

fundamentally a discriminative method that assumes the set of classes involved in 

learning to be disjoint, whereas the classes in multi-label data are definitionally 

correlated and overlapping. Another prominent advantage of Rank-SVM is the ability 

to handle non-linear classification problems with the aid of kernel methods. 

Nonetheless, in common with any ranking system, Rank-SVM can order each label 

pair to be relevant or irrelevant, but it does not output the label sets directly (Elisseeff 

and Weston, 2002, Tsoumakas and Katakis, 2007, Zhang and Zhou, 2014). To 

determine the relevance of a label, a threshold strategy needs to be applied. In 

contrast with conventional and isolated threshold functions, such as least squares, 

Calibrated Rank-SVM (Jiang et al., 2008) introduced a virtual label providing a 

natural zero point during the stage of label ranking, thereby bridging label ordering 

and label ranking to optimally identify the interactive effects of threshold.  

Besides Rank-SVM, a range of SVM variants have been proposed during past 

few years, enriching the arsenal of tools available for tackling multi-label 

classification with kernel methods. For example, Wang et al. presented a Simplified 

Constraints Rank-SVM (SCRank-SVM) (Wang et al., 2014) which removes the bias 

term b to alleviate optimisation constraints, thereby improving the navigability of the 
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solution space. Instead of a ranking loss, Tsochantaridis et al. adopted hamming 

loss to create a generalised multi-class classification framework that can cope with 

complex outputs (Tsochantaridis et al., 2004). The technique of multiple kernel 

learning is helpful to deal with the difficulty of kernel selection during multi-label 

classification (Ji et al., 2009, Kloft et al., 2009).  

 

1.5.3.3 Evaluation metrics 

Since each instance in a multi-label learning problem is definitionally 

associated with multiple labels simultaneously, the conventional evaluation metrics 

used in the evaluation of classic binary or single-label classification problems, such 

as, accuracy, precision, recall, F-score, receiver operating characteristic (ROC) 

curve, area under the ROC curve (AUC), and so on, must be extended.  

Generally, evaluation measures can be applied either on a per example basis 

or a per label basis. Example-based metrics evaluate the difference between real 

and predicted label sets on each individual test example; then calculate the average 

over the whole test set (Godbole and Sarawagi, 2004, Tsoumakas and Vlahavas, 

2007, Zhang and Zhou, 2014). By contrast, label-based metrics evaluate the 

performance of all test examples on each individual label; then calculate the micro- 

and macro-average over all labels (Sorower, 2010, Tsoumakas and Vlahavas, 2007, 

Zhang and Zhou, 2014). 

 

1.5.3.3.1 Example-based metrics 

For a multi-label test data (S = (xi, Yi), where 1 ≤ i ≤ n; Yi ∈ Ỿ, where Ỿ = 

(ỿ1 … ỿq)), based on the learnt classifier (f(·)), the major example-based metrics are 

as follows: 

HammingLoss (f, S) =  
1

n
 ∑

1

q
 |f(xi)∆Yi|,

n

i=1

 



Chapter 1    Introduction 

96 

 

where ∆ stands for the symmetric difference between real and predicted label 

sets, which is equivalent to the operation of exclusive disjunction of in Boolean logic. 

In other words, hamming loss is referred as the fraction of incorrect labelling 

(misclassification) over the whole label set. 

SubsetAccuracy =  
1

n
 ∑ I (f(xi) = Yi),

n

i=1

 

where I equals to 1 if the label is correctly predicted, or I equals to 0. Subset 

accuracy is a strict metric that indicates the percentage of exactly correct match with 

the real label set. 

Both hamming loss score and subset accuracy measure the similarity 

between the predicted and real label set. In addition, the standard information 

retrieval measures are used for evaluation as well (Godbole and Sarawagi, 2004): 

Accuracy(f) =  
1

n
 ∑

|f(xi) ∩ Yi|

|f(xi) ∪ Yi|

n

i=1

 ; 

Precision(f) =  
1

n
 ∑

|f(xi) ∩ Yi|

|f(xi)|

n

i=1

 ; 

Recall(f) =  
1

n
 ∑

|f(xi) ∩ Yi|

|Yi|

n

i=1

 ; 

Fβ =  
(1 + β

2
) ∙ Precision(f) ∙ Recall(f)

β
2

∙ Precision(f) + Recall(f)
 . 

β is a balancing factor. When β=1, F1 refers to the harmonic mean of 

precision and recall. 

As aforementioned, when a ranking based system is selected as a multi-label 

classification approach, the learning function returns real rather than logical values. 

For this specific situation, one-error is a straightforward metric to indicate training 

error; coverage and average precision are the measures based on information 
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retrieval to evaluation the performance of label rankings (Schapire and Singer, 

2000):    

one − error =  
1

n
 ∑[[f(xi) ∉ Yi]];

n

i=1

 

coverage(f) =  
1

n
 ∑ max

y∈Yi

rankf(xi, y) − 1;

n

i=1

 

averagePrecision(f) =  
1

n
 ∑

1

|Yi|
 ∑

|y′| rankf (xi, y′) ≤ rankf(xi, y), y′ ∈ Yi|

rankf(xi, y)
y∈Yi

n

i=1

 . 

 

1.5.3.3.2 Label-based metrics 

Label-based metrics decompose the multi-label classification evaluation 

process into a set of individual label evaluations. Similarly to the measures for the 

classic single-label classifications, four basic quantities: true positive (TP), false 

negative (FN), true negative (TN) and false positive (FP) can be used to characterise 

performance. Specifically, for a multi-label test data (S = (xi, Yi), where 1 ≤ i ≤ n; Yi 

∈ Ỿ, where Ỿ = (ỿ1 … ỿq)), based on the learnt classifier (f(·)),the evaluation metrics 

on a specific label ỿ can be expressed as follows: 

TPy = |y ∈ Yi ∧ y ∈ f(xi), 1 ≤ i ≤ n|; 

FPy = |y ∉ Yi ∧ y ∈ f(xi), 1 ≤ i ≤ n|; 

TNy = |y ∉ Yi ∧ y ∉ f(xi), 1 ≤ i ≤ n|; 

FNy = |y ∈ Yi ∧ y ∉ f(xi), 1 ≤ i ≤ n|. 

Based on the evaluation on each binary label M (TPỿ, FPỿ, TNỿ, FNỿ), all 

labels can be evaluated with the macro- and micro-averaged version: 

Macro − averaging =  
1

q
 ∑ M(TPy, FPy, TNy, FNy);

q

j=1
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Micro − averaging = M (∑ TPy

q

j=1

, ∑ FPy

q

j=1

, ∑ TNy

q

j=1

, ∑ FNy

q

j=1

). 

It can be seen that the accuracy of macro-averaging and micro-averaging is 

the same; while precision and recall are different. In addition, macro- / micro-

accuracy and hamming loss is 1. If a ranking based system selected, label-based 

measures can use AUC instead (Zhang and Zhou, 2014): 

Macro − averaged − AUC =  
1

q
 ∑

|f(x,yj)≥f(x′,yj),(x,x′)∈Zj×Zj|

|Zj||Zj|

q
j=1  , 

where Zj is the set including all the test examples associated with label yj; Zj is 

the set excluding the examples with label yj.  

Micro − averaged − AUC =  
|f(x,y)≥f(x′≥y′),(x,y)∈S+,(x′,y′)∈S−|

|S+||S−|
 , 

where S+ and S- are referred as a pair of sets: instance-relevant labels and 

instance-irrelevant labels. 

 

1.5.4 Accuracy estimation and assessment of model 

generalizability 

In section 1.4.3, we introduced a set of machine learning based inferential 

models dedicated to probing the relationships between lesion architecture and brain 

functional anatomy. A crucial concern is how to evaluate these models, and select 

the optimal amongst all the candidates. 

Applied to human brain mapping, the ultimate goal of a trained classifier is to 

model the true relationship across the entire population. In this way, the full diversity 

of complex patterns integrating the spatial correlations between brain structure and 

function can be identified. Nonetheless, we are compelled by practicability to rely on 

samples of the population from which we must generalise to the whole. When using 

a sub set of the population to build an inferential model, there are two major inter-

related concerns: one is to prepare sufficient samples for approximating the true 
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population; the other is to apply appropriate techniques for estimating how well the 

trained classifiers model the true population. Assuming we have succeeded in 

maximizing the volume of available data, our focus is to optimise its use, and the 

evaluation of the models it is used to build. 

When a trained model is shown to predict the outcome of interest from the 

input feature space without any errors, the question arises whether it has 

successfully modelled the true relationships across the population or merely 

memorised the training data, i.e. overfitted. As the true structure of the underlying 

anatomical-functional relationships is unknown, we cannot assess spatial inference 

objectively. Instead, we need techniques that enable the sample data to be chosen 

to approximate the true population, and allow us to detect errors of generalisation so 

as to facilitate the process of model optimisation. In practice, a learning problem, in 

particular one that involves complex patterns such as the lesion architecture of the 

human brain, usually suffers from the difficulty of considerably more input features 

than the number of samples, a scenario inherently prone to incur overfitting. This is 

because the trained models may not be able to capture sufficient information to 

absorb the diversity across the population. In this situation, the trained models can 

be parameterised to perform well in the given training dataset; but deliver poor 

performance on a separate test dataset. Consequently, the problem of overfitting 

limits the generalizability of a learning model and reduces its ultimate utility.  

Underfitting, fitting, and overfitting scenarios are visualised simultaneously in 

figure 1.13 to illustrate the effects implications for generalizability. The straight line in 

orange colour depicts a underfitting classification function that separates the red and 

blue markers but has them substantially mixed on either side of the line. Poor 

performance on a given training set here does not generalise to the true population, 

for a better fit can be found. When this model is tested with an independent set of 

data drawn from the true population, the performance will be most likely to be 

similarly poor unless the training set shown in the figure is a completely 

unrepresentative. By contrast, the curvy green line presents a classifier in the 

overfitting scenario, which weaves along the red or blue dots to separate the groups 

with exquisite precision. It is reasonable to suspect the generalizability of a classifier 

that is tightly customised for a give training set. When tested against a new set of 
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data, the performance will not to be as good as the performance gained from the 

training set unless the sub sample of true population given for training is completely 

presentative to the entire population. Hence, overfitting reduces generalizability.    

 

Figure 1.13 underfitting, balanced and overfitting 

Two sets of markers in blue and red representing a positive and negative class, respectively, are drawn in the 
figure to illustrate a classifier overfitting (green), underfitting (orange) and correctly fitting (blue). An overfitted 

boundary fits each datum in either group very tightly. By contrast, an underfitted boundary is less good at 
separating the classes. As a result, there are quite a few instances misclassified in either membership. Between 

the two extremes, a balanced solution presents a reasonable curve with optimised generalizability. 

A successfully generalizable solution for a learning problem should combine 

an optimised learning model with methods to avoid overfitting. On one hand, we 

need accuracy estimation so as to approach the optimal model; on the other, we 

need a means of evaluating the generalizability of a selected model. In the following 

section, we will introduce two most common methods: cross-validation and 

bootstrap; and review how these methods can be applied for accuracy estimation, 

model selection and the assessment of generalizability. 
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1.5.4.1 Cross-validation 

Cross-validation is a process for deriving estimates of how the prediction of a 

trained model can be generalised to an independent dataset to which the model is 

naive. In essence, in cross-validation the inferential model is leant and validated 

through a series of training and test sets derived from different divisions of the entire 

dataset in a rotational manner. In this rotation independent procedure, each model is 

trained and tested explicitly by a completely separate training and test set to 

minimise overfitting. Moreover, each sample is rotated as test data at least once to 

avoid selection bias. A range of strategic variations provided by cross-validation will 

be introduced in details as follows, which are designated to be sensitive to an 

inferential model distorted by overfitting or selection bias; meantime, to use the 

available data in a most desirable way.  

 

1.5.4.1.1 Exhaustive cross-validation 

For a given training set of N samples, the method of exhaustive cross-

validation trains and tests on the full set of possible permutations of the data, divided 

into training and validation sets. A typical method is leave-p-out cross-validation 

(Kohavi, 1995), which fixes the number of validation set as p, and uses the 

remaining as training set. It is an iterative procedure, ensuring the training and 

validation are rotated in all possible combinations. The number of iterations is the 

binomial coefficient: ∁p
N. Computational complexity makes the process infeasible 

where p is greater than one and N is moderately large (e.g. ∁10
500).  

For this reason, more commonly used method of exhaustive cross-validation 

is to fix p at 1, which is referred as leave-one-out cross-validation (Kohavi, 1995). 

Compared with leave-p-out cross-validation, leave-one-out cross-validation repeats 

the process N times to ensure each sample involved in the training set is used for 

model validation once. The process is similar to the resampling technique of 

jackknife (Miller, 1974). To be clear, the jackknife is a linear approximation of the 

bootstrap with the aim of estimating the variance and bias of a statistic, which 

excludes a sample each time and computes the statistic from the remaining set; 
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whereas, leave-one-out computes the statistic on the one left-out sample each time 

to estimate accuracy. 

 

1.5.4.1.2 Non-exhaustive cross-validation 

The methods of non-exhaustive cross-validation are approximations to leave-

p-out cross-validation, evaluating only a representative sample of possible train/test 

splits.  

A simple method, called the holdout method, is to randomly split the entire 

dataset into two parts for training and test, respectively. Typically, a large part (e.g. 

70% or 80% of the whole set) is used for training a model, and unseen remainder is 

used for evaluating performance. It is a single run method, with no necessity for 

either repetition or rotation, so it is really a type of validation rather than cross-

validation (Arlot and Celisse, 2010, Kohavi, 1995).  

The most common variation of this is k-fold cross-validation (Kohavi, 1995, 

Zhang, 1993) where the data is randomly partitioned into k subsets of equal size, 

and each subset is used for validation group while the other k-1 subsets are used for 

training. The number of iterations through the whole process is k, meaning each 

subset is used in evaluation once. Such k-fold cross-validation can be treated as an 

approximation of leave-p-out cross-validation, where p =
N

k
 are satisfied. For 

example, if k equals N, k-fold cross-validation and leave-one-out cross-validation will 

collapse to the same method. Compared with the holdout method, k-fold cross-

validation involves each sample into either training or testing at least once and still 

retains low computational complexity. A wide range of studies recommend 10-fold 

cross-validation as an optimally balanced choice in terms of stratification and 

efficiency (Braga-Neto and Dougherty, 2004, Kohavi, 1995, Kohavi, 1996, Zhang, 

1993), though k is definitely not a fixed parameter and can be flexibly adjusted to suit 

different scenarios. In this thesis, we will largely apply binary classification model to 

reveal the correlations between spatial brain lesion architecture and functions, this 

stratified method selects each fold for validation with approximately equal mean 

response value, which ensure the proportion of either sub-group in each fold to be 
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roughly the same.  At the end, a single estimate can be averaged from the k 

validations.  

 

1.5.4.1.3 Cross-validation methods and model selection 

A general conclusion about the optimal cross-validation method for model 

selection is difficult to draw owing to its dependence on the detailed properties of the 

underlying learning framework. Nonetheless, three major aspects – bias, variance 

and computational complexity –can be used as basic criteria (Arlot and Celisse, 

2010). 

Cross-validation methods essentially estimate prediction errors. Bias and 

variance are two types of fundamental errors usually presented as a trade-off to 

reflect the accuracy and consistency of an inferential model. As aforementioned, a 

large-scale dataset is crucial for our proposed research. The closer to the true 

population, the better performance will be delivered by an inferential model. When 

the sample size is fixed, cross-validation estimates the performance with a 

pessimistic bias as it estimates a trained model with a subset of the original training 

set. To some extent, cross-validation tends to over-estimate the error compared with 

the error estimated by the original sample set. Leave-one-out cross-validation will be 

less biased, or approximately unbiased, as there is merely one sample different from 

the original training set in each repetition through the entire procedure. Hence, leave-

one-out cross-validation is preferable to the case of the continuous error functions, in 

other words, the functions with a large signal-to-noise ratio to avoid sub optima 

asymptotically (Breiman, 1996, Arlot and Celisse, 2010, Mah, 2014b). 

On the other aspect, an optimal model should ideally have the lowest variance 

possible. During a cross-validation procedure, the variance usually decreases when 

the number of samples for test increases. Although leave-one-out cross-validation is 

approximately unbiased, it tends to have a high variance. Compared with leave-p-out 

or k-fold cross-validation, we can imagine leave-one-out cross-validation will be more 

sensitive to any possible noise or artifacts included in the original sample set, so the 

performance may vary substantially with each fold. Yet, both leave-p-out and k-fold 

cross-validation could suffer from the variance as well if the number of original 
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training samples is small. For example, if 10-fold cross-validation is applied for 

estimating models trained by a small sample set, each split removed from the 

original set will affect the training performance significantly, resulting in high 

variance. Hence, it is highly framework dependent to decide between exhaustive and 

non-exhaustive cross-validation methods (Arlot and Celisse, 2010), though, for a 

given proper sample set, a general conclusion is leave-p-out or k-fold cross-

validation tends to be more balanced in regards with bias and variance. In addition, 

where the error function is discontinuous, in other words, the goal of the error 

function is to identify the number of misclassifications, such as a binary classification 

problem, leave-p-out or k-fold cross-validation is more effective at reducing variance 

(Breiman, 1996, Arlot and Celisse, 2010, Mah, 2014b). In contrast with most cross-

validation methods employing multiple runs, the holdout method performs the 

validation with a single run, which is preferable to the residual method but needs to 

be adopted with caution. Evaluation with the holdout method is strongly dependent 

on how the division of training and test set are made and may end up with high 

variance. 

The fundamental concerns about bias and variance aside, computational 

complexity is a key factor to be considered. For the binary classification problems 

that are the focus of this thesis, the preferable methods are leave-p-out and k-fold 

cross-validation whose computational complexity are ∁p
N and k, respectively. For a 

relatively large training set, it is apparent leave-p-out cross-validation is infeasible in 

term of computational complexity though its estimations could be averaged by all the 

possible splits of training and test division so as to minimise the bias and variance. 

As a compromise, the computational complexity of k-fold cross-validation is feasible 

and reasonable. Besides choosing a k value empirically, some studies also 

suggested to choose a small k (e.g. 2 or 5), but use multiple ways to do the k splits, 

which was helpful to optimise the bias and variance of k-fold cross-validation. In this 

way, the computational complexity could increase linearly as n·k, which is still 

feasible (Mah, 2014b, Breiman and Spector, 1992). 
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1.5.4.2 The bootstrap method 

Before the variety of cross-validation methods were sufficiently extended, 

leave-one-out cross-validation was the dominant method for providing approximately 

unbiased estimates, at the cost of high variance. The bootstrap method was 

proposed to estimate prediction errors as a smoothed version of leave-one-out 

cross-validation, aiming to reduce variance and quantify the uncertainty of  a model 

(Efron, 1983, Efron and Gong, 1983, Efron, 1986, Efron and Tibshirani, 1997).  

Bootstrapping performs an iterative process that estimates the statistics of the 

population by resampling a dataset with replacement. As a resampling technique, it 

usually involves intensive computation. The computational complexity is dependent 

on the size of sample and the number of repeats. Specifically, in creating a bootstrap 

procedure, the preliminaries are to decide the size of bootstrap sample (n) based on 

the original sample set (n ≤ N), and the iterations of this procedure. For each 

iteration, resampling is followed by randomly choosing one sample each time from 

the given training sample set and recording its value; then replacing the chosen 

sample back into the original training set, ensuring the next time resampling is still 

based on the entire training set. Resampling continues until n samples are chosen, 

forming a bootstrap sample set for constructing a learning model. In any bootstrap 

sample, some samples may appear multiple time and some may not be involved at 

all. The samples absent from the bootstrap sample set are named “out-of-bag” 

samples, can be used for model estimates. The iteration will be repeated for pre-

defined times to calculate the final estimates. Sufficient iterations, such as hundreds 

or thousands of times, are usually required to produce meaningful statistics.  

A critical prerequisite for the validity of the non-parametric bootstrap method is 

the assumption that the sample distribution is identical with that of the true 

population. Resampling a bootstrap sample from the original training set can then be 

validly portrayed as a process of randomly taking the original training set from the 

population. Another key principle is that the samples are treated as completely 

independent from each other. That is why the bootstrapping requires replacement. 

Based to the adoption of bootstrapping summarised by Adèr and Mah (Adèr, 2008, 

Mah, 2014b) and associated with our research context, the spatial architecture of 

human brain lesions is extremely hard to link with the resultant functional deficits. 
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Moreover, the sample size we are dealing with in our studies (N = 1333) is arguably 

insufficient given the variability of the. Here k-fold cross-validation is preferable and 

performs at intermediate computational complexity. In this thesis, we will therefore 

use k-fold cross-validation for the purpose of accuracy estimation and model 

selection. Nonetheless, we can potentially combine cross-validation with the 

bootstrap method to implement a more comprehensive estimate strategy with the 

continuously increasing scale of available data. 
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1.6 Summary 

For more than a century and a half, there has been awareness of some of the 

basic organisational principles underlying the functional architecture in human brain 

(Broca, 1861, Wernicke, 1874). Nonetheless, how this functional anatomy can be 

comprehensively deciphered remains a puzzle.  

A variety of tools and techniques have developed in the last few decades to 

tackle this challenge. For example, TMS, first demonstrated by Barker, et al. (Barker 

et al., 1985) is a widely used investigative tool to probe the brain, especially, in the 

field of neurophysiology and neuropsychology (Sack and Linden, 2003, Walsh and 

Cowey, 2000). However, it cannot penetrate deep enough to influence regions 

beneath the cortex, restricting the range of insight it could conceivably disclose. fMRI 

(Ogawa et al., 1990a) has revolutionised functional mapping of the human brain, but 

despite its popularity, leaves the absence of observed activity uninterpretable, 

greatly limiting the conclusions that can be licitly drawn from it. Moreover, any 

indirect measurement of neuronal activity can be influenced by a mix of factors that 

may not be captured by experimental manipulations. Most importantly, the claim that 

a specific region is necessary for a particular function cannot be sustained by any 

purely correlative technique. 

Lesion mapping - historically the first method of brain mapping – has 

theoretically greater power because it seeks to determine the necessity of a putative 

brain region for a given function or deficit. Our knowledge on functional anatomy 

relies heavily on studies of patients with focal brain lesions. Though lesion-deficit 

studies have great inferential potential, their power is limited by a crucial 

vulnerability. First, their sample sizes are typically small; second, the inferential 

approach in widespread use is blind to consistent errors arising from interactive high-

dimensional patterns of focal damage. Hence, understanding this extremely complex 

distribution, inevitably with the aid of large-scale data, is essential to further progress 

in the field. 

In the following chapters of this thesis, a series of studies on therapeutic 

inference and lesion prediction will be conducted to examine the benefits of a 

relatively novel approach – high-dimensional inference on focally damaged human 
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brain with the aid of machine learning techniques. The largest available (at the time 

of writing) brain lesion dataset will be parameterised into a high-dimensional 

structure to model the correlation between focal damage and functional deficits. In 

Chapter 2, a series of experiments are conducted to establish a methodological 

foundation by comparing the limits of inferential power achieved from a 

conventionally low-dimensional statistical model and a machine learning driven high-

dimensional model. In Chapter 3, a semi-supervised machine learning technique will 

be employed to show how taking advantage of all available clinical data—whether 

labelled or not—can deliver optimal prediction. In Chapter 4, a study of therapeutic 

inference on focally damaged brain will demonstrate how a large-scale high-

dimensional model with advanced and robust inferential power can help to detect the 

consistent errors so as to improve the sensitivity of clinical trials. In Chapter 5, a 

prescriptive inference study will be designed, in which multiple interventions are 

simulated to identify the effectiveness of the treatments as well as their interactions. 

This will be accomplished by a multi-label machine learning technique. 

  



Chapter 2  The limits of behavioural outcome prediction following focal brain injury 

109 

 

Chapter 2  The limits of behavioural 

outcome prediction following focal brain 

injury 

 

 

 

2.1 Introduction 

Efforts to model the relationship between focal brain damage and behavioural 

outcomes have a long history, traceable to over one and a half centuries ago when 

the correlation between ventroposterior frontal lobe damage and speech production 

was first demonstrated by Broca (Broca, 1861), and later the correlation between 

superior temporal gyrus damage and language comprehension was reported by 

Wernicke (Wernicke, 1874). Since then, a complex functionally specified architecture 

of human brain has been revealed by relating lesions to deficits. In the contemporary 

era, although the epoch-making introduction of non-invasive techniques has 

expanded the options for conducting functional localisation studies, lesion-deficit 

mapping still retains its value as arguably the most powerful method, uniquely 

capable of establishing the necessity of a given substrate. Though also disruptive, 

TMS (Barker et al., 1985) is technically restricted to superficial cortex and practically 

limited in the number of possible concurrent stimulations: spatial resolution and 

coverage are therefore low even if temporal resolution is in the order of milliseconds. 

Functional MRI (Ogawa and Lee, 1990, Ogawa et al., 1990b, Ogawa et al., 1990a, 

Ogawa et al., 1992), though widely used over the past three decades, is merely 

correlative and hence weaker in its inferential power. By contrast, lesion-deficit 

mapping can theoretically sustain a strong claim to a particular region being required 

for a specific function, for it is on the loss of the function that the inference rests. With 

the advent of CT and structural MRI, lesion-deficit mapping no longer relies on post-

mortem examination; furthermore its excellent spatial resolution and temporal 
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correspondence invite us to return to this traditional brain mapping method (Fox, 

2018, Mah et al., 2014b, Rorden and Karnath, 2004, Rorden et al., 2009).  

The fidelity of lesion-deficit mapping relies on two distinct aspects – the 

properties of the source data and the validity of the inferential models applied to it. 

The quality of imaging data is no longer a limitation, though its volume likely always 

will be. But whereas the properties of data can be judged empirically, the other 

crucial aspect – whether or not an inferential model is coherent – requires 

conceptual analysis. Moreover, fatal biases in a model could be concealed under the 

cloak of “statistical significance”, causing systematic, consistent errors that cannot be 

detected empirically because there is here no ground truth (Xu et al., 2017a). 

Inevitably, dealing with the complex distributed architecture of the human brain, is 

bound to require inferential models of commensurate complexity. One typical 

example is visuospatial neglect, shown across a range of studies to be associated 

with damage to either inferior frontal lobe (Heilman and Valenstein, 1972, Husain 

and Kennard, 1996, Vallar, 2001) or posterior parietal lobe (Halligan et al., 2003, 

Karnath et al., 2001b). At the same time, other studies have shown recovery of 

spatial neglect following sequential strokes in both parietal and frontal lobes (Daffner 

et al., 1990, Vuilleumier et al., 1996). In these studies, the functional outcome is non-

monotonically dependent on multiple brain components, indicating a nonlinear 

relationship between function and anatomy, and supporting the operation of an 

underlying distributed functional network in the human brain. Thus, one of the crucial 

criteria of a valid inferential model here is the capacity to deal with multiple variables, 

and moreover, their interactions.  

To tackle the interactions between brain components, it is critical to clarify the 

determinants of the intrinsic dimensionality of human brain. However, a second 

anatomical dimensionality – lesion architecture – is widely neglected which together 

with the functional architecture determines lesion-deficit relations (Mah et al., 2015, 

Mah et al., 2014b, Mah et al., 2014a, Xu et al., 2017a). For a specific pathological 

process, whenever a voxel is affected, it is generally inevitable that other voxels will 

be “collaterally” affected. This is induced by the nature of the pathology, and need 

bear no relation to the functional architecture. If these voxels are “parasitically” 

associated with the function merely because of covariance with voxels on which the 
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function is truly dependent, the spatial inference will be biased. Neglecting the 

complex distributed lesion architecture will invalidate any models that seeks to relate 

lesion and deficit.  

The conventional approach to relating lesions to deficits is the template 

overlay method, from which voxel-wise lesion symptom mapping (VLSM) has 

evolved. By superimposing a set of lesions to a template with discrete anatomical 

landmarks, the overlay method extracts the overlap to compare with a control group, 

assuming the commonly affected brain regions are associated with the deficit (Frey 

et al., 1987, Robertson et al., 1988, Robertson and Lamb, 1991). VLSM is based on 

the same concept, but performs the comparisons voxel-by-voxel so as to generate a 

voxel-based measure of confidence (Bates et al., 2003). Across both methods, the 

comparisons are conducted by a statistical test which quantifies the contribution of 

each part or point of human brain independently – hence, it is a univariate test, 

applied en masse.  

The intrinsic anatomical relationships underlying the natural pattern of 

pathological damage are potential sources of systematic biases which complicate 

the architecture of natural human brain lesions. The core defect of univariate-based 

models is to neglect complex spatial correlations that may distort the inferred map. 

Such errors cannot be identified by any mass univariate models, for they are driven 

by dependencies mass univariate models definitionally ignore. In other words, 

formally significant statistics obtained from a univariate model may not reflect the 

true anatomical picture. Regardless of the spatial resolution, including region-wise or 

voxel-wise parcellation, the errors can neither be detected nor corrected, for the 

interwoven relationships from the critical perspective of anatomy are completely 

isolated. Instead, massive univariate tests merely entrench the statistical biases over 

redundant repetition. 

It is tempting to try to extend the VLSM approach by escalating the anatomical 

dimensionality to some degree while preserving its mass-univariate essence. A 

common way is to include lesion size as a covariate or a nuisance regressor in the 

model (Karnath et al., 2004, Karnath and Smith, 2014, Schwartz et al., 2012, 

Kümmerer et al., 2013). Another method makes use of a random Gaussian fields to 

describe the relations between each voxel and its neighbours, in which the value of 
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each voxel is adjusted by the estimate of Gaussian smoothness. (Kimberg et al., 

2007). The former method simply adds lesion volume as an additional variable in the 

voxel-wise model. The latter method applies a Gaussian estimate to weight each 

voxel. Although the spatial dependence between each voxel and its adjacency is 

taken into account, the set of models are still established by each single voxel 

independently.  

Unfortunately, the problem here cannot be remedied unless the entire lesion 

is treated as a whole. This is because the anatomy of the lesion is driven by a 

pathological process which is neither perfectly random nor perfectly biased. This 

partial bias will vary from one pathological process to another, and will cause a 

pattern of anatomical interactions specific to each pathology. When the relations 

between lesion and behaviour are modelled, it is critical to taken in account the 

covariance between voxels. Instead of establishing the models voxel-by-voxel, a 

fundamental prerequisite for a valid model here will be to involve an irreducible 

multiplicity of voxels that describe sufficient dimensions of the lesioned brain – 

hence, a high-dimensional model (Mah et al., 2014b, Mah et al., 2014a, Xu et al., 

2017a). The contrast of between a mass-univariate prediction approach against a 

high-dimensional multivariate approach is illustrated in Table 2.1.  

It has previously been shown that high-dimensional modelling can remedy the 

spatial biases identified in mass-univariate prediction models in the context of spatial 

inference (Mah et al., 2014b).  In this chapter, we use an analogous approach to 

model outcome prediction rather than spatial inference. 

 Dimensionality of functional 
anatomy 

Dimensionality of lesion anatomy 

Mass-univariate prediction Low sensitivity, regardless of data 
size 

With spatial biases, regardless of 
data size 

High-dimensional multivariate 
prediction 

High sensitivity, given sufficient 
data 

Without spatial biases, given 
sufficient data 

Table 2.1 The necessity of high-dimensional model in lesion-deficit mapping (Xu et al., 2017a) 

Correlation-based machine learning techniques are often required to deal with 

the interactions between a multiplicity of variables in high-dimensional models. In this 
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study, the high-dimensional data will be modelled by SVM, which attempts to 

separate two classes labelled by a binary outcome with a hyperplane as described in 

the introduction. In particular, SVM is a typical machine learning technique that is 

capable to train sparse datasets in high-dimensionality and address the 

dimensionality mismatch between the number of training features and cases 

(Joachims, 1998, Saur et al., 2010). In the following chapter, based on 

aforementioned demonstration in terms of concept and methodology, a series of 

inferential models will be established to illustrate the relationship between the biases 

derived from neglecting anatomical dimensionality of lesion architecture and 

prediction performance. To be more specific, two series of simulations are modelled 

to assess the performance between a mass-univariate technique and multivariate 

based SVM. The outcome in first series of lesion-behaviour predictions is determined 

by a synthetic ground truth, where if a certain proportion of each lesion falls within 

each Brodmann area the patient is labelled as “affected”. In the other series, the 

ground truth outcome is based on a full combinatorial of Brodmann pairs, where a 

positive label is allocated where each lesion drops within either of each pair of 

Brodmann areas. The critical question is whether or not the systematic biases can 

be revealed and corrected; and to what extent the predictive power in relation to 

lesion-behaviour can be improved with the use of multivariate techniques. 
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2.2 Methods 

2.2.1 Patients 

A set of 1333 patients admitted to University College London Hospital (UCLH) 

Hyper-acute Stroke Unit (HASU) over the past decade were selected. All patients 

were clinically diagnosed with acute ischemic stroke, and received MRI, including 

diffusion-weighted imaging (DWI), in which at least one acute ischemic lesion could 

be identified. A threshold for minimal DWI-quantified lesion volume was set at 50 

milliliters which covered the 90th centile of our entire clinical population in order to 

reduce the disproportionate impact from very large lesions. An adjusted cohort 

including 1172 patients was thus produced. 

The age distribution from the set of 1172 patients was in range of 18 to 97 

years old with a mean of 63.89 and a standard deviation of 15.91. The gender ratio 

(Male) was 0.561 (Appendix B. Figure 7.1). Ethnicity for 952 (81.2%) from the full set 

of patients was disclosed in the clinical record which is illustrated in Appendix B. 

Figure 7.2. The distribution of age and sex, and the constitution of ethnicity reflected 

the catchment of clinical population in UCLH naturally. 

 

2.2.2 Imaging 

2.2.2.1 MR data acquisition 

All acquisitions performed on the scanners manufactured by General Electric 

(GE) (Discovery MR 450, Genesis Signa and Signa Excite), Philips (Achieva, Ingenia 

and Intera), or Siemens (Avanto, Biograph mMR, Espree, Skyra, Symphony, 

Symphony Tim, Trio Tim and Verio) with field strength of either 1.5 or 3 Tesla in a 

single session for each patient were collected via a picture archiving and 

communication system (PACS) from UCLH (the specific range of scanners and 

related parameters are listed in appendix A). The originated voxel sizes were 

different in some extent between the scanners, and so were the according spatial 

resolutions. Typically, for 1.5 Tesla GE medical system, the voxel size was sampled 

as 1mm x 1mm x 6.5mm (Columns = 256, Rows = 256). For 1.5 Tesla Philips 
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medical system, the typical voxel size was 1.2mm x 1.2mm x 6mm (Columns = 192, 

Rows = 192); the voxel size was 1mm x 1mm x 6mm (Columns = 256, Rows = 256) 

performed on 3 Tesla Philips scanners. For Siemens, the voxels sizes and spatial 

resolution were 1.8mm x 1.8mm x 6.5mm (Columns = 128, Rows = 128) and 1.2mm 

x 1.2mm x 6.5mm (Columns = 192, Rows = 192) on 1.5 Tesla and 3 Tesla scanners, 

respectively. The routine of clinical practice with regular equipment upgrades and 

replacement is the main reason for the diversity of scanners over the period of data 

collection. All brain scans were performed for the purpose of clinical routine obeying 

clinical protocols. 

The specific sequences extracted from each MRI session were axially 

required echo planar DWI with b-values of 0 s/mm2 and 1000 s/mm2 which is used 

for lesion segmentation (Mah et al., 2014c) so as to implement the series of 

simulations designed for this study. DWI is able to indicate the restricted ability of 

Brownian motion for extracellular water protons where cytotoxic edema causes 

imbalance. So, DWI is sensitive for detecting ischemic stroke and widely used for 

locating acute ischemic lesions (Warach et al., 1995, Löuvbld et al., 1997, Lövblad et 

al., 1998). In the clinical application, a DWI sequence usually includes images with b 

values of 0 s/mm2 (a b0 image) and 1000 s/mm2 (a b1000 image). The former type 

image shows stronger contrast on normal tissues but relatively insensitive to 

ischaemia. Conversely, an image with high diffusion weighting is used to sense 

water molecules movement. So, it is sensitive to ischaemia but poor to the contrast 

of normal tissues. Both types of images are complementary for brain registration and 

lesion segmentation, which rely on the contrast between normal tissue types and the 

discrimination between normal tissues and lesions, respectively.  

 

2.2.2.2 Image pre-processing 

A processing pipeline was implemented within MATLAB (MATLAB and 

Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, 

United States.) associated with a configured SPM12 toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to ensure the images to be 

processed systematically. 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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For the purpose of scientific imaging analysis, typically, the raw clinical MR 

images needed to be firstly converted from the complicated format of Digital Imaging 

and Communications in Medicine (DICOM) images to Neuroimaging Informatics 

Technology Initiative (NIfTI) format. Subsequently, in order to provide accurate and 

robust performance on image registration and segmentation in the later stage, we 

employed a pre-processing pipeline with the following steps. We empirically clamped 

the signal between 0.1% and 99.9% of the cumulative distribution estimated with a 

kernel density method (Botev et al., 2010), removing unusually low and high signals 

in each NIfTI file. Then an oracle-based 3D discrete cosine transform (ODCT3D) 

(Manjón et al., 2012) denoising method was applied for further noise reduction. In 

the next step, image registration was conducted based on each pair of DWI files. In 

order to optimise the alignment between the b0 and b1000 images in each pair, we 

used SPM12’s standard co-registration function to have the b0 image rigidly co-

registered to the b1000 image. Then, the normalisation / segmentation routine 

integrated in SPM12 (Ashburner and Friston, 2005) was applied to the b0 image to 

calculate a deformation field which described the optimal non-linear transformation of 

the b0 image into Montreal Neurological Institute (MNI) stereotactic space. Next, the 

deformation field derived from the b0 image was applied to the b1000 image to 

transform it into MNI space using the same routine. The parameters involved in the 

whole process of image registration were set at defaults by SPM12. Finally, both b0 

and b1000 images in each pair were resampled to 2mm3 isotropic with 6th degree b-

spline interpolation (Mah et al., 2014b, Mah et al., 2014c) and manually checked 

against the SPM template to confirm the satisfactory of registration.  

 

2.2.2.3 Lesion segmentation 

A previously validated method based on the anomaly metric zeta (Mah et al., 

2014c) was applied to segment lesions from the 1172 normalised b1000 images in a 

voxel-wise manner.  

A set of preliminaries conducted to optimise the performance of lesion 

segmentation were performed as follows. First, 492 DWI images derived from 

patients suspected of acute stroke but found to have normal imaging were selected 
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to form a reference normal image set. No acute lesion was visible here in any 

patient, and none was reported by the corresponding radiological record. Every scan 

was pre-processed using the exact same pipeline and resliced at the same 

resolution of 2mm isotropic voxels, which spatially presented as a 91 x 109 x 91 

matrix. Then, by combing the tissue maps provided by SPM12 including white matter 

tissue, grey matter tissue and cerebrospinal fluid (CSF), an inclusive brain mask was 

created. So as to remove image artefacts, we set an empirical threshold to exclude 

areas in the frontal and temporal poles commonly prone to artefacts on DWI 

sequences, and adjusted the inclusive brain mask accordingly. Subsequent lesion 

segmentation was performed within the confines of this adjusted mask. Next, the 

signal distribution was normalised for both lesion and reference datasets. Such 

signal normalisation sought to reduce instrumental and other incidental signal 

heterogeneity, so that the comparison between individual images could be maximally 

sensitive. The procedure was performed as follows. A binary white matter mask was 

created from SPM12’s white matter tissue probability map by thresholding at a value 

of >0.9. A robust kernel density estimate method (Botev et al., 2010) was then 

applied to the voxels falling within both customised maps in each b1000 image to 

obtain the peak white matter distribution which was then subtracted from each 

corresponding b1000 image to normalise the signal distribution. Guided by 

information in the radiological report, signal normalisation on unilateral and bilateral 

lesions was performed differently. For unilateral lesions—the vast majority—only the 

unaffected hemisphere was used to estimate the peak. For bilateral lesions, since 

ischemic lesions tended to be small in these circumstances, the kernel density 

estimate was applied to the whole brain. In both cases, the signal normalisation was 

equally effective in adjusting the differences in the signal distribution across all scans 

performed by a variety of scanners and related technical and practical variance. 

Lesion segmentation was performed in a voxel-wise manner. We calculated 

the zeta anomaly metric for each single voxel in each image independently against 

the reference set. To be specific, the voxel-wise zeta value in the test image is 

derived from the mean distance to the k nearest neighbors drawn from the 

anatomically homologous voxels in the unlesioned reference set, normalised by the 

mean distance between the k neighbors themselves (Mah et al., 2014c). The 

measure was the Euclidean distance in signal space. The only manipulable 
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parameter here is the number of nearest neighbors – k – commonly chosen with 

reference to the size of the reference dataset. In this study, we set k at 23 based on 

the calculation as below: 

𝑘 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 (√492).  

Zeta is a continuous metric. An adaptive threshold was therefore determined 

for each image. In brief, volume connectivity computed by bwlabeln, an integrated 

function of MATLAB (MATLAB and Statistics Toolbox Release 2016b, The 

MathWorks, Inc., Natick, Massachusetts, United States.) was applied to segment 

each lesion map into connected clusters. Then, each cluster was estimated under a 

generalised extreme value (GEV) distribution to derive mean and variance values 

which were used to decide threshold adaptively as described in Mah et al, 2014. 

 

2.2.3 Dimensionality reduction 

The predictive performance of a model is often dependent on the ratio of the 

number of instances to the number of material features. It is therefore helpful to 

reduce the dimensionality of individual features, while retaining their diversity. In 

human neuroanatomy, brain asymmetry between two hemispheres has been 

observed in two distinct aspects – neuroanatomical differences, and functional and 

behavioural lateralisation (Hugdahl, 2005, Toga and Thompson, 2003), but these 

differences are minor and do not generally extend to the vascular tree (Wright et al., 

2013). Vascular lesions rarely cross the midline of brain and are generally literalized 

(Nachev et al., 2008). It is therefore reasonable to collapse our stack of vascular 

lesions onto one hemisphere to reduce dimensionality for following predictive 

models. 

 

2.2.4 Simulations 

Our focus is the impact of the dimensionality of the distributed lesion 

architecture on predictive modelling, a commonly neglected aspect. In order to 

visualise the dimensionality of lesions, t stochastic neighbour embedding (t-SNE) 
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(Maaten and Hinton, 2008) was applied to cluster the set of 1172 lesions labelled by 

their volumes. In Figure 2.1, the resultant distribution was neither clearly separated 

nor wholly random, which indicated a single or a few concrete features were 

definitely insufficient to describe the relationships between lesions. Instead, this 

implied complex, inter-connected features must be considered as a whole to reveal 

hidden relationships and achieve optimal predictive performance. The impact on 

predictive power of neglecting lesion dimensionality within mass-univariate models, 

and its remedy by high-dimensional models, will now be explored with a series of 

lesion-deficit synthetic models for clinical prediction rather than lesion-deficit 

mapping. 

 

Figure 2.1 Lesion clustering by lesion volume  

For the stack of 1172 patients, two-dimensional embedding of the lesion anatomy labelled by the volume of 
each lesion was generated by t-SNE (Maaten and Hinton, 2008). The clustering was distributed in the way 
neither simple nor wholly random, which necessitated the use of multivariate methods to achieve optimal 

predictive performance and minimise bias. 
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2.2.4.1 Simulation one: lesion-deficit prediction depending on single 

Brodmann region performed by a mass-univariate technique (Fisher’s 

exact test) against a multivariate technique (SVM) 

2.2.4.1.1 Data preparation 

The set of 1172 segmented lesion maps were binarised to denote each voxel 

in the brain as being hit or not for the purpose of subsequent simulations. All lesions 

were collapsed onto the right hemisphere, then a threshold was applied to ensure 

every lesion voxel was collectively presented at least four times. The lesion 

distribution is shown in Figure 2.2. Thus, a data matrix involving 1172 patients with 

66770 features at the voxel size of 2mm was created. 

 

Figure 2.2 Lesion distribution 
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1172 lesions collapsed on the right hemisphere and were summed in a template in voxel size of 2mm. The 
colour spectrum demonstrated the density of lesion voxels distribution. 

 

2.2.4.1.2 Lesion-deficit models for clinical prediction 

In this series of simulations, we assumed a binary behavioural outcome was 

sensitive to neuroanatomy. In order to simulate this, each image from the stack of 

1172 binary lesion masks was labelled as “affected” or “unaffected” dependent on 

whether or not at least 20% fell within a specific single Brodmann area. 10% noise 

was introduced to naturalise the rate for hypothetical deficit of interest. In other 

words, there was a 90% possibility that 20% or more involvement of a specific 

Brodmann area by a lesion would lead to the affection of behavioural outcome 

(deficit).  

The set of 1172 lesion masks covered a total of 39 Brodmann areas. Within 

each area, the lesion-behaviour correlation was independently demonstrated by a 

pair of simulations modelled by a mass-univariate (Fisher’s exact test) and a 

multivariate (SVM) technique, respectively. 

 

2.2.4.1.3 Mass-univariate (Fisher’s exact test) analysis 

Based on the processed data matrix, the behavioural outcomes of 1172 

patients were labelled as “affected” or “unaffected”; and each of the 66770 binarised 

features were marked as “presented” or “absent”. Thus, a 2 x 2 confusion table was 

constructed for the following analysis. The entire lesion masks were split up into two 

parts, where 70% (911 lesions) were randomly selected for training purpose in order 

to identify a set of discriminating voxels; and the remaining 30% (261 lesions) were 

for the use of test. The mass-univariate analysis was performed using Fisher’s Exact 

Test which yielded a p value for each voxel to represent a voxel-wise likelihood 

indicating how an injured voxel could be associated with the hypothetical functional 

deficit. In this way, a probability map of the brain was created to illustrate a voxel-

wise significance - the lower a voxel’s p value was, the more significantly it 

correlated with the symptom. As the statistical test performed on each voxel was 

independent and simultaneous, Bonferroni correction was applied to correct for 
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multiple comparisons, where the alpha value (α) was set at 0.01 (Bland and Altman, 

1995, Bonferroni, 1935).  Fisher’s method (Fisher, 2006) was then employed to 

derive an image-level simulated outcome prediction from the set of significant voxels.  

A total of 39 models as described above were established and evaluated to 

cover any single Brodmann areas. In each model, 240 different randomisations of 

the data for training and test were performed iteratively. 

 

2.2.4.1.4 Multivariate (SVM) analysis 

1172 labelled cases (“affected” vs “unaffected”) were modelled as a two-class 

classification problem using LibSVM (Chang and Lin, 2011). In contrast to the mass-

univariate analysis in which each voxel contributed to the clinical lesion-deficit 

prediction independently, 66770 dimensions involved in each lesion were modelled 

simultaneously in multivariate analysis. Moreover, the interactions between voxels 

representing the architectural interactions and correlations intrinsically derived from 

the complex lesion architecture were also taken into account.  

In order to optimise the predictive performance, a 10-fold cross-validation was 

used to search for the optimal cost parameter (C) in the radial basis function (RBF) 

kernel. 31 different C values in data type of integer were assessed as below: 

C = 2m, where m is integer in the range between − 15 and 15.  

The cost parameter that yielded the best classification performance from the 

10-fold cross-validation was applied to the training dataset to generate the optimal 

predictive model. The classifier created by the optimised model was voxel-wise in 

which each voxel was weighted in terms of polarity and magnitude representing the 

membership of either class, and the significance of the specific voxel in relation to 

the behavioural deficit, respectively. Subsequently, this weighted classifier was used 

for prediction on the test dataset.  

A total of 39 models as described above were established and evaluated to 

cover any single Brodmann areas. In each model, 240 different randomisations of 

the data for training and test were performed iteratively. 
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2.2.4.1.5 Comparison of behavioural outcome prediction with mass-

univariate and multivariate analysis 

Both methods derived a voxel-wise probability brain map from a dataset that 

was then used to predict the outcome status of an independent set of test data. In 

the mass-univariate analysis, Fisher’s exact test generated a voxel-wise p value for 

each independent hypothesis test. Then, this p-value brain map was multiplied with 

each test brain to calculate the prediction on each voxel. The voxel-wise prediction 

was combined for the whole brain using the chi-square distribution-based Fisher’s 

method. In the multivariate analysis, the whole set of voxels involved in the brain 

mask was modelled by SVM RBF kernel simultaneously to generate a weighted 

probability brain map. Similarly, this brain map was used as a classifier to calculate 

the overlap between each test lesion mask so as to decide the membership by 

summing up the overlapped weights.  

The decision values derived from both methods were used to calculate the 

related evaluation metrics including accuracy, sensitivity and specificity. The details 

are as follows:  

accuracy =  
number of true positives + number of true negatives

the total number of cases
 ;  

sensitivity =  
number of true positves

number of true positives + number of false negatives

=  
number of true positives

the total number of "affected" cases
 ;  

specificity =  
number of true negatives

number of true negatives + number of false positives

=  
number of true negatives

the total number of "unaffected" cases
 .  

In addition, the comparison between mass-univariate and multivariate 

analysis was also interpreted and visualised using a receiver operating characteristic 

(ROC) curve and the area under the curve (AUC) (Hanley and McNeil, 1982, Pauker 

and Kassirer, 1975, Swets, 1973, Thornbury et al., 1975). ROC curve plotted with 
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true positive rate (sensitivity) on y-axis against false positive rate (1 - specificity) on 

x-axis illustrates the capacity to distinguish two classes at all classification 

thresholds. AUC stands for the area under a ROC curve, which aggregates the 

performance of classification at all thresholds. So, the higher AUC is, the stronger 

separability of the classification model is. The confidence interval at the level of 95% 

was applied to ROC curves for both methods to demonstrate the discrimination 

reliably.  

 

2.2.4.2 Simulation two: lesion-deficit prediction depending on dual 

Brodmann regions performed by a mass-univariate technique (Fisher’s 

exact test) against a multivariate technique (SVM) 

2.2.4.2.1 Data preparation  

The exact same stack of lesion masks as described in simulation one was 

used to perform this series of simulation. The 1172 binarised lesion maps collapsed 

onto the right hemisphere formed a date matrix featured 66770 dimensions (voxel 

size: 2mm). All features presented at least four times among the total 1172 lesion 

maps. 

 

2.2.4.2.2 Lesion-deficit model for clinical prediction 

In this set of simulations, we extended the single Brodmann area based 

lesion-deficit models to dual Brodmann areas in order to demonstrate the 

discrimination between mass-univariate and multivariate analysis in the context of 

distributed functional anatomical dependence. Due to the complex neural network 

underlying human brain, any given function or behavioural deficit tends to dependent 

on multiple loci (Mah et al., 2014b, Power et al., 2011, Fox, 2018). To establish such 

models, each lesion mask was labelled as “affected” or “unaffected” decided by 

whether or not its 20% or more fell within either of specific dual Brodmann regions. 

Minimum 20% volume of the lesion could solely fall within either of the specific dual 

Brodmann areas or cover both Brodmann areas. 10% noise rate was applied to 

present the naturalisation of hypothetical deficit of interest. In this way, the 
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established models illustrate a 90% possibility that at least 20% involvement of a 

specific dual Brodmann area overlapped by a lesion would result in the behavioural 

deficit. 

We used a Brodmann brain map including forty-one areas. The number of 

fully combinatorial dual areas is 820. In particular, the region combined by Brodmann 

area 28 and 36 was not covered by any of the 1172 lesion masks, so a total of 819 

predictive models based on dual Brodmann areas were established to perform 

mass-univariate (Fisher’s Exact Test) and multivariate (SVM) analysis, respectively.   

 

2.2.4.2.3 Mass-univariate (Fisher’s exact test) analysis 

As before, a 2 x 2 confusion table was constructed by labelling each lesion 

mask as either “affected” or “unaffected” and marking each dimension as either 

“present” or “absent” dependent on its binary value. Then, the mass-univariate 

analysis was performed using Fisher’s Exact Test by modelling each dimension 

independently to identify the correlation between its presenting flags and the 

hypothetical behavioural deficit. The stack of 1172 lesion masks was randomly split 

into two portions (70% vs 30%) for the purpose of training and test, respectively. 

During the training procedure, a voxel-wise p value was produced to describe the 

likelihood of how a “presented” voxel was associated with the affection of 

behavioural outcome. The lower the p value was, the high impact the voxel played. 

To adjust the p value derived from multiple independent significance tests, we 

applied Bonferroni correction (Bland and Altman, 1995, Bonferroni, 1935) at alpha 

level of 0.01. Then, the corrected voxel-wise p values formed a probability map is 

used to evaluate the model performance with the remaining 30% lesion masks. 

During the test process, associated with the Fisher’s method (Fisher, 2006), each 

lesion mask was multiplied by the probability map to sum up as a probability score 

used for indicating the membership of class.  

A total of 819 models as described above were established and evaluated to 

cover any combination of two Brodmann areas. In each model, 240 different 

randomisations of the data for training and test were performed iteratively. With the 
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concern of time efficiency, all models were processed on a distributed 24-nodes 

server machine in parallel to optimise the feasibility.  

 

2.2.4.2.4 Multivariate (SVM) analysis 

In multivariate analysis, LibSVM (Chang and Lin, 2011) was used to model 

the set of 1172 labelled lesion masks as a binary classification problem. A total of 

66770 dimensions in each lesion map were modelled simultaneously. Moreover, the 

interactions between dimensions were also taken in account by the correlation-

based technique. By contrast with the mass-univariate analysis, multivariate analysis 

was conducted to illustrate the complexity of intrinsic lesion architecture and reveal 

mechanisms underlying the damage. To match the mass-univariate analysis, 70% of 

the lesion masks were used for training and the others were used to test the 

prediction performance. In order to optimise the training process for the RBF kernel, 

a 10-fold cross-validation was performed to assess the optimal cost parameter in the 

range of -15 and 15 to the power of 2 (C =  2m, where m is integer between -15 and 

15). Thus, the optimal predictive model established with optimised hyper-parameter 

was applied to the set of training lesion maps to generate a classifier, in which the 

polarity and magnitude of voxel-wise weights represented to the membership of 

either class and the extent of confidence with the classification. This classifier was 

subsequently used to predict the memberships from an independent set of lesion 

masks.  

A total of 819 models as described above were established and evaluated to 

cover any combination of two Brodmann areas. In each model, 240 different 

randomisations of the data for training and test were performed iteratively. With the 

concern of time efficiency, all models were processed on a distributed 24-nodes 

server machine in parallel to optimised the feasibility. 
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2.2.4.2.5 Comparison of behavioural outcome prediction between mass-

univariate and multivariate analysis 

By training on a subset of the stack of 1172 lesion masks, both models 

generated a probability map that could be used to classify the remaining test lesion 

masks. In the mass-univariate models, the classifier was comprised of p values from 

independent significance tests; in multivariate analysis, the classifier was produced 

by taking into account all the dimensions together as well as their inter-connections 

with a correlation-based Gaussian kernel machine. As mentioned in simulation one, 

the basic evaluation metrics to compare with the performance of two types predict 

models were the level of accuracy and the according sensitivity and specificity. In 

addition, AUC-ROC curves were plotted to interpret and visualise the discrimination 

between both analyses. The confidence interval at the level of 95% was applied to 

ROC curves to prove reliability. 

 

2.2.5 Software and hardware 

All simulated prediction models were implemented in the environment of 

MATLAB (MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., 

Natick, Massachusetts, United States.).  

In simulation one, a 12-core Inter® Xeon® CPU E5-2620 2.00GHz processor 

with 64GB RAM and 9TB 7200 RPM SATA hard drive was used to conduct both 

Fisher’s Exact Tests and SVM models under a 64 bit Linux operation system 

(Ubuntu version 15.04).  

In simulation two, as the models needed to cover the full combination of any 

two Brodmann regions, enormous computation was essentially required. A 

Supermicro® MicroCloud with 24 modular nodes was used to perform mass-

univariate and multivariate analysis in parallel, which could be theoretically 12 times 

faster comparing to a standard sole desktop. In each modular node, there is an 

Inter® Xeon® E3-1200 processor with 4GB RAM and 2TB SATA hard drive. The 

operation system across the 24 modular nodes was Windows® 10 professional 64 

bit.   
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2.3 Results 

2.3.1 Simulation one: lesion-deficit prediction dependent on single 

Brodmann regions performed by a mass-univariate technique 

(Fisher’s exact test) versus a multivariate technique (SVM) 

The stack of 1172 lesion masks was labelled with a hypothetical functional 

deficit dependent on a specified proportion of each lesion overlapping with a specific 

Brodmann area. Thus, based on all of Brodmann areas covered by the set of lesion 

masks, a total of 39 lesion-deficit prediction models were established iteratively. 

Each model was performed by a mass-univariate (Fisher’s Exact Test) and a 

multivariate (SVM) technique respectively in order to illustrate how the complexity of 

lesion architecture and the inter-connection between dimensions will contribute to 

the lesion-deficit correlation for clinical prediction. The discrimination of separability 

was interpreted with an AUC-ROC curve. 

 

2.3.1.1 Comparison of Fisher’s exact test against SVM  

The set of 1172 lesion maps were randomly split into 70% and 30% to train a 

predictive model and test its performance for 240 iterations. In each iteration, a 

Fisher’s Exact Test was used in the mass-univariate analysis to generate a model for 

each single Brodmann area; whilst multivariate analysis was implemented by SVM. 

Thereby, a total of 9360 (39 Brodmann areas for 240 iterations) mass-univariate 

analysis models matched with 9360 models for multivariate analysis to compare the 

performance of clinical lesion-behavioural prediction. Both approaches took less one 

minute to generate a model and the whole series of simulation took approximately 

five calendar days. 

In the case of mass-univariate training procedure, voxel-wise p values derived 

from Fisher’s Exact Test indicated the likelihood of how a lesioned voxel is 

independently associated with the hypothetical deficit. By multiplying each test lesion 

map with the set of p values and then using Fisher’s method, the outcome 

predictions were generated. We applied Bonferroni correction (alpha level at 0.01) 
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for multiple comparisons (Bonferroni, 1935, Bland and Altman, 1995) to ensure the 

voxels retained with reliable influence and significance above the defined threshold. 

In the multivariate analysis, a correlated weighting map derived from SVM training 

process was applied to each test lesion mask for prediction outcome. Preliminarily, 

the optimal model for each single Brodmann area was confirmed with a search of the 

cost parameter (C), which assessed a total of 31 different values with a 10-fold 

cross-validation.  

For vast majority (32 of 39, 82.1%) of the models dependent on a single 

Brodmann region, the prediction performed by a high-dimensional multivariate 

approach (SVM) was superior to a low-dimensional mass-univariate technique 

(Fisher’s Exact Test). Figure 2.3 (a) shows the contrast of AUC value in each 

predictive model between Fisher’s Exact Test and LIBSVM; and Figure 2.3 (b) 

shows the extent of their differences. Among the superior models, the average of 

relative difference in term of AUC value between two approaches was 0.012. For the 

minority (7 of 32, 17.9%) of the models who performed better in mass-univariate 

analysis against multivariate analysis, we found the average number of lesion masks 

involved into those Brodmann areas was 14.57; whereas the average number of 

lesion masks within the other 32 Brodmann areas remarkably increased to 49.0 

(Table 2.2). This reflected the high-dimensional multivariate approach could provide 

greater performance, given sufficient data size. In other words, multivariate analysis 

investigated the lesion mechanism more thoroughly than the mass-univariate 

analysis. 
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Figure 2.3 The comparison of AUC between Fisher’s exact test and SVM 

The discriminations of predictive performance between mass-univariate and multivariate analysis, where 
majority of the case illustrated the superior predictive power achieved from multivariate analysis. 
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Brodmann Area AUC 1* AUC 2* Difference Number of lesions

26 0.8295 0.9032 -0.0737 8

35 0.9535 0.9910 -0.0375 30

10 0.9647 0.9796 -0.0149 11

29 0.9798 0.9880 -0.0082 13

5 0.9867 0.9924 -0.0056 14

24 0.9970 0.9976 -0.0006 11

32 0.9867 0.9872 -0.0005 15

48 0.9996 0.9989 0.0007 142

22 0.9951 0.9928 0.0023 52

21 0.9958 0.9934 0.0024 46

30 0.9987 0.9961 0.0026 43

17 0.9981 0.9954 0.0027 52

18 0.9984 0.9953 0.0031 45

42 0.9936 0.9902 0.0033 66

8 0.9969 0.9928 0.0041 19

39 0.9958 0.9916 0.0042 40

47 0.9912 0.9867 0.0045 63

40 0.9948 0.9890 0.0058 56

44 0.9931 0.9869 0.0062 103

45 0.9921 0.9858 0.0064 54

27 0.9945 0.9880 0.0065 31

34 0.9893 0.9822 0.0071 48

2 0.9911 0.9829 0.0082 60

9 0.9883 0.9784 0.0099 17

38 0.9948 0.9837 0.0111 43

19 0.9940 0.9829 0.0111 23

41 0.9924 0.9810 0.0113 98

3 0.9946 0.9826 0.0120 88

37 0.9941 0.9784 0.0157 30

46 0.9954 0.9791 0.0163 25

1 0.9748 0.9579 0.0168 38

20 0.9935 0.9747 0.0188 30

43 0.9910 0.9720 0.0190 94

7 0.9938 0.9732 0.0206 22

6 0.9928 0.9702 0.0226 41

25 0.9952 0.9698 0.0254 24

4 0.9900 0.9646 0.0254 39

23 0.9898 0.9552 0.0346 14

11 0.9910 0.9543 0.0367 22

* AUC 1: AUC values derived from Fisher's Exact Test

* AUC 2: AUC values derived from SVM

 

Table 2.2 The detailed performance between Fisher’s exact test and SVM 

Overall, the absolute AUC values from both approaches are high because the 

series of simulations were modelled in idealised conditions. The critical point that 

matters here is their relative difference, which indicated the benefits from the fidelity 

of lesion anatomical dimensionality. The average AUC value derived from SVM was 
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0.988 (95%CI: 0.986 – 0.990); whereas the mean AUC score derived from Fisher’s 

Exact Test was 0.981 (95%CI: 0.978 – 0.983) (Figure 2.4). Compared with the 

multivariate case, mass-variate analysis was less sensitive and less reliant on data 

size. 

 

Figure 2.4 Comparison of ROC curve between Fisher’s exact test and SVM 

The ROC curves derived from both low- and high-dimensional models demonstrated the averaged predictive 
performance across 39 single Brodmann areas. A total of 240 randomisations that split the lesion data for 
training and test purpose was iteratively conducted to enhance the performance stability and reliability. 
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2.3.2 Simulation two: lesion-deficit prediction dependent on dual 

Brodmann regions performed by a mass-univariate technique 

(Fisher’s exact test) versus a multivariate technique (SVM) 

The stack of 1172 lesion masks was labelled with a hypothetically functional 

deficit dependent on a certain proportion of each lesion overlapping with any 

combination of two Brodmann regions. Thus, except for the combination of 

Brodmann 28 and 36 which was not covered any of the lesion mask, a total of 819 

lesion-deficit prediction models were established independently. Each model was 

performed by a mass-univariate (Fisher’s Exact Test) and a multivariate (SVM) 

technique respectively in order to illustrate how the complexity of lesion architecture 

and the inter-connection between dimensions will contribute to the lesion-deficit 

correlation for clinical prediction. The discrimination of separability was interpreted 

with a AUC-ROC curve. 

 

2.3.2.1 Comparison of Fisher’s exact test against SVM 

For correspondence with the series of simulation one, the whole set of 1172 

lesion mask was randomly split into two subsets (70% and 30%): one was for 

training a classifier and the other subset independent from training was for the 

purpose of performance testing. The number of randomisations was 240. Iteratively, 

a Fisher’s Exact test was used in the mass-univariate analysis to generate a model 

for each combinatorial two Brodmann areas; whilst multivariate analysis was 

implemented by SVM. Thereby, a total of 196,560 (819 combinatorial dual Brodmann 

areas for 240 randomisations) mass-univariate analysis models matched with 

196,560 models for multivariate analysis to compare the performance of clinical 

lesion-behavioural prediction. Although both approaches took less one minute to 

generate a model, in regards with the enormous total number of models, we used a 

Supermicro MicroCloud machine including 24 modular nodes which could conduct 

12 models simultaneously in parallel. The entire process of evaluation took 

approximately ten calendar days. 
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In the case of mass-univariate training procedure, voxel-wise p values derived 

from Fisher’s Exact test indicated the likelihood of how a lesioned voxel is 

independently associated with the hypothetical deficit. By multiplying each test lesion 

map with the set of p values and then using Fisher’s method, the outcome 

predictions were generated. We applied Bonferroni correction (alpha level at 0.01) 

for multiple comparisons (Bonferroni, 1935, Bland and Altman, 1995) to ensure the 

voxels retained with reliable influence and significance above the defined threshold. 

In the multivariate analysis, a correlated weighting map derived from SVM training 

process was applied to each test lesion mask for prediction outcome. Preliminarily, 

the optimal model for each combinatorial dual Brodmann areas was confirmed with a 

search of the cost parameter (C), which assessed a total of 31 different values with a 

10-fold cross-validation.  

For vast majority (782 of 819, 95.5%) of the models depending on dual 

Brodmann regions, the prediction performed by a high-dimensional multivariate 

approach (SVM) was superior to a low-dimensional mass-variate technique (Fisher’s 

Exact Test). The schema ball in Figure 2.5 shows the contrast of AUC value in each 

predictive model between Fisher’s Exact Test and LIBSVM; and the brightness of the 

lines connecting any two Brodmann areas shows the extent of their differences. 

Among the models with advanced performance from SVM, the relative difference of 

AUC value in average was 0.027. Overall, the average AUC value derived from SVM 

was 0.987 (95%CI: 0.985 – 0.989); whereas the mean AUC score derived from 

Fisher’s Exact Test was 0.963 (95%CI: 0.958 – 0.967) (Figure 2.6). 
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Figure 2.5 Differences between Fisher’s exact test and LIBSVM across 819 combinatorial two Brodmann regions 

The scheme ball illustrated the discriminations of predictive performance between mass-univariate and 
multivariate analysis, where majority of the case showed superiority achieved from multivariate analysis. Each 
line was connected with two Brodmann areas representing a combinatorial Brodmann pair. The brightness of 
the connected lines was referred as the extent of differences. As there was a total of 819 comparisons, in case 

there was any extreme case that might present relatively much larger differences than the other cases, the 
scale of differences marked in colour bar is the value of logarithm.  
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Figure 2.6 Comparison of ROC curve between Fisher’s exact test and SVM 

The ROC curves derived from both low- and high-dimensional models demonstrated the averaged predictive 
performance across 819 combinatorial Brodmann pairs. As a more complex model comparing to the case of 

single region, the extent of discriminations between two analysis methods was further enlarged. A total of 240 
randomisations that split the lesion data for training and test purpose was iteratively conducted to enhance 

the performance stability and reliability. 
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2.4 Discussion 

2.4.1 Simulation one: lesion-deficit prediction dependent on single 

Brodmann regions performed by a mass-univariate technique 

(Fisher’s exact test) versus a multivariate technique (SVM) 

In this series of simulations, a hypothetical deficit was determined by a single 

locus model dependent on 20% or more of a lesion mask overlapping with a specific 

Brodmann area. In order to illustrate the limits of lesion-behavioural prediction, every 

segmented region in Brodmann brain parcellation covered by our lesion dataset was 

modelled to compare the performance between mass-univariate against multivariate 

analysis. The result reveals the high-dimensional multivariate analysis that takes into 

account the complex lesion architecture and its inter-woven relations is overall 

superior in terms of prediction sensitivity compared with the conventional low-

dimensional approach that relies on mass-univariate analysis. 

The assumption behind the hypothetical behavioural outcome modelled here 

is sensitivity of the focal brain injury to the underlying neuroanatomy, reflected in the 

different lesion patterns in the affected group compared with the other. Thus, the 

simulations were modelled as a binary classification problem to discriminate two 

groups of lesion masks. The multivariate approach showed significant, but not huge 

superiority (95%CI: 0.986 – 0.990 vs. 95%CI: 0.978 – 0.983), because we idealised 

the conditions and simplified model complexity for prediction. In the mass-univariate 

test, how the set of identified discriminating voxels independently coincided with the 

causal relations of lesion-deficit could be reflected by how effectively the cluster of 

voxels indicated the membership of a lesion mask. With regards to the differential 

vulnerability induced by the vasculature (Sosa et al., 2014), the strong lesion bias 

contaminating the mass-univariate analysis tended to displace the identified cluster 

of discriminating voxels away from the truly critical locus. Instead, a set of parasitic 

voxels from “collateral” damage tended to be included in the prediction, leading to 

misclassification (Mah et al., 2014a, Mah et al., 2014b, Xu et al., 2017a). This 

illustrates the fundamental drawback of mass-univariate analysis, here extended to 

outcome prediction. Note the matter is not the magnitude of the difference between 

the two approaches but its very presence: these are idealised conditions.  
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Although voxel-wise lesion-symptom mapping was a step forward compared 

with the original region-of-interest based methods, such as template overlay (Frey et 

al., 1987) and overlap subtraction (Rorden and Karnath, 2004), there have been 

increasing criticisms on the sensitivity and validity of the mass-univariate approaches 

to lesion-deficit prediction in the recent years. The relationships between lesions and 

deficits are constitutionally non-linear and multivariate. The fundamental weakness 

of mass-univariate based VLSM is its inability to cope with complex inter-related 

patterns, which forces more and more studies turned to either region-wise or voxel-

wise multivariate methods (Chechlacz et al., 2018, Husain and Nachev, 2007, 

Karnath and Smith, 2014, Lessov-Schlaggar et al., 2016, Mah et al., 2014b, Mah et 

al., 2014a, Norman et al., 2006, Pustina et al., 2018, Smith and Nichols, 2018, Smith 

et al., 2013, Xu et al., 2017a, Yourganov et al., 2016, Zhang et al., 2014, Zhao et al., 

2017). As aforementioned, for lesion-behavioural prediction, two crucial aspects 

contribute to the complexity – the lesion and the functional architecture. With regards 

with the region-wise, or ROIs based multivariate analysis, the underlying network of 

human brain function is complex and distributed, which cannot be precisely 

segmented by any atlas reliably. Although the inter-region correlations can be taken 

into account, the region-wise, or ROIs based multivariate analysis is conducted in an 

ambiguous and coarse spatial granularity, in which spatial bias and reduction of 

predictive sensitivity may still be incurred by the potential uncertainty derived from 

brain segmentations.  

Prior to any methodological consideration, the essence of the lesion 

architecture is intrinsically high dimensionality where the inter-voxel correlations may 

be critically related to the lesion-behavioural mapping. This high-dimensional 

problem inevitably requires a multivariate solution. The higher the resolution, the 

better the chance of identifying true lesion-deficit relations, though this necessarily 

incurs data and computational costs. Our results are consistent with previous studies 

that employed voxel-wise multivariate analysis which showed advanced performance 

in multivariate analysis compared with the conventional voxel-wise mass-univariate 

approach (Mah et al., 2014b, Zhang et al., 2014, Zhao et al., 2017). Going beyond 

these studies, we did not constrain the prediction to particular brain area or a fixed 

functional deficit; instead, we conducted the analysis on each Brodmann single area 

with a hypothetical deficit. Methodologically, we illustrated the discrimination 
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between two approaches. Conceptually, we generalised the model to potentially fit 

clinical lesion-deficit prediction globally.  

 

2.4.2 Simulation two: lesion-deficit prediction dependent on dual 

Brodmann regions performed by a mass-univariate technique 

(Fisher’s exact test) versus a multivariate technique (SVM) 

To provide greater fidelity to the likely underlying patters of functional-

anatomical dependence, a second series of simulation based on two Brodmann 

areas were conducted. A total of 819 two loci models were established, covering any 

two Brodmann area combinations. Analogously to the first simulation, we also 

employed a hypothetical deficit dependent on at least 20% of a lesion mask falling 

within the specific pair of Brodmann areas. Thus, a two-class classification problem 

was modelled with mass-univariate and multivariate analysis, respectively. The 

overall performance derived from multivariate analysis was significantly superior to 

mass-univariate analysis. Compared with the contrast in simulation one, the extent of 

difference between two approaches was markedly magnified.  

In the single locus model, prediction was artificially simplified to dependence 

on a relatively small, single region, and so the validity of mass-univariate analysis 

was affected by spatial bias to a limited extent; whereas a more complicated two loci 

scenario exposed the limitation of the mass-univariate analysis further. From the 

results, we can see the average performance of multivariate analysis in both series 

of simulation remained more or less the same (0.988 vs. 0.987). Whereas in the 

case of mass-variate analysis, there was an apparent difference between one-

regional and two-regional models (0.981 vs. 0.963). This reflected the significant 

effects on the complexity of the underlying prediction models. Mass-univariate 

analysis was much less sensitive to model complexity. It is reasonable to expect 

multivariate analysis will present overwhelming advantages further if we were to 

simulate the hypothetical deficit in relation to three or more brain regions 

simultaneously.  
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As aforementioned, by contrast with most other studies (Pustina et al., 2018, 

Smith et al., 2013, Zhang et al., 2014, Zhao et al., 2017), we used a hypothetical 

deficit in both series simulations rather than a specific cognitive impairment or 

assessment. This enabled us to examine how any behavioural outcome that is 

sensitive to neuroanatomy will differ across different lesion patterns and modelling 

methods. The results in both series of simulations supported our intuition, that high-

dimensional multivariate analysis, by explicitly modelling spatial interactions, could 

overcome the systemic bias incurred by mass-univariate analysis. Moreover, the 

essence of a large-scale dataset is not for improving marginal accuracy in mass-

univariate models but for matching the dimensionality of intrinsically complex lesion 

architecture.  
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2.5 Conclusion 

Lesion-deficit mapping plays an enormously important role in both system 

neuroscience and clinical behaviour prediction. The interactions between the 

complex lesion distribution and the underlying functional network are critical to 

relating neuroanatomy to function in the human brain. Our results showed the 

advanced fidelity of lesion-deficit prediction was achieved by a high-dimensional 

multivariate approach which explicitly modelled the spatial structure of natural focal 

lesions. The performance of high-dimensional modelling reflects its individuating 

power, which indicates the clinical applicability of lesion-deficit prediction.  

The contrast between a high-dimensional multivariate approach against a low-

dimensional mass-univariate approach was illustrated in two sets of simulations 

where affection of outcome followed a single locus and multi-locus distributed 

network, respectively. The multivariate approach achieved significant superiority to 

mass-univariate approach and remained more or less the same level of performance 

in both sets of simulations; whereas, the performance of mass-univariate analysis 

dropped remarkably in multi-locus models indicating the vital weakness to deal with 

complexity. With regards with the full complexity of lesion architecture, a high-

dimensional multivariate framework associated with correlation based machine 

learning techniques is inevitable. Moreover, the dimensionality of lesion architecture 

is highly relied on a large-scale dataset. The more lesions are involved into 

modelling, the better characterisation of lesion distribution can be conducted; 

meanwhile, less dimensionality mismatch and extent of over-fitting happens. Any 

easy alternative with neglect of lesion dimensionality will lower the limits of lesion-

deficit prediction.  

It is crucial to realise that the complexities of the architecture of lesions is 

comparable to that of the macroscopic functional organisation of the brain. Crucially, 

to characterise lesion architecture with high-dimensional modelling is the prerequisite 

to capture the relationships between lesion and outcome not only for clinical 

prediction but functional mapping. 
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Chapter 3  The benefits of unlabelled 

data in lesion-deficit prediction 

 

 

 

3.1 Introduction 

The history of lesion-deficit studies can be traced back to the mid of 19th 

century, as we have already seen. The advent of non-invasive imaging techniques, 

such as computed tomography (CT) (Hounsfield, 1973) and Magnetic Resonance 

Imaging (MRI) (Lauterbur, 1973), has allowed brain lesions to be visualised, 

assessed, and quantified in vivo. Thus, a series of remarkable lesion-deficit 

associations have been made during the past few decades including emotion 

(Adolphs et al., 1994, Adolphs et al., 1995), decision-making (Bechara et al., 1994, 

Bechara et al., 2000), motor skills (Maldonado et al., 2008), intelligence (Barbey et 

al., 2012, Gläscher et al., 2010) and visuospatial processing (Kravitz et al., 2011).  

Lesion-deficit mapping infers that a specific region is necessary for a function 

from its functional loss or impairment when the region is damaged. This is why lesion 

methods still retain their distinct value compared with other techniques, such as 

Transcranial Magnetic Stimulation (TMS) (Barker et al., 1985) and functional 

Magnetic Resonance Imaging (fMRI) (Ogawa and Lee, 1990, Ogawa et al., 1990b, 

Ogawa et al., 1990a, Ogawa et al., 1992), and compel us to return to this historic 

method. Yet, the conventional approaches widely applied to analyse lesion mapping 

models, particularly, voxel-based lesion symptom mapping (VLSM) have involved 

growing criticisms in the recent years (Mah, 2014a, Nachev et al., 2008, Xu et al., 

2017a). The critical concerns, as we have seen, are derived from the intrinsic 

complexity of human brain damage which is derived from the anatomical 

relationships underlying the natural patterns of pathological damage. We have seen 

(Chapter 2) that the correct inferential model here must be able to handle multiple 

variables simultaneously so as to model anatomically inter-woven functional 
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correlations and interactions; and meantime, the validity of an inferential model also 

requires to take into account sufficient variables to match the dimensionality of lesion 

architecture. Both aspects are indispensable – a high-dimensional multivariate 

analysis. 

The dimensionality of lesion anatomy establishes the principal need for high-

dimensional multivariate modelling for lesion-deficit prediction, which not only reflects 

the spatial validity of the model, but also achieves superior predictive fidelity, as we 

have seen. One previous study (Mah et al., 2014b) illustrated the high-dimensional 

models associated with multivariate analysis could remedy the systematically spatial 

biases identified in mass-univariate prediction models, which fundamentally proved 

the validity of inferential models for lesion-deficit prediction. Subsequently, another 

study (Xu et al., 2017a) demonstrated how a validated model would contribute to the 

fidelity of lesion prediction. In the study, Xu et al. established models for clinical 

lesion-deficit prediction based two typical pairs of Brodmann areas (areas 39 & 44; 

and 37 & 38), which indicated superior predictive sensitivity and specificity achieved 

by a high-dimensional multivariate models against the conventional mass-univariate 

model. In Chapter 2, we extended the previous study to model the prediction 

covering any single Brodmann area and fully combinatorial two regions, respectively, 

demonstrating the limits of clinical lesion-deficit prediction using a high-dimensional 

multivariate model compared with conventional mass-univariate models. The results 

showed the overall superiority of multivariate models that took into account the lesion 

dimensionality simultaneously and sufficiently. 

A high-dimensional multivariate model is irreplaceable while modelling lesion-

behavioural prediction; but we have to be aware of its dependence on sample size 

and computational power. Nowadays, with the rapid development of hardware, the 

need for intensive computation tends to be less of a problem. Nevertheless, a 

sufficient dataset with complete labelling of deficits as well as imaging is still a major 

challenge. Available resource and time will always limit data scale here, especially 

where data representative with respect to age, gender, ethnic, pathology and 

socioeconomic diversity is preferred. However, one of the key characteristics of 

clinical data is the difficulty of assuring completeness of each record where the data 

is not material to direct clinical care (Lee and Yoon, 2017). Large scale clinical 
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datasets take a long time to assemble and cannot be easily tailored to research 

purposes. Specifically, for lesion studies, it is common that merely a proportion of the 

available imaging will be linked to behavioural outcomes, leaving many unlabelled 

scans. A learning technique that can take advantage of both labelled and unlabelled 

data to learn from relatively fewer labelled instances and complement the whole 

dataset with an extra set of unlabelled instances, will make more efficient use of 

available data. Theoretically and practically, semi-supervised learning methods are 

of great interest because the unlabelled data can be treated as additional 

optimisation variables, together with labelled data to reduce the variability of trained 

classifiers so as to stabilise and improve the performance (Peikari et al., 2018, 

Sindhwani and Keerthi, 2006, Zhu, 2006, Zhu and Goldberg, 2009, Chapelle et al., 

2008).  

In this chapter, we extend the previous chapter to employ a transductive semi-

supervised SVM (Sindhwani and Keerthi, 2006, Sindhwani and Keerthi, 2007) in 

comparison with an ordinary SVM to investigate how the size of a labelled sample 

influences the fidelity of clinical lesion-deficit prediction; and the extent to which 

prediction models can benefit from a set of extra unlabelled samples. We adopt SVM 

for it is capable to training on sparse datasets with high-dimensionality and address 

the dimensionality mismatch between the number of training features and cases 

(Joachims, 1998, Saur et al., 2010). Semi-supervised SVMs can be understood as 

advanced modifications of regular SVMs, which maintain the original characteristics 

but extend the capacity to learn from unlabelled data points.  

Specifically, two series of simulations are performed to compare the predictive 

performance of a purely supervised learning model and a semi-supervised model at 

different proportions of available labelled data. On the one hand, we would like to 

quantify how predictive performance could be improved with increasing the number 

of labelled lesion maps. On the other hand, for each fixed number of labelled lesions, 

we wish to quantify the benefit of adding an extra set of unlabelled lesions within a 

semi-supervised framework. For comparison with the two series of simulations in the 

previous chapter, a hypothetical behavioural deficit is introduced, based on a certain 

proportion of each lesion falling within either a specific Brodmann area or any 

combination of two Brodmann areas. Constrained with the volume of the available 
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data and time, we randomly pick up five single-region models and ten dual-region 

models for evaluation. 
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3.2 Method 

3.2.1 Patients 

A set of 1333 patients admitted to University College London Hospital (UCLH) 

Hyper-acute Stroke Unit (HASU) over the past decade were selected. All patients 

were clinically diagnosed with acute ischemic stroke, and received MRI, including 

diffusion-weighted imaging (DWI), in which at least one acute ischemic lesion could 

be identified. A threshold for minimal DWI-quantified lesion volume was set at 50 

milliliters which covered the 90th centile of our entire clinical population in order to 

reduce the disproportionate impact from very large lesions. An adjusted cohort 

including 1172 patients was thus produced. 

The age distribution from the set of 1172 patients was in range of 18 to 97 

years old with a mean of 63.89 and a standard deviation of 15.91. The gender ratio 

(Male) was 0.561 (Appendix B. Figure 7.1). Ethnicity for 952 (81.2%) from the full set 

of patients was disclosed in the clinical record which is illustrated in Appendix B. 

Figure 7.2. The distribution of age and sex, and the constitution of ethnicity reflected 

the catchment of clinical population in UCLH naturally. 

 

3.2.2 Imaging 

3.2.2.1 MR data acquisition 

All acquisitions performed on the scanners manufactured by General Electric 

(GE) (Discovery MR 450, Genesis Signa and Signa Excite), Philips (Achieva, Ingenia 

and Intera), or Siemens (Avanto, Biograph mMR, Espree, Skyra, Symphony, 

Symphony Tim, Trio Tim and Verio) with field strength of either 1.5 or 3 Tesla in a 

single session for each patient were collected via a picture archiving and 

communication system (PACS) from UCLH (the specific range of scanners and 

related parameters are listed in appendix A). The originated voxel sizes were 

different in some extent between the scanners, and so were the according spatial 

resolutions. Typically, for 1.5 Tesla GE medical system, the voxel size was sampled 

as 1mm x 1mm x 6.5mm (Columns = 256, Rows = 256). For 1.5 Tesla Philips 
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medical system, the typical voxel size was 1.2mm x 1.2mm x 6mm (Columns = 192, 

Rows = 192); the voxel size was 1mm x 1mm x 6mm (Columns = 256, Rows = 256) 

performed on 3 Tesla Philips scanners. For Siemens, the voxels sizes and spatial 

resolution were 1.8mm x 1.8mm x 6.5mm (Columns = 128, Rows = 128) and 1.2mm 

x 1.2mm x 6.5mm (Columns = 192, Rows = 192) on 1.5 Tesla and 3 Tesla scanners, 

respectively. The routine of clinical practice with regular equipment upgrades and 

replacement is the main reason for the diversity of scanners over the period of data 

collection. All brain scans were performed for the purpose of clinical routine obeying 

clinical protocols. 

The specific sequences extracted from each MRI session were axially 

acquired echo planar DWI with b-values of 0 s/mm2 and 1000 s/mm2 which is used 

for lesion segmentation (Mah et al., 2014c) so as to implement the series of 

simulations designed for this study. DWI is able to indicate the restricted ability of 

Brownian motion for extracellular water protons where cytotoxic edema causes 

imbalance. So, DWI is sensitive for detecting ischemic stroke and widely used for 

locating acute ischemic lesions (Warach et al., 1995, Löuvbld et al., 1997, Lövblad et 

al., 1998). In the clinical application, a DWI sequence usually includes images with b 

values of 0 s/mm2 (a b0 image) and 1000 s/mm2 (a b1000 image). The former type 

image shows stronger contrast on normal tissues but relatively insensitive to 

ischaemia. Conversely, an image with high diffusion weighting is used to sense 

water molecules movement. So, it is sensitive to ischaemia but poor to the contrast 

of normal tissues. Both types of images are complementary for brain registration and 

lesion segmentation, which rely on the contrast between normal tissue types and the 

discrimination between normal tissues and lesions, respectively.  

 

3.2.3.2 Image pre-processing 

A processing pipeline was implemented within MATLAB (MATLAB and 

Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, 

United States.) associated with a configured SPM12 toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to ensure the images to be 

processed systematically. 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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For the purpose of scientific imaging analysis, typically, the raw clinical MR 

images needed to be firstly converted from the complicated format of Digital Imaging 

and Communications in Medicine (DICOM) images to Neuroimaging Informatics 

Technology Initiative (NIfTI) format. Subsequently, in order to provide accurate and 

robust performance on image registration and segmentation in the later stage, we 

employed a pre-processing pipeline with the following steps. We empirically clamped 

the signal between 0.1% and 99.9% of the cumulative distribution estimated with a 

kernel density method (Botev et al., 2010), removing unusually low and high signals 

in each NIfTI file. Then an oracle-based 3D discrete cosine transform (ODCT3D) 

(Manjón et al., 2012) denoising method was applied for further noise reduction. In 

the next step, image registration was conducted based on each pair of DWI files. In 

order to optimise the alignment between the b0 and b1000 images in each pair, we 

used SPM12’s standard co-registration function to have the b0 image rigidly co-

registered to the b1000 image. Then, the normalisation / segmentation routine 

integrated in SPM12 (Ashburner and Friston, 2005) was applied to the b0 image to 

calculate a deformation field which described the optimal non-linear transformation of 

the b0 image into Montreal Neurological Institute (MNI) stereotactic space. Next, the 

deformation field derived from the b0 image was applied to the b1000 image to 

transform it into MNI space using the same routine. The parameters involved in the 

whole process of image registration were set at defaults by SPM12. Finally, both b0 

and b1000 images in each pair were resampled to 2mm3 isotropic with 6th degree b-

spline interpolation (Mah et al., 2014b, Mah et al., 2014c) and manually checked 

against the SPM template to confirm the satisfactory of registration.  

 

3.2.2.3 Lesion segmentation 

A previously validated method based on the anomaly metric zeta (Mah et al., 

2014c) was applied to segment lesions from the 1172 normalised b1000 images in a 

voxel-wise manner.  

A set of preliminaries conducted to optimise the performance of lesion 

segmentation were performed as follows. First, 492 DWI images derived from 

patients suspected of acute stroke but found to have normal imaging were selected 
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to form a reference normal image set. No acute lesion was visible here in any 

patient, and none was reported by the corresponding radiological record. Every scan 

was pre-processed using the exact same pipeline and resliced at the same 

resolution of 2mm isotropic voxels, which spatially presented as a 91 x 109 x 91 

matrix. Then, by combing the tissue maps provided by SPM12 including white matter 

tissue, grey matter tissue and cerebrospinal fluid (CSF), an inclusive brain mask was 

created. So as to remove image artefacts, we set an empirical threshold to exclude 

areas in the frontal and temporal poles commonly prone to artefacts on DWI 

sequences, and adjusted the inclusive brain mask accordingly. Subsequent lesion 

segmentation was performed within the confines of this adjusted mask. Next, the 

signal distribution was normalised for both lesion and reference datasets. Such 

signal normalisation sought to reduce instrumental and other incidental signal 

heterogeneity, so that the comparison between individual images could be maximally 

sensitive. The procedure was performed as follows. A binary white matter mask was 

created from SPM12’s white matter tissue probability map by thresholding at a value 

of >0.9. A robust kernel density estimate method (Botev et al., 2010) was then 

applied to the voxels falling within both customised maps in each b1000 image to 

obtain the peak white matter distribution which was then subtracted from each 

corresponding b1000 image to normalise the signal distribution. Guided by 

information in the radiological report, signal normalisation on unilateral and bilateral 

lesions was performed differently. For unilateral lesions—the vast majority—only the 

unaffected hemisphere was used to estimate the peak. For bilateral lesions, since 

ischemic lesions tended to be small in these circumstances, the kernel density 

estimate was applied to the whole brain. In both cases, the signal normalisation was 

equally effective in adjusting the differences in the signal distribution across all scans 

performed by a variety of scanners and related technical and practical variance. 

Lesion segmentation was performed in a voxel-wise manner. We calculated 

the zeta anomaly metric for each single voxel in each image independently against 

the reference set. To be specific, the voxel-wise zeta value in the test image is 

derived from the mean distance to the k nearest neighbors drawn from the 

anatomically homologous voxels in the unlesioned reference set, normalised by the 

mean distance between the k neighbors themselves (Mah et al., 2014c). The 

measure was the Euclidean distance in signal space. The only manipulable 
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parameter here is the number of nearest neighbors – k – commonly chosen with 

reference to the size of the reference dataset. In this study, we set k at 23 based on 

the calculation as below: 

𝑘 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 (√492).  

Zeta is a continuous metric. An adaptive threshold was therefore determined 

for each image. In brief, volume connectivity computed by bwlabeln, an integrated 

function of MATLAB (MATLAB and Statistics Toolbox Release 2016b, The 

MathWorks, Inc., Natick, Massachusetts, United States.) was applied to segment 

each lesion map into connected clusters. Then, each cluster was estimated under a 

generalised extreme value (GEV) distribution to derive mean and variance values 

which were used to decide threshold adaptively as described in Mah et al, 2014. 

 

3.2.3 Dimensionality reduction 

The predictive performance of a model is often dependent on the ratio of the 

number of instances to the number of material features. It is therefore helpful to 

reduce the dimensionality of individual features, while retaining their diversity. In 

human neuroanatomy, brain asymmetry between two hemispheres has been 

observed in two distinct aspects – neuroanatomical differences, and functional and 

behavioural lateralisation (Hugdahl, 2005, Toga and Thompson, 2003), but these 

differences are minor and do not generally extend to the vascular tree (Wright et al., 

2013). Vascular lesions rarely cross the midline of brain and are generally literalised 

(Nachev et al., 2008). It is therefore reasonable to collapse our stack of vascular 

lesions onto one hemisphere to reduce dimensionality for following predictive 

models. 

 

3.2.4 Technique 

In the present chapter, we employ SVMlin (Sindhwani and Keerthi, 2006, 

Sindhwani and Keerthi, 2007) for supervised and semi-supervised modelling. TSVM 

is a natural extension of the original SVM to model binary classification problems in a 
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semi-supervised manner. In brief, TSVM was initially proposed to drive the optimised 

hyperplane with labelled data points alone towards regions with lower data density 

by appending an extra set of data points without labels. Further details about the 

theory of transductive learning has been mentioned in Chapter 1 and can also been 

found in previous studies (Bennett and Demiriz, 1999, Fung and Mangasarian, 2001, 

Joachims, 1999b). As a variation of TSVM, SVMlin can provide superior scalability 

and a multiple switch heuristic to not only optimise but also speed up the training 

process. Moreover, it is capable of coping with large scale datasets exhibiting 

sparsity which fits the properties of our lesion set well. 

 

3.2.5 Simulations 

The previous studies (Mah et al., 2014b, Xu et al., 2017a) and previous 

chapter have proven the modelled dimensionality of the lesion architecture plays a 

vital role for both functional localisation and deficit prediction. In this chapter, we 

quantify the benefit of adding unlabelled data to a lesion-deficit prediction problem 

within the framework of semi-supervised learning. 

 

3.2.5.1 Simulation one: single Brodmann area based lesion-deficit 

prediction performed by a supervised learning technique (SVM) versus a 

semi-supervised learning technique (transductive SVM)  

3.2.5.1.1 Data preparation 

The set of 1172 segmented lesion maps were binarised to denote each voxel 

in the brain as being hit or not hit for the purpose of subsequent simulations. All 

lesions were collapsed onto the right hemisphere, then a threshold was applied to 

ensure every lesion voxel was collectively presented at least four times. A data 

matrix involving 1172 patients with 2640 features at the voxel size of 6mm was 

created for modelling analysis. The lesion distribution (Figure 3.1) indicated the 

voxel-wise hit frequency followed a Gaussian distribution which potentially supported 

us to adopt a transductive SVM (TSVM) to identify the benefits from extra data points 

during the optimisation procedure. 
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Figure 3.1 Lesion distribution 

1172 lesions collapsed on the right hemisphere and were summed in a template in voxel size of 2mm. The 
colour spectrum demonstrated the density of lesion voxels distribution. 

 

3.2.5.1.2 Lesion-deficit models for clinical prediction 

As in the previous chapter, in this series of simulations, we posited a binary 

behavioural outcome that was sensitive to the underlying neuroanatomy. The lesion 

masks were divided into two groups, differing in their lesion patterns according to 

their intersection with each Brodmann area over separate experiments. The ground 

truth for labelling (“affected” or “unaffected”) depended on whether or not at least 

20% of a lesion fell within a specific single Brodmann area. 10% noise was 
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introduced to make the hypothetical deficit more realistic. In other words, there was a 

90% possibility that 20% or more involvement of a specific Brodmann area by a 

lesion would lead to a deficit. 

In order to demonstrate the effect of unlabelled dataset while correlating the 

hypothetical functional deficit and lesion maps, the way to establish the prediction 

models were considered with two aspects. On one hand, a set of proportions were 

pre-defined to divide the entire lesion dataset into labelled and unlabelled sample 

sets, respectively. In this way, we expected to examine how the proportion of 

unlabelled examples in a dataset would contribute to the prediction. On the other 

hand, for each above proportion, we implemented supervised learning models with 

the labelled instances alone; and semi-supervised learning models with both labelled 

and unlabelled instances. This is to discriminate learning methods. 

The set of 1172 lesion masks covered a total of 39 Brodmann areas. For each 

proportion of labelled lesion in each area, the lesion-behaviour correlation was 

independently modelled by a supervised (SVM) and a semi-supervised (TSVM) 

technique, respectively. 

 

3.2.5.1.3 Supervised learning models (SVM) 

SVMlin (Sindhwani and Keerthi, 2006, Sindhwani and Keerthi, 2007) was 

used to solve the two-class classification problem within a supervised learning 

framework. In order to quantify how the number of labelled data instances can 

contribute to prediction performance, 30%, 45%, 60%, 75% and 100% of the images 

used for training were labelled. In order to optimise predictive performance, a 10-fold 

cross-validation was used to search for the optimal regularisation parameter 

(lambda) across 9 levels of lambda values in range from 10-3 to 105 (The step was 

10 times.). The regularisation parameter that yielded the best classification 

performance from the cross-validation process was applied to the training dataset to 

generate the optimal predictive models. The classifier created by the optimised 

model was voxel-wise in which each voxel was weighted in terms of polarity and 

magnitude representing to the membership of either class and the significance of the 
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specific voxel in relation to the behavioural deficit, respectively. Subsequently, this 

weighted classifier was used for prediction on the test dataset.  

As mentioned above, the classifiers were trained with a set of different 

proportions randomly extracted from the whole lesion set, which required a relatively 

balanced label distribution for any specific Brodmann area. Meantime, the time 

expense was also considered. Thus, 5 Brodmann areas from a total of 39 areas 

were randomly selected to model the lesion-deficit prediction at 5 different portions of 

samples. In each Brodmann area, each proportion of samples were randomly split 

into 70% and 30% for training and test, separately. The number of randomisations 

for the split of training of test was 120 times. Hence, a total of 3000 (5 Brodmann 

areas x 5 portions x 120 iterations) high-dimensional multivariate analysis models 

were established for evaluating the prediction performance with a supervised 

learning method. The whole process took approximately 15 hours. 

 

3.2.5.1.4 Semi-supervised learning models (TSVM) 

SVMlin (Sindhwani and Keerthi, 2006, Sindhwani and Keerthi, 2007) can 

model a two-classification problem within a semi-supervised framework (TSVM) by 

appending the training data with an extra set of instances labelled as neutral (0). In 

addition, the maximum number of switches can be set empirically during the 

optimisation process. For direct comparison with supervised models, in the series of 

semi-supervised models, we still set five proportions of labelled data across 30%, 

45%, 60%, 75% and 100%, leaving the remaining lesion maps as unlabelled data. 

We can now quantify the impact of adding unlabelled data, as a function of its 

relative proportion.  

The optimisation procedure was also accomplished by 10-fold cross-

validation, where the optimal regularisation parameter (lambda) was searched in the 

range as follows: 

L = 10m, where m is integer in the range between -3 and 5. 

 The maximum number of switches was derived from the proportion of 

unlabelled data points. Specifically, the optimisation was across a set of proportions 
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between 0.5 and 1, with a step of 0.1. The optimal parameters were then used to 

generate the final classifiers. 

The same 5 areas randomly chosen for the supervised learning models were 

used to predict the lesion-deficit correlation at 5 different proportions of unlabelled 

samples. Train/test splits were 70% and 30%, as before. The number of 

randomisations for each split was 120 times. Hence, a total of 3000 (5 Brodmann 

areas x 5 proportions x 120 iterations) semi-supervised learning models were 

established for evaluating the prediction performance. The whole process costed 

approximately 30 hours. 

 

3.2.5.1.5 Performance comparison between supervised learning and semi-

supervised learning approaches 

By learning a set of purely labelled data and a mix of labelled and unlabelled 

data respectively, both methods generated a stack of discriminating voxels in the 

form of a probability brain map that can subsequently be used as a classifier to 

predict the hypothetical deficit.  

In order to evaluate the predictive abilities of each classifier, the predicted 

values on the test dataset were used to calculate the related evaluation metrics 

including accuracy, sensitivity, specificity and balanced accuracy. The details are as 

follows:  

accuracy =  
number of true positives + number of true negatives

the total number of cases
 ;  

sensitivity =  
number of true positves

number of true positives + number of false negatives

=  
number of true positives

the total number of "affected" cases
 ;  

specificity =  
number of true negatives

number of true negatives + number of false positives

=  
number of true negatives

the total number of "unaffected" cases
 ;  
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balanced accuray =  
sensitivity + specificity

2
 . 

As aforementioned, the set of simulated lesion-deficit prediction models 

began with a relatively small proportion of labelled data instances randomly 

extracted from the stack of 1172 lesions; then increased the proportions 

incrementally in order to identify the benefits from the size of labelled training dataset 

and an additional set of unlabelled data points. As a result, our simulations were 

inevitably to some extent constrained by imbalances in the label distribution. We 

therefore employed balanced accuracy (BAC) as one of the evaluation metrics, 

which not only allowed for the deviation of meaningful confidence intervals but 

avoided the over optimistic estimates derived from a biased classifier owing to label 

imbalance (Brodersen et al., 2010). 

In addition, the judgement of discrimination between supervised and semi-

supervised analysis was also interpreted and visualised using a receiver operating 

characteristic (ROC) curve and the area under curve (AUC) (Hanley and McNeil, 

1982, Pauker and Kassirer, 1975, Swets, 1973, Thornbury et al., 1975). ROC curve 

plotted with true positive rate (sensitivity) on y-axis against false positive rate (1 - 

specificity) on x-axis illustrates the capacity to distinguish two classes at all 

classification thresholds. AUC stands for the area under a ROC curve, which 

aggregates the performance of classification at all thresholds. So, the higher AUC is, 

the stronger separability of the classification model is. The confidence interval at the 

level of 95% was applied to ROC curves for both methods to demonstrate the 

discrimination reliably. In this series of simulation, the AUC scores and ROC plotting 

were associate with a performance metrics software – PERF 

(http://osmot.cs.cornell.edu/kddcup/software.html). 

http://osmot.cs.cornell.edu/kddcup/software.html


Chapter 3  The benefits of unlabelled data in lesion-deficit prediction 

157 

 

 

Figure 3.2 Balanced accuracy and AUC 

BAC is special occasion of AUC. It is averaged by sensitivity and specificity by thresholding the prediction value 
at zero.  

 

To be specific, for both supervised and semi-supervised models, evaluations 

were conducted to examine if a larger proportion of labelled data points could 

produce better predictive performance. Furthermore, for each specific proportion of 

labelled data instances, the evaluations mentioned above were performed to identify 

whether or not the semi-supervised models were superior to the supervised models 

overall by learning an additional set of data instances without a label. 
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3.2.5.2 Simulation two: dual Brodmann area based lesion-deficit 

prediction performed by a supervised learning technique (SVM) versus a 

semi-supervised learning technique (transductive SVM) 

3.2.5.2.1 Data preparation  

The same stack of lesion masks as described in simulation one was used to 

perform this series of simulations. In total, 1172 binarised lesion maps collapsed 

onto the right hemisphere, forming a data matrix with 2640 dimensions. All features 

were positive in at least four instances amongst the total 1172 lesion maps. 

 

3.2.5.2.2 Lesion-deficit model for clinical prediction 

In this series of simulations, we extended the single Brodmann area based 

lesion-deficit models to dual Brodmann areas in order to demonstrate the 

discrimination between supervised and semi-supervised analysis while dealing with 

a more complex problem.  

Realistically, any given function or behavioural deficit is likely to be dependent 

on multiple loci (Mah et al., 2014b, Power et al., 2011, Fox, 2018). Thus, in the 

series of simulations, each lesion mask was labelled as “affected” or “unaffected” 

dependent on whether or not 20% or more of it fell within a specific pair of Brodmann 

regions. A minimum 20% volume of the lesion could solely fall within either of the 

specific dual Brodmann areas or cover both Brodmann areas. 10% noise rate was 

applied to render the hypothetical deficit of interest more realistic. Thus, the 

established models illustrate a 90% possibility that at least 20% involvement of a 

specific dual Brodmann areas by a lesion would result in the behavioural deficit. 

We used a Brodmann brain map including forty-one areas. The number of 

fully combinatorial dual areas is 820. Since Brodmann areas 28 and 36 were not 

covered by any of the 1172 lesion masks, a total of 819 combinatorial regions were 

used for modelling supervised and semi-supervised analysis, respectively.   
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3.2.5.2.3 Supervised learning models (SVM) 

To relate the lesion masks and the hypothetically defined behavioural deficit, 

SVMlin (Sindhwani and Keerthi, 2006, Sindhwani and Keerthi, 2007) was used to 

classify the lesion patterns in a supervised learning manner. We set five different 

proportions of labelled data ranging from 30%, 45%, 60%, 75% to 100%. Each set of 

extracted lesions was used to learn a classifier separately. During optimisation 

process, a 10-fold cross-validation was used to tune regularisation parameter 

(lambda) in the range of -3 to 5 to the power of 10 (C =  10m, where m is integer 

between -3 and 5). The optimal regularisation parameter was then used for training 

process. The trained classifier created by the optimised model was voxel-wise, 

weighting in terms of polarity and magnitude the membership of either class and the 

significance of the specific voxel in relation to the behavioural deficit, respectively. 

This weighted classifier was subsequently used for prediction on the test dataset.  

As outlined above, the labelled proportion started at a low fraction—30%—

complicating the task of achieving reasonable class balance across each pair of 

Brodmann areas. Here 10 pairs of Brodmann areas from a total of 819 combinations 

were randomly selected. In each two-region model, each proportion of samples was 

randomly split into 70% and 30% for training and test, separately. The number of 

randomisations for the split of training of test was 120 times. Hence, a total of 6000 

(10 combinatorial two-region x 5 portions x 120 iterations) models were run. The 

whole process costed approximately 30 hours. 

 

3.2.5.2.4 Semi-supervised learning models (TSVM) 

By mixing labelled and unlabelled data together, SVMlin (Sindhwani and 

Keerthi, 2006, Sindhwani and Keerthi, 2007) takes into account both types of data to 

optimise the hyperplane, performing classification in a semi-supervised manner. For 

consistency with the previous experiments, in this series of semi-supervised models, 

five proportions ranging from 30%, 45%, 60%, 75% to 100% were evaluated, treating 

the remainder of the data as unlabelled. On one hand, it was available to identify if a 

larger proportion of labelled samples included in a mixed dataset would improve 

training performance.  
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As before, the optimisation procedure was also accomplished by 10-fold 

cross-validation, where the optimal regularisation parameter (lambda) was searched 

in the range as follows:  

L = 10m, where m is integer in the range between -3 and 5. 

The maximum number of switches was across a set of proportions between 

0.5 and 1, with a step of 0.1. The optimal parameters were then used to generate the 

final classifiers. 

The same 10 randomly chosen pairs of Brodmann areas were used, with the 

same random split into 70% and 30% for training and test, respectively. The number 

of randomisations for the split of training of test was 120. Hence, a total of 6000 (10 

combinatorial two Brodmann areas x 5 portions x 120 iterations) semi-supervised 

learning models were used to evaluate performance. The whole process took 

approximately 60 hours of computational time. 

 

3.2.5.2.5 Performance comparison between supervised learning and semi-

supervised learning approaches 

For each two-region model, by learning a subset from the whole training 

dataset at five pre-defined proportions, both supervised and semi-supervised 

analysis generated probability brain maps used for classifying an independent test 

dataset. 

As before, accuracy, sensitivity, specificity, and balanced accuracy were used 

to evaluate performance. Balanced accuracy was used to permit the derivation of 

meaningful confidence intervals and avoid over optimistic estimates derived from a 

biased classifier in the context of class imbalance (Brodersen et al., 2010). In 

addition, AUC-ROC curves were plotted to interpret and visualise the discrimination 

between both analyses at a set of varying thresholds 

(http://osmot.cs.cornell.edu/kddcup/software.html). Confidence intervals were set at 

95%. 

 

http://osmot.cs.cornell.edu/kddcup/software.html
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3.2.6 Software and hardware 

All simulated prediction models were implemented in the environment of 

MATLAB (MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., 

Natick, Massachusetts, United States.).  

For both sets of simulations, a 12-core Inter® Xeon® CPU E5-2620 2.00GHz 

processor with 64GB RAM and 9TB 7200 RPM SATA hard drive was used to 

conduct both SVM and TSVM models under a 64 bit Linux operation system (Ubuntu 

version 15.04).  
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3.3 Results 

3.3.1 Simulation one: single Brodmann region based lesion-deficit 

prediction performed by a supervised approach (SVM) versus a 

semi-supervised approach (TSVM) 

The stack of 1172 lesion masks were labelled with a hypothetical functional 

deficit dependent on a certain proportion of each lesion overlapping with a specified 

Brodmann region. Thus, except for Brodmann areas 28 and 36, which were not 

covered any of the lesion mask, a total of 39 single Brodmann regions were 

prepared for building up lesion-deficit prediction models. In this series of simulations, 

the prediction was performed by a supervised learning method (SVM) and a semi-

supervised learning method (TSVM), respectively. Within each learning approach, 

we would like to quantify how the number of labelled data instances included in the 

training procedure would contribute to classification fidelity. We also wish to quantify 

the benefit from an additional set of unlabelled data across the two approaches.  

 

3.3.1.1 Performance comparison between supervised learning and semi-

supervised learning models  

Lesion-deficit prediction based on five randomly sampled single Brodmann 

areas was performed with five subsets randomly extracted from the set of 1172 

lesion maps. Within each subset, 120 randomisations were split into 70% and 30% 

for training and testing, respectively. Hence, the results from a total of 3000 

supervised learning models and 3000 semi-supervised learning models were 

evaluated.  

For each chosen area, the balance of “affected” vs “unaffected” depended on 

the lesion distribution, requiring the use of balanced accuracy as the key metric of 

fidelity. The results are shown in Figure 3.3. Overall, the semi-supervised models 

were superior to the supervised models at the 95% confidence interval (Table 3.1). 

The largest difference (0.712±0.015 vs. 0.752±0.015) between the two approaches 

occurred within the smallest proportion (30%), and diminished with increasing 
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proportions, emphasizing the importance of unlabelled data were the labelled 

number is relatively small. 

In the purely supervised learning models, performance rose with training data 

size, as might be naturally expected. In the semi-supervised learning models, the 

picture was more complex, exhibiting a plateau over the intermediate proportions.  

 

 

Figure 3.3 Balanced accuracy  

Balanced accuracy was used for estimating the generalizability between supervised and semi-supervised 
learning methods. The estimates were derived from five single Brodmann regions sampled from the total 39 

regions at five pre-defined portions of subsets. For each region of each proportion of subset, 120 
randomisations were iteratively conducted to train and test with difference set of lesion data. The predictive 
performance achieved by the supervised learning method is in black, the semi-supervised in red. Error bars 

show 95% confidence intervals. 
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 30% 45% 60% 75% 100% 

SL: balanced 
accuracy 

0.712±0.015 0.734±0.012 0.741±0.010 0.742±0.009 0.863±0.008 

SSL: balanced 
accuracy 

0.752±0.015 0.768±0.012 0.768±0.010 0.768±0.009 0.863±0.008 

Table 3.1 The details of balanced accuracy  

Given the class imbalance, balanced accuracy values were helpful here in 

illustrating the contrast between supervised and semi-supervised analysis methods, 

as well as the contribution of labelled and unlabelled data points in each learning 

approach. To extend the interpretation, the ROC curve and related AUC scores were 

also computed for supervised and semi-supervised simulations at each proportion. 

Rather than choosing the prediction threshold at zero in the metric of balanced 

accuracy, ROC curves were computed with a set of varying thresholds to visualise 

the impact of threshold choice on classification fidelity.  

Overall, the results of ROC curves (Figure 3.5 to 3.9) and related AUC scores 

(Figure 3.4) showed the semi-supervised models to be superior to the supervised 

models. Compared with the evaluation with balanced accuracy, two slight differences 

were identified in the measurement of AUC scores. First, the performance of the 

semi-supervised models at the proportions of 30%, 45% and 60% was not 

distinguished from the corresponding supervised models at the 95% confidence 

interval, but a clear distinction was found at 75%. This may have reflected the 

instability of prediction performance at small scales of labelled data in the presence 

of class imbalance. Performance variability fell with increasing training data size, as 

indicated by descending standard error rates across the five pre-defined proportions, 

where the error rates dropped from 0.018 to 0.002 in supervised models and the 

range of error rates in semi-supervised models was between 0.017 and 0.002 (Table 

3.2). For the three intermediate ranges of proportions (45%, 60% and 75%), the 

measurement of balanced accuracy was estimated to be the same, while the AUC 

scores were subtly improved (0.893, 0.897 and 0.902). This is consistent with the 

expected pattern.  
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Figure 3.4 AUC scores 

AUC scores were calculated to estimate the generalizability between supervised and semi-supervised learning 
methods with an extensive range of prediction value. The estimates were derived from five single Brodmann 

regions sampled from the total 39 regions at five pre-defined portions of subsets. For each region of each 
proportion of subset, 120 randomisations were iteratively conducted to train and test with difference set of 

lesion data. The predictive performance achieved by supervised learning method is in black, semi-supervised in 
red. Due to limitation of our lesion data, the improvement was not consistently significant across all the 

thresholds in particular that the proportion of subset was relative small, where the distribution of labelled 
samples tended to be seriously imbalanced. 

 

 

 



Chapter 3  The benefits of unlabelled data in lesion-deficit prediction 

166 

 

 30% 45% 60% 75% 100% 

SL: AUC scores 0.847±0.018 0.868±0.013 0.876±0.011 0.882±0.009 0.990±0.002 

SSL: AUC scores 0.875±0.017 0.893±0.012 0.897±0.010 0.902±0.008 0.990±0.002 

Table 3.2 AUC scores 

 

 

Figure 3.5 ROC curve (subset portion: 30%) 

Refer to the combined description affiliated under Figure 3.8 
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Figure 3.6 ROC curve (subset portion: 45%) 

Refer to the combined description affiliated under Figure 3.8 
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Figure 3.7 ROC curve (subset portion: 60%) 

Refer to the combined description affiliated under Figure 3.8 
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Figure 3.8 ROC curve (subset portion: 75%) 

In the above four figures (3.7 – 3.10), a set of portions (30%, 45%, 60% and 75%) of the whole lesion data using 
as labelled data was randomly sampled for 120 iterations to discriminate the predictive power between a 

supervised and semi-supervised learning methods, respectively. The ROC curves for both learning methods 
were therefore plotted in the same figure for illustrating the contrast. The black solid line and relevant dotted 
lines referred to ROC curve and corresponding 95% confidence interval achieved in supervised analysis. Whilst 
the significantly superior performance achieved in semi-supervised analysis was shown in red lines. The more 

labelled data samples involved, the higher performance was observed via ROC curves. 
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Figure 3.9 ROC curve (the whole lesion set) 

The whole lesion data using as labelled data was randomly sampled for 120 iterations to examine the 
predictive power between a supervised and semi-supervised learning methods, respectively. The ROC curves 
for both learning methods were therefore plotted in the same figure for illustrating the contrast. The black 

solid line and relevant dotted lines referred to ROC curve and corresponding 95% confidence interval achieved 
in supervised analysis. Whilst the exact same performance achieved in semi-supervised analysis was shown in 

red lines. Two curves were completely overlapped. Comparing the performance achieved by a subset, the 
predictive power was boosted. 

Overall, the series of one-region based simulations showed the prediction 

performance was proportional to the size of labelled data points while learning a 

classifier. Moreover, for any labelled training dataset, an additional unlabelled 

dataset would probably lift the performance further in some extent. Nonetheless, as 

the inherent properties of our lesion maps decided the imbalanced label distribution, 
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the stability and reliability of prediction performance could be enhanced if the size of 

dataset could be expanded further.   

 

3.3.2 Simulation two: dual Brodmann regions based lesion-deficit 

prediction performed by a supervised approach (SVM) versus a 

semi-supervised approach (TSVM) 

The stack of 1172 lesion masks were labelled with a hypothetical functional 

deficit based on overlap with either of two specified Brodmann regions. Thus, except 

for the combination of Brodmann 28 and 36 which was not covered any of the lesion 

mask, a total of 819 combinatorial pairs of Brodmann regions were prepared. As in 

the last series of simulations, a supervised learning method (SVM) and a semi-

supervised learning method (TSVM) were compared, with exactly the same 

objective, now evaluated in the context of a more complex ground truth. 

 

3.3.2.1 Performance comparison between supervised learning and semi-

supervised learning models 

Ten combinatorial pairs of Brodmann areas was randomly sampled to 

establish lesion-deficit prediction. In each set of two-region models, prediction was 

performed with five proportions (30%, 45%, 60%, 75% and 100%) extracted from the 

set of 1172 lesion maps randomly. In each subset, 120 randomisations, split into 

70% and 30% for training and testing were performed. Hence, the results from a total 

of 6000 supervised learning matched with according 6000 semi-supervised learning 

models were available for analysis.  

Balanced accuracy was again used owing to the presence of class imbalance. 

Figure 3.10 shows the results. Overall, the semi-supervised models tended to be 

superior, but not within the 95% confidence intervals. As summarised in Table 3.3, 

the largest difference in terms of balanced accuracy (0.807±0.013 vs. 0.824±0.013) 

between two approaches occurred at the smallest proportion (30% labelled data and 

70% unlabelled data sampled from the full 1172 lesion masks). This emphasised the 
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contribution of an additional unlabelled data set on top of a relatively small set of 

labelled data points. As before, the semi-supervised advantage fell with increasing 

proportions of labels. When the instances used for learning a classifier were all 

labelled, the performance achieved obtained from both approaches converged as 

expected. The results were aligned with expectations; but the reliability of contrast 

between two approaches did not show statistical significance.  

Within each method, predictive fidelity grew with increasing training data size. 

Owing to the biased vascular brain lesion distribution, the ratios between two classes 

in this series of simulations was approximately 1:7 (“affected” / “unaffected”) on 

average, which means there were approximately a total of 150 lesions labelled as 

“affected” from the full 1172 lesion maps. From Figure 3.12 associated with the 

details in Table 3.3, we can see the trends of improvement in both methods were 

more or less the same. When the labelled training dataset increased from 30% to 

45% of the 1172 lesion set, the ascendance was in a relatively large amplitude; 

meantime, the standard error rates in both methods dropped from 0.013 to 0.010. 

Among three middle range proportions (45%, 60%, 75%), the performance achieved 

by both methods improved mildly, which also further stabilised by slightly dropped 

standard error rates. At last, the value rose dramatically when all the labelled data 

points contributed to training the classifiers with a standard error rate at 0.002. This 

indicated classifiers might not be sufficiently learnt by only 30% labelled data points. 

Then, the classifiers were trained fairly between 45% and 75% labelled data points 

involvement.  
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Figure 3.10 balanced accuracy 

Balanced accuracy was used for estimating the generalizability between supervised and semi-supervised 
learning methods. The estimates were derived from ten combinatorial Brodmann pairs sampled from the total 

819 pairs at five pre-defined portions of subsets. For each region of each proportion of subset, 120 
randomisations were iteratively conducted to train and test with difference set of lesion data. The predictive 

performance achieved by supervised learning method is in black, semi-supervised in red. Superior 
performance was observed in semi-supervised analysis, but not significantly so. 

 

 30% 45% 60% 75% 100% 

SL: balanced 
accuracy 

0.807±0.013 0.817±0.010 0.827±0.009 0.831±0.007 0.886±0.006 

SSL: balanced 
accuracy 

0.824±0.013 0.829±0.009 0.836±0.009 0.837±0.007 0.886±0.006 
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Table 3.3 balanced accuracy  

The results of ROC curves (Figure 3.12 to 3.16) and related AUC scores 

(Figure 3.11) show a similar picture. The semi-supervised models were superior 

overall, but not within the 95% confidence interval. Moreover, the differences were 

less marked than for balanced accuracy (a detailed comparison is shown in Table 

3.4). Compared with balanced accuracy, the ROC curves and according AUC scores 

were estimated by a variety of thresholds to illustrate the contrast between 

supervised and semi-supervised learning models comprehensively.  

Within each method, performance improved with more labelled data as 

expected. 

 

Figure 3.11 AUC scores 
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AUC scores were calculated to estimate the generalizability between supervised and semi-supervised learning 
methods with an extensive range of prediction values. The estimates were derived from ten combinatorial 

Brodmann regions sampled from the total 819 regions at five pre-defined portions of subsets. For each region 
of each proportion of subset, 120 randomisations were iteratively conducted to train and test with difference 

set of lesion data. The predictive performance achieved by supervised learning method is in black, semi-
supervised in red. As a more complex model, the limitation of lesion data was further emphasised. The 

improvement was not significant across all the thresholds. 

 

 30% 45% 60% 75% 100% 

SL: balanced 
accuracy 

0.914±0.011 0.928±0.008 0.936±0.007 0.937±0.006 0.985±0.002 

SSL: balanced 
accuracy 

0.922±0.010 0.931±0.007 0.938±0.006 0.939±0.005 0.985±0.002 

Table 3.4 balanced accuracy  
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Figure 3.12 ROC curve (subset portion: 30%) 

Refer to the combined description affiliated under Figure 3.15 
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Figure 3.13 ROC curve (subset portion: 45%) 

Refer to the combined description affiliated under Figure 3.15 
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Figure 3.14 ROC curve (subset portion: 60%) 

Refer to the combined description affiliated under Figure 3.15 
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Figure 3.15 ROC curve (subset portion: 75%) 

In the above four figures (3.14 – 3.17), a set of portions (30%, 45%, 60% and 75%) of the whole lesion data 
using as labelled data was randomly sampled for 120 iterations to discriminate the predictive power between 
a supervised and semi-supervised learning methods, respectively. The ROC curves for both learning methods 
were therefore plotted in the same figure for illustrating the contrast. The black solid line and relevant dotted 
lines referred to ROC curve and corresponding 95% confidence interval achieved in supervised analysis. Whilst 
the performance achieved in semi-supervised analysis was shown in red lines. There is no significance between 

two analysis methods observed. 
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Figure 3.16 ROC curve (the whole lesion set) 

The whole lesion data using as labelled data was randomly sampled for 120 iterations to examine the 
predictive power between a supervised and semi-supervised learning methods, respectively. The ROC curves 
for both learning methods were therefore plotted in the same figure for illustrating the contrast. The black 

solid line and relevant dotted lines referred to ROC curve and corresponding 95% confidence interval achieved 
in supervised analysis. Whilst the exact same performance achieved in semi-supervised analysis was shown in 

red lines. Two curves were completely overlapped. Comparing the performance achieved by a subset, the 
predictive power was boosted. 

In agreement with the series of simulations based on single Brodmann 

regions, the two-region based simulations showed enhanced performance with 

larger proportions of labelled data, but the benefit of semi-supervised learning was 

less clear.   
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3.4 Discussion 

3.4.1 Simulation one: lesion-deficit prediction depending on single 

Brodmann region performed by a supervised learning method 

(SVM) versus a semi-supervised learning method (TSVM) 

In the previous chapter, we showed that high-dimensional multivariate 

analysis (SVM) that takes into account the complex lesion architecture and its inter-

woven relations is overall superior in terms of prediction fidelity compared with the 

conventional low-dimensional approach reliant on mass-univariate analysis. This 

series of simulations replicated the analysis, now employing supervised (SVM) and 

semi-supervised (TSVM) high-dimensional methods, and exploring the benefit of 

incorporating unlabelled data into the model. As aforementioned, the nature of 

clinical data makes large, completely labelled datasets difficult to acquire (Lee and 

Yoon, 2017). The use of additional unlabelled data may contribute to the optimisation 

of the learning process further, and to reduce the variability of a learnt classifier, 

though it could also degrade performance if the unlabelled dataset is constitutively 

dissimilar (Peikari et al., 2018, Sindhwani and Keerthi, 2006, Zhu, 2006, Zhu and 

Goldberg, 2009, Chapelle et al., 2008).  

Our analysis explores the impact of a trade-off between the volume of labelled 

and unlabelled data. Here the most illuminating difference can reasonably be 

assumed to be located at the point of the greatest disparity in the proportions of 

labelled and unlabelled data. Within each individual learning method, the results 

obtained from five pre-defined proportions of data showed the prediction 

performance was proportional to the size of training dataset. Comparison between 

the two methods showed the semi-supervised learning models to be superior, 

though the magnitude of the advantage could be potentially enhanced with the 

addition of more data, and were sensitive to the complexity of the hypothesised 

underlying functional anatomy. 

The analysis of balanced accuracy suggested a clear benefit for semi-

supervised learning; AUC-ROC less so, both in terms of accuracy and its variance. It 

should be noted that imbalance—and relatively low numbers of lesions falling within 
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each test region—will have reduced our ability to quantify the benefit definitively, 

even with a dataset of unprecedented size. 

Overall, given the intrinsically high-dimensional lesion architecture (Mah et al., 2015, 

Mah et al., 2014b, Xu et al., 2017a, Xu et al., 2017b), semi-supervised learning is a 

complementary strategy of potential use in lesion-deficit prediction. This is because 

an extra set of unlabelled data instance not only increases the number of cases 

involved into a learning procedure; but enhances the naturalisation of feature 

distribution (Klöppel et al., 2012). Moreover, for a predictive model parameterised 

with spatial complexity, it is reasonable to believe the more unlabelled data is mixed 

with labelled data, the more natural a description of the general population is likely to 

be achieved. Hence, predictive performance is improved. 

3.4.2 Simulation two: lesion-deficit prediction depending on a 

combinatorial pair of Brodmann regions performed by a supervised 

learning method (SVM) against a semi-supervised learning method 

(TSVM) 

The single locus simulations fundamentally revealed the contribution of an 

additional unlabelled dataset for modelling lesion-deficit prediction, though the 

correlations between focal damage and functional deficit were idealised within a 

single Brodmann region. In order to identify if an extra set of unlabelled data could 

improve predictive performance in a more complex scenario, two-region based 

simulations were conducted. As before, a hypothetical deficit was determined by a 

dual loci model dependent on 20% or more of a lesion mask overlapping with a 

combination of Brodmann areas. Then, lesion-deficit prediction was modelled by a 

supervised (SVM) and semi-supervised (TSVM) learning methods, respectively. The 

trade-off between labelled and unlabelled samples was still followed by five pre-

defined proportions.  The critical point of comparison was assumed to be located at 

the point of the greatest difference between labelled and unlabelled data.  

The results fulfilled expectations. For both balanced accuracy and AUC-ROC, 

the maximum contrast between the two learning approaches was 0.17 (balanced 

accuracy: 0.824 vs. 0.807) and 0.008 (AUC: 0.922 vs. 0.914) respectively when 30% 

of all lesions were extracted randomly using as labelled samples; whilst, the contrast 
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reduced to 0.006 (0.837 vs. 0.831) and 0.002 (0.939 vs. 0.937). Note that the 

performance obtained in these simulations was better overall that in the one area 

simulations. For example, in one-region simulations, the balanced accuracies were 

in the range from 0.712 to 0.863 in supervised learning models and from 0.752 to 

0.863 in semi-supervised learning models. Whereas, in two-region simulations, the 

value ranges were between 0.807 and 0.886 in supervised models; and they were 

between 0.824 and 0.886 in semi-supervised models. Similar comparisons were also 

observed in the estimates of AUC. In regard to the design of both series simulations, 

the imbalance of class distribution in first series of simulation was more severe than 

it was in the two-region based simulation. Specifically, the positive and negative 

class ratio was roughly 1:12 in one-region simulations; whereas, the ratio increased 

to approximately 1:7. In other words, the balance of label distribution in the two-

region simulations was much better. This may explain why a more complex 

predictive model that based on two Brodmann areas performed better than a model 

that simplified lesion-deficit correlation within a single Brodmann area – the 

properties of dataset played a vital role during lesion prediction. Nevertheless, in 

contrast with one-region simulations, where the performance of semi-supervised 

learning models was significantly distinguished from the corresponding supervised 

learning models, in the two-region simulations, semi-supervised models showed 

superiority, but not within the 95% confidence interval. This may be interpreted as 

implying the current dataset was less than sufficient to distinguish two learning 

approaches engaged with more complex predictive models.  

Overall, two set of simulations were complementary to each other. The 

simpler predictive models based on a single Brodmann area assured the value of 

unlabelled dataset. While coping with more complex predictive models, the other 

series of simulations showed the possibilities implicitly; meantime, encouraged us to 

expand existing dataset. 
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3.5 Conclusion 

The intrinsic dimensionality of complex lesion architecture compels us to 

employ a high-dimensional multivariate analysis while modelling lesion-deficit 

prediction. Nonetheless, the power of high-dimensional modelling is highly 

dependent on a sufficient dataset with complete labelling which is still a major 

challenge, particularly, in clinical domain. In order to alleviate the constraints, we 

involved a mix of data samples with both complete and incomplete labelling to 

optimise the performance of high-dimensional modelling for lesion-deficit prediction. 

In light of the results obtained from two series of simulations, predictive performance 

was clearly proportional to the sample size with complete labelling. Accordingly, an 

additional set of unlabelled samples could improve the performance further in some 

extent, though the significance of discrimination was varied upon the complexity of 

simulated models.  

This study was consistent with the intuition that the addition of extra 

unlabelled samples together with labelled samples will improve the naturalisation of 

lesion distribution, and reduce variability. Theoretically, the sample lesion distribution 

could be better approximated to the general population with the increase of either 

labelled or unlabelled samples. In practice, this study demonstrated an effective 

alternative when the completely labelled data instances are insufficient, or an 

additional dataset with incomplete labelling are available. 
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Chapter 4  Therapeutic inference in 

the focally damaged human brain 

 

 

 

4.1 Introduction 

To make a therapeutic inference in the focally damaged human brain is to 

establish a causal relation between a therapeutic intervention and its behavioural 

outcome in the context of focal brain injury. We have seen that on this problem are 

likely to impinge biological factors reflecting two distinct complex dimensionalities 

intrinsically to the human brain in health and disease: the distributed lesion 

architecture (Mah et al., 2014b, Xu et al., 2017a, Xu et al., 2017b) and the distributed 

functional network (Glasser et al., 2016a, Sporns, 2013, Sporns, 2011, Sporns et al., 

2005).  

In the preceding chapters, we have examined the impact on lesion-deficit prediction 

of neglecting the dimensionality of lesions through the use of modelling methods that 

ignore the high-dimensional spatial correlations present in lesion data. Here we 

focus on a related but distinct problem: the identification of a therapeutic effect within 

an interventional study. In the conventional interventional studies, a low-dimensional 

model relying on a few crude anatomical factors such as the volume of damage or 

crudely discretised brain regions are almost invariably employed. Thus, the variation 

arising from variability of individual outcomes tends to be ignored owing to 

insufficient parameterisation. As a result, the effect of an intervention embedded in a 

casual field of multiple contributory factors can only be weakly isolated.  

In essence, conventional interventional trials are group studies, where a cohort of 

patients is assumed to be homogeneous and individual differences are treated as 

noise, approximated no better than by the mean of the group. Consequently, the loss 

of individual information may lead to poor sensitivity. Given the complexity of the 
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human brain, it is reasonable to assume the factors on which the effect of the 

intervention depends and from which it must be isolated should be extracted from as 

many features of the patient as are material to the outcome. Indeed, the inadequate 

dimensionality of the models in common use may explain the striking failure rate of 

translational medicine, where significant interventional effects observed in animal 

trials are difficult to reproduce in humans (Brodie, 1962, Wang and Johnson, 2008, 

Bracken, 2009, Jucker, 2010). Of course, translation may fail for many reasons 

including differences in genetics, molecular or cellular mechanisms, immunity and so 

on. But a failure caused by unaddressed complexity in both the functional and lesion 

architecture (Xu et al., 2017b, Xu and Pan, 2013, Mak et al., 2014, Perel et al., 2007) 

is at least addressable through the use of the right modelling method. Though the 

distributed functional network underlying any one function remains largely unknown, 

a critical prerequisite for establishing a causal relation between a therapeutic 

intervention and its outcome ought to be the sufficient parameterisation of the 

complexity of the lesion architecture as reflected in its complex spatial distribution. 

We have seen this can be done with the right high-dimensional multivariate model.   

Now to establish a high-dimensional model of therapeutic inference we need 

sufficiently parameterised lesion patterns associated with a behavioural outcome. In 

this chapter we use gaze deviation, as a behavioural measure that is directly 

quantifiable from brain imaging alone, removing the noise and uncertainty arising 

from clinical labelling. Patients with acute ischemic stroke in whom critical 

oculomotor or attentional neural circuits are disrupted often exhibit a gaze palsy: a 

shift in the preferred direction of gaze at rest (Ramat et al., 2006). Since our 

population of stroke patients has been imaged twice—on admission with CT, and 

typically 24 to 72 hours later with MRI—we are able to quantify gaze at two time 

points, yielding a vector of change over time. Thus, an outcome ground truth can be 

set up by relating each lesion map to the behavioural parameter of a change in gaze. 

We can implement such high-dimensional modelling with support vector machines, 

generating a classifier predicting which lesion patterns tend to cause persistent gaze 

deviation rather than spontaneous recovery.  Simulated interventions with varying 

effect sizes can then be evaluated to derive a continuous “therapeutic function” 

which describes the ability to identify the effect of an intervention with the aid of low 
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or high-dimensional multivariate models. This is the approach pursued in this 

chapter.  
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4.2 Methods 

4.2.1 Patients 

A set of 1333 patients admitted to University College London Hospital (UCLH) 

Hyper-acute Stroke Unit (HASU) over the past decade were selected. All patients 

were clinically diagnosed with acute ischemic stroke, and received MRI, including 

diffusion-weighted imaging (DWI), in which at least one acute ischemic lesion could 

be identified. A threshold for minimal DWI-quantified lesion volume was set at 50 

milliliters which covered the 90th centile of our entire clinical population in order to 

reduce the disproportionate impact from very large lesions. An adjusted cohort 

including 1172 patients was thus produced. 

The age distribution from the set of 1172 patients was in range of 18 to 97 

years old with a mean of 63.89 and a standard deviation of 15.91. The gender ratio 

(Male) was 0.561 (Appendix B. Figure 7.1). Ethnicity for 952 (81.2%) from the full set 

of patients was disclosed in the clinical record which is illustrated in Appendix B. 

Figure 7.2. The distribution of age and sex, and the constitution of ethnicity reflected 

the catchment of clinical population in UCLH naturally. 

 

4.2.2 Imaging 

All patients underwent both CT within a few hours of the first onset of acute 

ischemic stroke and MR imaging sessions typically in the following 24 to 72 hours.  

 

4.2.2.1 CT data acquisition 

All CT imaging sessions acquired by either a Somatom Definition or a 

Somatom Sensation scanner manufactured by Siemens (Erlangen, Germany) with a 

typical resolution for each uncontrasted head image of 0.48 mm x 0.48mm x 5mm 

(Columns = 512, Rows = 512), and retrieved via a picture archiving and 

communication system (PACS) from UCLH. All scans were obtained within clinical 

protocols in the course of routine clinical care. The accompanying radiological 
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reports were checked for precise diagnosis, which helped us eliminate alternative 

diagnoses, such as primary intracerebral haemorrhage.  

 

4.2.2.2 CT data analysis 

4.2.2.2.1 Imaging pre-processing 

A dedicated pipeline for processing CT head images was implemented within 

MATLAB (MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., 

Natick, Massachusetts, United States.). First, the raw clinical CT head images were 

converted from Digital Imaging and Communications in Medicine (DICOM) images to 

Neuroimaging Informatics Technology Initiative (NIfTI) format for the purpose of 

scientific imaging analysis. Then, by rigidly co-registering to the standard SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) tissue probability map based on 

normalised mutual information with adjustment from a Procrustes analysis weighted 

by the white and gray matter compartments, each CT image was rigidly transformed 

into MNI stereotactic space (Jha et al., 2016, Xu et al., 2017b).  

 

4.2.2.2.2 Semi-automatic gaze segmentation 

The degree of head yaw was estimated by the co-registering procedure. 

Then, in every three-dimensional co-registered head scan, each intraocular lens, 

typically best seen in the axial slice that passed closest to the lens’s centroid, was 

segmented. This was performed by a trained operator (Parashkev Nachev) in a 

semi-manual manner with the aid of MIPAV’s level-set VOI tool 

(https://mipav.cit.nih.gov/) on its corresponding (usually the same or immediately 

neighboring) slice thereafter (Figure 4.1). This method was able to segment both 

natural or prosthetic lenses. In cases where only one lens was visible, the other eye 

was ignored. Next, a MATLAB integrated function (poly2mask) (MATLAB and 

Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, 

United States.) was applied to generate a binary mask based on the voxel 

coordinates of each segmented lens boundary, which derived the centroid of each 

mask and according orientation derived with another MATLAB function (regionprops) 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://mipav.cit.nih.gov/
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(MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, 

Massachusetts, United States.). Finally, in combination with the estimate of head 

yaw derived from the procedure of image co-registration, the calculated centroid 

coordinates and its orientation automatically determined the side of the 

corresponding eye and it is gaze direction relative to the axis of the body.  

 

Figure 4.1 Gaze segmentation 

In each brain sequence, the slice that best demonstrated the intraocular lens was manually identified by an 
experienced neurologist. Then, the yaw angle was automatically calculated by the related function integrated 

in MATLAB. 

 

4.2.2.3 MR data acquisition 

All acquisitions performed on the scanners manufactured by General Electric 

(GE) (Discovery MR 450, Genesis Signa and Signa Excite), Philips (Achieva, Ingenia 

and Intera), or Siemens (Avanto, Biograph mMR, Espree, Skyra, Symphony, 

Symphony Tim, Trio Tim and Verio) with field strength of either 1.5 or 3 Tesla in a 
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single session for each patient were collected via a picture archiving and 

communication system (PACS) from UCLH (the specific range of scanners and 

related parameters are listed in appendix A). The originated voxel sizes were 

different in some extent between the scanners, and so were the according spatial 

resolutions. Typically, for 1.5 Tesla GE medical system, the voxel size was sampled 

as 1mm x 1mm x 6.5mm (Columns = 256, Rows = 256). For 1.5 Tesla Philips 

medical system, the typical voxel size was 1.2mm x 1.2mm x 6mm (Columns = 192, 

Rows = 192); the voxel size was 1mm x 1mm x 6mm (Columns = 256, Rows = 256) 

performed on 3 Tesla Philips scanners. For Siemens, the voxels sizes and spatial 

resolution were 1.8mm x 1.8mm x 6.5mm (Columns = 128, Rows = 128) and 1.2mm 

x 1.2mm x 6.5mm (Columns = 192, Rows = 192) on 1.5 Tesla and 3 Tesla scanners, 

respectively. The routine of clinical practice with regular equipment upgrades and 

replacement is the main reason for the diversity of scanners over the period of data 

collection. All brain scans were performed for the purpose of clinical routine obeying 

clinical protocols. 

The specific sequences extracted from each MRI session were axially 

required echo planar DWI with b-values of 0 s/mm2 and 1000 s/mm2 which is used 

for lesion segmentation (Mah et al., 2014c) so as to implement the series of 

simulations designed for this study. DWI is able to indicate the restricted ability of 

Brownian motion for extracellular water protons where cytotoxic edema causes 

imbalance. So, DWI is sensitive for detecting ischemic stroke and widely used for 

locating acute ischemic lesions (Warach et al., 1995, Löuvbld et al., 1997, Lövblad et 

al., 1998). In the clinical application, a DWI sequence usually includes images with b 

values of 0 s/mm2 (a b0 image) and 1000 s/mm2 (a b1000 image). The former type 

image shows stronger contrast on normal tissues but relatively insensitive to 

ischaemia. Conversely, an image with high diffusion weighting is used to sense 

water molecules movement. So, it is sensitive to ischaemia but poor to the contrast 

of normal tissues. Both types of images are complementary for brain registration and 

lesion segmentation, which rely on the contrast between normal tissue types and the 

discrimination between normal tissues and lesions, respectively.  
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4.2.2.4 MR data analysis 

4.2.2.4.1 DWI pre-processing 

A processing pipeline was implemented within MATLAB (MATLAB and 

Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, 

United States.) associated with a configured SPM12 toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to ensure the images to be 

processed systematically. 

For the purpose of scientific imaging analysis, typically, the raw clinical MR 

images needed to be firstly converted from the complicated format of Digital Imaging 

and Communications in Medicine (DICOM) images to Neuroimaging Informatics 

Technology Initiative (NIfTI) format. Subsequently, in order to provide accurate and 

robust performance on image registration and segmentation in the later stage, we 

employed a pre-processing pipeline with the following steps. We empirically clamped 

the signal between 0.1% and 99.9% of the cumulative distribution estimated with a 

kernel density method (Botev et al., 2010), removing unusually low and high signals 

in each NIfTI file. Then an oracle-based 3D discrete cosine transform (ODCT3D) 

(Manjón et al., 2012) denoising method was applied for further noise reduction. In 

the next step, image registration was conducted based on each pair of DWI files. In 

order to optimise the alignment between the b0 and b1000 images in each pair, we 

used SPM12’s standard co-registration function to have the b0 image rigidly co-

registered to the b1000 image. Then, the normalisation / segmentation routine 

integrated in SPM12 (Ashburner and Friston, 2005) was applied to the b0 image to 

calculate a deformation field which described the optimal non-linear transformation of 

the b0 image into Montreal Neurological Institute (MNI) stereotactic space. Next, the 

deformation field derived from the b0 image was applied to the b1000 image to 

transform it into MNI space using the same routine. The parameters involved in the 

whole process of image registration were set at defaults by SPM12. Finally, both b0 

and b1000 images in each pair were resampled to 2mm3 isotropic with 6th degree b-

spline interpolation (Mah et al., 2014b, Mah et al., 2014c) and manually checked 

against the SPM template to confirm the satisfactory of registration. 

 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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4.2.2.4.2 T2 pre-processing and semi-automatic gaze segmentation 

Similar to the pre-processing procedure of CT head images, MR T2 

sequences were also rigidly co-registered to the tissue probability map provided by 

SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in standard MNI space 

based on the normalised mutual information which was adjusted with a white and 

gray matter compartments weighted Procrustes analysis (Jha et al., 2016, Xu et al., 

2017b).  

As for the CT images, the degree of head yaw estimated during the co-

registering procedure was first recorded. Then, in every co-registered T2 scan, the 

axial slice that best showed each intraocular lens was manually identified by a 

trained operator (Parashkev Nachev), and semi-manually segmented with the aid of 

MIPAV’s level-set VOI tool (https://mipav.cit.nih.gov/) on its corresponding slice 

(usually the slice that passed the closest to each lens’s centroid or its immediately 

neighboring) (Figure 4.1). This method is compatible with segmenting both natural 

and prosthetic lenses. In the minority of patients where only one lens is visible, we 

segmented the one lens and treated the other as absent. Subsequently, MATLAB’s 

poly2mask function (MATLAB and Statistics Toolbox Release 2016b, The 

MathWorks, Inc., Natick, Massachusetts, United States.) was applied to create a 

binary mask based on the voxel coordinates of each lean boundary. Thereafter, with 

aids of another MATLAB’s function: regionprops (MATLAB and Statistics Toolbox 

Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States.), the 

centroid of the binary mask and its orientation was calculated, which allowed for 

determining the side of the corresponding eye and the direction of gaze for each eye 

in the axial plane relative to the head automatically. Finally, in combination with the 

degree of head yaw estimated from the image registration procedure, the direction of 

gaze relative to the axis of the body was confirmed. 

 

4.2.2.5 Lesion segmentation 

A previously validated method based on the anomaly metric zeta (Mah et al., 

2014c) was applied to segment lesions from the 1172 normalised b1000 images in a 

voxel-wise manner.  

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://mipav.cit.nih.gov/
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A set of preliminaries conducted to optimise the performance of lesion 

segmentation were performed as follows. First, 492 DWI images derived from 

patients suspected of acute stroke but found to have normal imaging were selected 

to form a reference normal image set. No acute lesion was visible here in any 

patient, and none was reported by the corresponding radiological record. Every scan 

was pre-processed using the exact same pipeline and resliced at the same 

resolution of 2mm isotropic voxels, which spatially presented as a 91 x 109 x 91 

matrix. Then, by combing the tissue maps provided by SPM12 including white matter 

tissue, grey matter tissue and cerebrospinal fluid (CSF), an inclusive brain mask was 

created. So as to remove image artefacts, we set an empirical threshold to exclude 

areas in the frontal and temporal poles commonly prone to artefacts on DWI 

sequences, and adjusted the inclusive brain mask accordingly. Subsequent lesion 

segmentation was performed within the confines of this adjusted mask. Next, the 

signal distribution was normalised for both lesion and reference datasets. Such 

signal normalisation sought to reduce instrumental and other incidental signal 

heterogeneity, so that the comparison between individual images could be maximally 

sensitive. The procedure was performed as follows. A binary white matter mask was 

created from SPM12’s white matter tissue probability map by thresholding at a value 

of >0.9. A robust kernel density estimate method (Botev et al., 2010) was then 

applied to the voxels falling within both customised maps in each b1000 image to 

obtain the peak white matter distribution which was then subtracted from each 

corresponding b1000 image to normalise the signal distribution. Guided by 

information in the radiological report, signal normalisation on unilateral and bilateral 

lesions was performed differently. For unilateral lesions—the vast majority—only the 

unaffected hemisphere was used to estimate the peak. For bilateral lesions, since 

ischemic lesions tended to be small in these circumstances, the kernel density 

estimate was applied to the whole brain. In both cases, the signal normalisation was 

equally effective in adjusting the differences in the signal distribution across all scans 

performed by a variety of scanners and related technical and practical variance. 

Lesion segmentation was performed in a voxel-wise manner. We calculated 

the zeta anomaly metric for each single voxel in each image independently against 

the reference set. To be specific, the voxel-wise zeta value in the test image is 

derived from the mean distance to the k nearest neighbors drawn from the 
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anatomically homologous voxels in the unlesioned reference set, normalised by the 

mean distance between the k neighbors themselves (Mah et al., 2014c). The 

measure was the Euclidean distance in signal space. The only manipulable 

parameter here is the number of nearest neighbors – k – commonly chosen with 

reference to the size of the reference dataset. In this study, we set k at 23 based on 

the calculation as below: 

𝑘 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 (√492).  

Zeta is a continuous metric. An adaptive threshold was therefore determined 

for each image. In brief, volume connectivity computed by bwlabeln, an integrated 

function of MATLAB (MATLAB and Statistics Toolbox Release 2016b, The 

MathWorks, Inc., Natick, Massachusetts, United States.) was applied to segment 

each lesion map into connected clusters. Then, each cluster was estimated under a 

generalised extreme value (GEV) distribution to derive mean and variance values 

which were used to decide threshold adaptively as described in Mah et al, 2014. 

 

4.2.2.6 Behaviour: gaze deviation 

The preferred direction of gaze was employed to describe patients’ 

neurological state in the present study. As a crucial component of the neurological 

examination, the direction of gaze reflects the disruption of critical motor and 

attentional neural circuits distributed across multiple brain regions (Corbetta et al., 

1998), which has been widely used as a standard parameterisation of clinical deficits 

in stroke, such as NIH Stroke Scale (NIHSS) (Group, 1997, Muir et al., 1996).  

In practice, the way to quantify gaze deviation has not been standardised 

though it is an important indicator clinically. The methods we proposed above is to 

segment the lens of each eye on a specific slice of each head image (both CT and 

MRI), which allowed for objective and contemporaneous measures of preferred gaze 

direction in the axial plane of the head. The procedure of scanning has no strong 

lateralised features, hence, is free from external attentional bias. Prior to gaze 

segmentation, both estimates of head-centric and body-centric yaw could be derived 

from image co-registration procedure. The two estimates were highly correlated as 
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head is generally supported in a midline-aligned position during scan sessions. We 

opted to head-centric value for the purpose of gaze segmentation. Thus, for the 

subsequent modelling, the gaze of each patient was parameterised at two time 

points: the acquisition time of the CT, and the time of the MRI in 24-72 hours 

typically (a minority of patients were scanned by MRI later, up to 10 days.). 

Patients with acute ischemic stroke are naturally immediately treated after CT 

scanning. Treatments that altered the anatomical properties of the lesion, such as 

thrombolysis, were always carried out before the MRI scanning from which the lesion 

map was segmented. Hence, the lesion pattern presented the neurological state at 

the second time point, which reflected all the changes during the period of both 

spontaneous and treatment induced intervention.  

To demonstrate the correlation between the orientation of gaze deviation and 

crude parameterisations of lesion masks, a generalised linear model was fitted to 

relate the gaze angle distributed in seven bins to the laterality of the corresponding 

lesions in each bin indexed by the mean proportion of lesion voxels found in the right 

hemisphere. As expected, gaze deviation was sensitively modulated by the lesion 

laterality at the time of onset (Figure 4.2 A). At the later time of the MRI, however, 

there was no apparent relation between gaze deviation and the laterality of the brain 

lesion (Figure 4.3). This was consistent with the idea that recovery might be related 

to more detailed features of the underlying neuroanatomy not easily captured by any 

simple parameterisation. 
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Figure 4.2 Distribution of patient gaze on admission (CT) 

The gaze on admission was derived from a semi-automated segmentation algorithm based on the intraocular 
lenses on CT scans. Part A demonstrated the distribution of gaze deviation which was visualised by polar plot 
of the histogram (in blue) and related kernel density estimate (in black). Circular mean (in red) of patient gaze 
was 0.93 degrees to the midline. Part B demonstrated the relations between gaze direction on admission and 
the laterality of brain lesion. Seven bins of deviated gaze angle were empirically pre-defined. For each bin, the 

averaged ratio of lesion volume dropped within right hemisphere was plotted in blue circle. The relation across 
gaze was plotted with a general linear model fitted by maximum likelihood (in red). The plots showed gaze 

direction was strongly correlated with the laterality of brain damage. Hereby, the variation of gaze shown in 
Part would not be noise. 
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Figure 4.3 Distribution of patient gaze at the time point of the MRI 

The gaze on the second time point was derived from the same semi-automated segmentation algorithm based 
on the intraocular lenses on MR scans. Seven bins of deviated gaze angle were empirically pre-defined. For 

each bin, the averaged ratio of lesion volume dropped within right hemisphere was plotted in blue circle. The 
relation across gaze was plotted with a general linear model fitted by maximum likelihood (in red). The 

relations between gaze direction typically 24-72 hours after admission and the laterality of brain lesion showed 
much less dependence, as the mechanism of neurological recovery is more complex. 

To model therapeutic inference, the patients exhibiting a gaze deviation to the 

left of 12 degrees or more at the time point of CT, returning to within 3 degrees of the 

midline by the time of the MRI were labelled as ‘recovered’, and those whose 

deviation remained at least 6 degrees to the left were labelled as ‘persistent 

(unrecovered)’. Subjectively and empirically, we set the thresholds above to divide 

the whole lesion maps into two illustrative categories. Naturally, there is no hard 

boundaries for either abnormality or normality. We chose deviation to the left side 

because left-hemispheric ischemic strokes tend to be more frequent and appear to 

result in a worse outcome comparing to their counterparts induced in right 

hemisphere (Hedna et al., 2013, Yamamoto et al., 2014). In addition, one sided 

model was chosen to minimise the complexity of the underlying neural dependents 

and make the contrast with low-dimensional approaches more conservative. 
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4.2.3 Therapeutic inference 

We established two series of therapeutic simulations modelled by low- and 

high-dimensional approaches respectively to identify and quantify the relative 

inferential sensitivities to detecting the effect of each intervention. 

Specifically, interventions were simulated with varying effect sizes, which 

allowed us to estimate the ability of detecting an effect across a range of sizes. We 

opted to use simulated rather than real interventions in order to obtain reliable 

ground truths against which the comparative fidelity of low and high-dimensional 

models could be compared. Two broad categories of interventions in focal brain 

damage were simulated as follows: lesion-reducing and lesion-retaining 

interventions. The former is generally deployed in the “hyper-acute” period to 

salvage the threatened brain, such as drug-induced or mechanical thrombolysis in 

ischemic stroke; the latter is usually deployed at a later stage after the lesion is 

established, such as drug-assisted or behavioural rehabilitation. For the purpose of 

this study, a lesion-reducing intervention was simulated to modify the lesion anatomy 

in its periphery at a variety of pre-defined levels of effect; and a lesion-retaining 

intervention that did not change the lesion itself was simulated to assist the 

functional adaptation of the brain during recovery with varying effect on the whole 

patient. 

 

4.2.3.1 Data preparation 

To implement the therapeutic inference models, preliminarily, the stack of 

segmented 1172 lesion maps was re-oriented to voxel size of 6mm, which finalised 

5789 voxels in each lesion mask. Then, by binarizing the lesions, the voxels involved 

in each lesion were simply referred as features that hit by a focal brain injury or not. 

 

4.2.3.2 Lesion non-altering interventions 

To simulate a lesion-retaining intervention, we randomly divided the whole set 

of patients into two equal parts: one half was marked as treated, and the other half 
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was referred as non-treated. By varying the proportion of effectiveness from 10% to 

90%, we randomly chose the proportion of corresponding effect size from the treated 

patients and simply changed their outcome as “recovered”. In this way, a continuous 

function simulating therapies can be estimated to describe the relation between the 

size of therapeutic effect and models’ ability to detecting its presence (Figure 4.4). 

We evaluated the interval of effect size between 10% and 90% at a step of 10% in 

order to obtain adequate coverage. A p value less than 0.05 achieved by the 

statistical test using for evaluating the given intervention was set as the criterion for 

successful detection. A total of 600 iterations of sample randomisations at each 

effect size were performed to stabilise the estimate and assure the statistical 

confidence.  

 

4.2.3.3 Lesion altering interventions 

Here we assume the behavioural effect of the interventions is dependent on 

the lesion anatomy, which means the individual outcome may change with change of 

the lesion itself. To simulate this intervention with controllable amounts of lesion 

reduction, we applied a variety of effect sizes in range of 10% to 90% stepped by 

10% to shrink the lesion at according proportion in a way of morphological surface 

erosion. The outcome was thereby determined by whether or not the critical 

functional areas that the individual outcome is dependent on were treated. The 

therapeutic function and the way of evaluation were the same as above describe in 

lesion-retaining interventions. 

 

4.2.3.4 Low- and high-dimensional models 

For each class of intervention, we established two sets of analysis models 

differing in the parameterisation of the lesion (low- and high-dimensionality) to 

identify whether or not the sensitivity to detecting the effectiveness of an intervention 

could be improved by taking into account the intrinsic complexity of lesion 

architecture and its inner interactions.  
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In the case of low-dimensionality, the lesion was only parameterised by its 

total volume. First, the lesion volume together with the induced outcome by a specific 

intervention were used as multivariate predictors to infer the ability of detecting each 

patient to be treated or not. Then, each patient’s age and sex referred as co-factors 

were appended to extend the predictors to identify whether or not the extra crude 

parameters could improve the sensitivity. In common with conventional therapeutic 

studies, all low-dimensional models in this chapter were implemented as standard 

general linear models (GLMs) which are applicable to a small number of variables 

and provide estimates with conventional least-square minimisation.  

In the high-dimensional case, the parameterisation of lesions was the whole 

5789 voxels in each lesion map which were binarised to indicate presence or 

absence of damage across the entire brain. We set a threshold to restrict all the 

voxels involved into the models to be hit at least twice among the set of patients. In 

this way, the very rarely damaged voxels which might be artifacts were removed 

from parameterisation so as to improve the reliability of modelling. Similar to the low-

dimensional models, the whole brain parameterisation together with the outcome 

induced by a specific intervention or the extra co-factors: age and sex were 

combined as predictors to identify whether or not a patient was treated. 

To cope with the predictors including a large number of variables in particular 

that were substantially more than the number of cases, we need a different 

inferential framework rather than GLMs chosen for low-dimensional models because 

the performance and reliability of conventionally estimated GLMs is seriously 

degraded by the irrelevant variables in overdetermined models. We thus employed 

SVMLin – a linear transductive support vector machine (TSVM) (Sindhwani and 

Keerthi, 2006, Sindhwani and Keerthi, 2007) as the choice of technique for the 

following reasons. First, the foundations of kernel machines are well established and 

widely used. Among their diverse implementations, SVM is the best known member. 

Given the presence of unlabelled data here—scans where gaze information was not 

available—TSVM is a natural extension of original SVM, well-suited to our specific 

situation, for modelling this binary classification problem in a semi-supervised 

approach. The details of the theory of transductive learning has been discussed in 

the introduction chapter, and can also been found in previous studies (Bennett and 
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Demiriz, 1999, Fung and Mangasarian, 2001, Joachims, 1999b). As a variation of 

TSVM, SVMlin can provide superior scalability and a multiple switch heuristic not 

only to optimise but also to speed up the training process. Moreover, it can cope with 

large scale data characterised by sparsity, which fits the properties of our lesion set 

well. 

Specifically, a multi-switch classification model involving all within-brain voxels 

(5789 variables) hit at least twice within the set of lesions was trained by SVMLin to 

predict the status of change in gaze – recovery or persistence, in which the 

adjustable regularisation parameters λ and λ’, the maximum number of switches in 

TSVM and the possible class fraction of unlabelled data were optimised by 10-fold 

cross-validation. A total of 10 randomisations were conducted to divide the stack of 

1172 lesion maps into two independent portions: 80% of lesions was used as 

training dataset, and the other proportion was for the purpose of evaluation. The 

reliably optimised model that provided best predictive performance was used as a 

classifier for outcome prediction in each patient.  

In order to make a straightforward comparison between high- and low-

dimensional models, the optimal SVMLin classifier described above was used to 

generate a single regressor used for predicting each patient’s behavioural outcome 

which was then added to a GLM as a co-variate. The response variable was exactly 

the same as treatment of each patient in both high- and low-dimensional GLMs. The 

predictors in the low-dimensional models included the intervention, lesion volume, 

age and sex; in the high-dimensional models they were identical other than the extra 

co-variate derived from the classifier indicating the prediction of untreated outcome 

in each patient. As aforementioned, we randomly chose half of the entire patient 

cohort as treated, and the other half as non-treated, which would have no relations to 

the outcome prediction. Hence, we expect the natural outcome predictor derived 

from the high-dimensional TSVM classifier would improve the sensitivity of detecting 

a treatment effect: the better the predictive power, the greater the sensitivity (Figure 

4.4). 
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Figure 4.4 Therapeutic function 

A continuous monotonic function is used to relate a range of therapeutic effect size (0 to 1, stepped in 10%) 
and the probability of correctly detecting it. The midpoint indicates the point where half of the trials 

successfully identify the intervention. Correspondingly, the thresholds of minimum effect size required to 
identify intervention as successful is used to evaluate the detectability of modelling – a sensitive model will be 

shifted to the left (in red) and less sensitivity will lead to shifting to the right (in blue). 

Based on above description of the lesion-retaining intervention, we modelled 

600 randomisations of the data with high- and low-dimensional GLMs which differed 

only in the inclusion of the predictive factor derived from the SVMLin estimates. For 

each effect size in range from 10% to 90%, the models which achieved statistical 

significance (the p value associated with the response variable was less than 0.05) 

were labelled as effectively identifying the treatment. Thus, an estimate of sensitivity 

and according confidence intervals were available to generate separate therapeutic 

functions for discriminating the ability of detecting treatment effectiveness between 

high- and low-dimensional models. 
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Similarly, the high- and low-dimensional GLMs were performed in the same 

way in the case of lesion-altering interventions except that the effect size was 

exerted via lesion shrinkage to a range of percentage from 10% to 90% in all 

patients who were randomly selected as treated. To be different from the non-lesion 

altering interventions where the outcomes of treated patients were simply changed 

as “recovered”, each treated image shrunk on a specific effect size in lesion-altering 

interventions was therefore estimated with the SVMLin classifier for an induced 

outcome. In low-dimensional models, this induced outcome associated with lesion 

volume and optional co-factors referred as age and sex were used to identify if a 

patient was treated or not. Whereas, in high-dimensional models, the natural 

outcome predictive factor derived from the originally untreated lesions was added to 

the above multivariate predictor to detect the treatment in patients. For each effect 

size (the proportion of lesion erosion), the treatment was labelled as successfully 

identified if the statistical significance was achieved (p < 0.05). Thus, the estimates 

of sensitivity and related confidence intervals could be visualised by the therapeutic 

functions of high- and low-dimensional models, respectively. 

 

4.2.4 Software and hardware 

All simulated prediction models were implemented in the environment of 

MATLAB (MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., 

Natick, Massachusetts, United States.).  

For both classes of simulated interventions, a 12-core Inter® Xeon® CPU E5-

2620 2.00GHz processor with 64GB RAM and 9TB 7200 RPM SATA hard drive was 

used to conduct both TSVM training and GLMs analysis under a 64-bit Linux 

operation system (Ubuntu version 15.04). 
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4.3 Results 

For the stack of 1172 patients, the distribution of gaze was centred on the 

midline at both time points of CT and MRI but strongly biased by the lesion, which 

indicated the dependence of gaze deviation on the neuroanatomy (Figure 4.1 and 

4.5).  

 

 

Figure 4.5 Voxel-wise tuning of gaze deviation on admission 

Gaze direction is strongly correlated with the anatomical patterns of brain damage.  

Based on the standard approach applied in conventional previous studies, we 

first fitted multivariate linear regression models to the data with low-dimensionality 

that regressed the outcome to the crude factors of intervention, the volume of the 

lesion, as well as age and sex. A corresponding set of high-dimensional models that 

adequately parameterised the lesion within the entire damaged brain rather than 

merely lesion volume, were fitted to determine the sensitivity of therapeutic inference 
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better lesion parameterisation. To quantify the impact of this theoretical advantage, 

the high-dimensional models were established with exactly the same predictors and 

response variable as applied in the standard multivariate linear regression in low-

dimensionality except for an additional covariate predictive factor indicating a natural 

outcome prediction regardless of any intervention which was derived from a classifier 

learnt by SVMLin (Sindhwani and Keerthi, 2006, Sindhwani and Keerthi, 2007) to 

relate the high-dimensional anatomical pattern of damage to the gaze deviation. The 

predictive performance of this classifier on a set of independent test samples of data 

was 78.33% (se = 1.70%) in sensitivity and 82.78% (se = 0.56%) in specificity, which 

substantially captured the relations between natural outcome variance and the 

distributed pattern of damage in a high-dimensionality (Figure 4.6). 

 

 

Figure 4.6 High-dimensional classifier derived from SVMLin 

The proper classifier derived from the high-dimensional analysis revealed the anatomical patterns to 
discriminate the voxels that contribute to either neural recovery or persistence. 
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4.3.1 Non-lesion altering intervention 

The above low- and high-dimensional analysis were modelled in each class of 

interventions. First, the non-lesion altering interventions were used to simulate a 

process of rehabilitation or physiotherapy after ischemic acute stroke without altering 

the lesion itself (Johansson, 2000) that hypothetically increased the proportion of 

patients varying by the pre-defined effect size from 10% to 90% to be recovered from 

a deviated gaze to normal range between two observed time points: CT on 

admission and MRI in 24 to 72 hours typically. Specifically, for each effect size, a 

series of models were evaluated by 600 randomisations where a hypothetical 

intervention was iteratively effective (to induce the outcome as ‘recovered’) on a 

corresponding proportion (effect size) of the patients who were randomly selected to 

receive treatment. At the first time point (CT), the gaze deviated leftwards at 12 

degrees or more was labelled as abnormal; whilst a normal gaze measured at the 

second time point of MRI was defined as within 3 degrees of the midline. To evaluate 

both set of models, the statistical significance for a ‘trial’ to be positive or negative 

was determined at p < 0.05.  

The therapeutic function produced by the low-dimensional models exhibited a 

50% detection rate threshold of 62.90% (95% confidence intervals: 61.50% ~ 

64.40%) of those treated responding to the intervention (Figure 4.7 in black), which 

is remarkably insensitive. Here, analogously to a meta-analysis, the threshold was 

determined as the midpoint of the therapeutic function (horizontal dotted line) where 

half of all trials were correctly identified as positive. Another series of low-

dimensional analyses that were exactly the same as above but appended the 

predictors with age and sex as co-factors, were conducted to identify whether or not 

the extra crude parameters in relation to the patients would improve the sensitivity of 

therapeutic inference. The therapeutic function produced almost the same threshold 

at 62.91% (95% confidence intervals: 61.58% ~ 64.40%) (Figure 4.8 in green). Age 

and sex used as extra variables in low-dimensional multivariate linear regression 

models were not significantly effective in enhancing sensitivity. 
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The high-dimensional analyses were conducted in exactly the same way 

except that the output of a high-dimensional classifier trained by a transductive linear 

support vector machine was involved as an extra predictive factor. The models 

enhanced in this way showed substantial improvement of the sensitivity of 

therapeutic inference, which significantly shifted the threshold leftward to 56.00% 

(95% confidence intervals: 54.65% ~ 57.35%) (Figure 4.7 in red). As expected, a 

high-dimensional parameterisations of the complex lesion architecture increased 

sensitivity to detecting the effectiveness of interventions. Similarly, age and sex used 

as co-factors were also conducted in the high-dimensional analyses. The threshold 

corresponded to 56.10% (95% confidence intervals: 54.73% ~ 57.46%) of the 

patients that received treatment responding to the intervention (Figure 4.8 in blue). 

As a result, the crude parameters such as age and sex made no significant 

contribution in high-dimensional models either. 
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Figure 4.7 Empirical therapeutic inference function of non-lesion altering intervention 

A set of effect sizes varying from 0.1 to 0.9 stepped by 0.1 was applied to a hypothetical non-lesion altering 
intervention modelled in low- and high-dimensionality, respectively. For each ratio of effectiveness, the 

corresponding proportional patients were successfully treated as recovered. In both types of models, the 
probability of detecting an intervention as successful was averaged by a total of 600 iterative randomisations. 

In the low dimensional models (in black), only the factors of intervention and lesion volume were used to 
construct the linear regression models. The ‘trial’ would be labelled as positive if the p-value for the 

intervention was smaller than 0.05. The error bars correspond to 95% confidence interval of the means. The 
mean performance was fitted with a robust spline fit and relevant estimate of 95% confidence intervals were 

plotted in dotted lines. For the high-dimensional case (in red), the model construction and subsequent analysis 
were identical other than a high-dimensional classifier correlated gaze and outcome was involved. The high-

dimensional analysis method substantially shifted the threshold to the left, which illustrated the superior 
sensitivity for detecting the effectiveness of a given therapeutic. 
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Figure 4.8 Empirical therapeutic inference function of non-lesion altering intervention (with additional co-
factors) 

The exact same model construction and subsequent analysis were conducted, except that age and sex were 
appended as co-predictors in both low- and high-dimensional models. On top of plots in Figure 4.7, the 

performance achieved in low-dimensional models with age and sex did not show significant change (in blue). 
The same situation was observed in high-dimensional approach as well (in green). This revealed the crude 

parameters, like age and sex did not present essential contribution to a therapeutic inference. 

 

4.3.2 Lesion-altering intervention 

In lesion-retaining interventions, modelling the correlation between the 

distributed pattern of brain damage and gaze deviation so as to identify the 

spontaneous recovery regardless of any intervention, the sensitivity of responding to 

intervention in therapeutic inference was remarkably increased. Based on this, a 
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lesion-altering intervention simulating a process of a thrombolytic therapy (e.g. 

thrombolysis) (Wardlaw et al., 1997) was also analysed in low- and high-dimensional 

models, respectively. As aforementioned, the anatomical architecture of lesion was 

directly linked to the behavioural outcome, we therefore expected the involvement of 

a high-dimensional classifier using as a predictive factor that learnt the relation 

between lesion changed by the intervention and outcome would reasonably amplify 

the discrimination between the analyses modelled in low- and high-dimensionality. 

During the process of simulated thrombolysis, lesion volume was peripherally 

reduced by a morphological surface erosion at proportions of 10% to 90% 

separately. An extreme case could be a large lesion centred in a small critical neural 

locus which required a great deal of lesion shrinkage to reflect the intervention. At 

the other extreme may be a small lesion closely located the edge of diffuse neural 

locus which would produce effect on behavioural outcome with minimal change of 

lesion volume. Thus, the diversity of behavioural consequences induced by the 

lesion-altering intervention may be highly reliant on the complex intersection 

between anatomical lesion architecture and functional anatomy, which could be 

plausibly captured by a high-dimensional model only. By contrast, a low-dimensional 

method was insensitive if saved lesion volume merely induced physiological change 

rather than effect on behavioural outcome.  

To quantify the theoretical advantage of high-dimensional models in the 

scenario of lesion-altering intervention, as above, for each effect size from 10% to 

90%, we constructed 600 randomised models in low- and high-dimensionality, 

respectively. In the low-dimensional method, the standard linear regression models 

were fitted with induced behavioural outcome and volume of lesion as predictors to 

predict intervention. Then, age and sex using as co-factors to identify whether or not 

the extra crude parameters could contribute to the sensitivity of therapeutic 

inference. The ‘trials’ were labelled as positive if p value for the intervention was less 

than 0.05. To be similar with the criterion used in non-lesion altering intervention, we 

also use the midpoint of a therapeutic function where half of all trials were identified 

as positive to determine the threshold. The therapeutic function yielded by this series 

of analyses illustrated a threshold at an effect size of 78.40% (95% confidence 

intervals: 75.75% ~ 81.05%) (Figure 4.9 in black), which was a very substantial effect 

size that identified the intervention to be successful. Appending age and sex as extra 
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predictive factors in the standard linear regression models produced a very similar 

therapeutic function with the above. The threshold showed an effect size of 78.41% 

(95% confidence intervals: 75.75% ~ 81.05%) (Figure 4.10 in green). 

In the case of high-dimensional models, a series of the same models other 

than an additional covariate predictive factor derived from a transductive linear 

support vector machine capturing the relation between damaged brain patterns prior 

to the interventions and behavioural outcome of gaze were constructed. The 

threshold of the therapeutic function was remarkably shifted leftward to 55.00% (95% 

confidence intervals@ 53.10% ~ 56.90%) (Figure 4.9 in red). As expected, the two 

approaches were differentiated to a greater extent compared with the difference 

gained in non-lesion altering interventions. Again, we reran exactly the same high-

dimensional models with age and sex as extra predictors. There was no significant 

contribution shown in the results: 55.20% (95% confidence intervals: 53.31% ~ 

57.13%) (Figure 4.10 in blue).  
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Figure 4.9 Empirical therapeutic inference function of lesion-altering intervention 

A set of effect sizes varying from 0.1 to 0.9 stepped by 0.1 was applied to a hypothetical lesion-altering 
intervention modelled in low- and high-dimensionality, respectively. For each ratio of effectiveness, the 

corresponding proportional lesion volume was shrunk. In both types of models, the probability of detecting an 
intervention as successful was averaged by a total of 600 iterative randomisations. In the low dimensional 

models (in black), only the factors of intervention and lesion volume were used to construct the linear 
regression models. The ‘trial’ would be labelled as positive if the p-value for the intervention was smaller than 

0.05. The error bars correspond to 95% confidence interval of the means. The mean performance was fitted 
with a robust spline fit and relevant estimate of 95% confidence intervals were plotted in dotted lines. For the 

high-dimensional case (in red), the model construction and subsequent analysis were identical other than a 
high-dimensional classifier correlated gaze and outcome was involved. The high-dimensional analysis method 

substantially shifted the threshold to the left, which illustrated the superior sensitivity for detecting the 
effectiveness of a given therapeutic. 
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Figure 4.10 Empirical therapeutic inference function of lesion-altering intervention (with additional co-factors) 

The exact same model construction and subsequent analysis were conducted, except that age and sex were 
appended as co-predictors in both low- and high-dimensional models. On top of plots in Figure 4.8, the 

performance achieved in low-dimensional models with age and sex did not show significant change (in blue). 
The same situation was observed in high-dimensional approach as well (in green). This revealed the crude 

parameters, like age and sex did not present essential contribution to a therapeutic inference. 
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4.4 Discussion 

The therapeutic functions produced by analyses of low- and high-

dimensionality demonstrated remarkable differences of sensitivity to detecting 

interventions. This provides empirical support to what is given analytically:  where a 

multiplicity of interacting factors determine the causal relation between brain damage 

and behavioural outcome, better parameterisation of the relation is bound to improve 

our ability to identify any one causal factor, such as treatment. Owing to the intrinsic 

complexity of anatomical lesion architecture (Mah et al., 2015, Mah et al., 2014b, Xu 

et al., 2017a, Xu et al., 2017b), such collateral and covariant factors are bound to be 

numerous in their quantity and complex in their interactions.  

To benefit from the rapid improvement in the inferential power of machine 

learning techniques and the computational ability of hardware, a high-dimensional 

method to sufficiently parameterise human brain is necessary in theory, and is now a 

feasible option in practice. For a long time, we have been aware that the 

dimensionality of the human brain is grounded in highly complex functional anatomy 

that is as yet largely unknown (Sporns et al., 2005, Sporns, 2011, Bullmore and 

Sporns, 2009). The architecture  of lesions is also complex, but potentially 

modellable with the right high-dimensional methods (Mah et al., 2014b, Xu et al., 

2017a). We therefore simulated non-lesion altering and lesion-altering interventions 

modelled by both low- and high-dimensional methods to identify the impact on 

inferential sensitivity of modelling the lesion-deficit relation with greater fidelity. We 

have seen that the impact is substantial.  

It is crucial to recognise that we propose a general approach to identify the 

relation between the distributed pattern of brain damage and behavioural outcome 

rather than a method for subgroup analysis merely identifying a minority of 

idiosyncratic cases for whom a high-dimensional method exceptionally works. For 

every case of therapeutic inference, we claim the outcome is influenced by 

numerous interacting factors of lesion anatomy. Hence, the whole brain map needs 

to be parameterised so as to isolate any specific effect predicted by any single 

factor.  



Chapter 4  Therapeutic inference in the focally damaged human brain 

216 

 

As a general approach intended to illustrate therapeutic inference for a wide 

range of neurological disorders associated with focal brain injury, we therefore 

constructed both non-lesion altering and lesion-altering interventions to simulate 

cardinal forms of intervention. The former simulated an intervention such as 

rehabilitation, where a treatment facilitates adaptation to a lesion rather than altering 

it directly. By hypothetically varying the proportions of patients recovering from the 

deficit, a therapeutic function was produced, describing the relation between the 

proportion of responders and the probability of detecting a therapeutic effect. Three 

crude parameters (volume of lesion, age and sex) widely employed in conventional 

studies were used to fit our low-dimensional models. The threshold for detecting a 

positive therapeutic effect with the low-dimensional approach was estimated to be 

very high at 62.9% of patients recovering. By contrast, the high-dimensional method 

significantly improved the threshold to 56% by adding a covariate predictor capturing 

individual variability. The improvement was achieved by identifying patients whose 

gaze deviation recovered regardless of any treatment, a predictive signal no simple 

parameterisation could conceivably capture. 

A lesion-altering intervention corresponds to an even more important 

therapeutic scenario, where the intervention alters the morphology of the lesion itself, 

and thus the anatomy of the damage. Given the complex dependence on the 

underlying substrate revealed by our SVM model of gaze recovery, it is implausible 

that the interaction between a change in lesion morphology and the resultant deficit 

would be adequately captured by any simple covariate such as lesion volume. This 

likely explains the superiority of the high-dimensional models observed here. 

Comparing the two therapeutic contexts, the thresholds produced by the high-

dimensional method were more or less the same (56.00% and 55.00%), which 

demonstrated the consistent contribution of the covariate predictive factor learnt by a 

transductive linear support vector machine. The performance achieved by the low-

dimensional method varied dramatically (62.90% and 78.40%), being substantially 

worse in the lesion-altering case. This indicated the prediction from the multivariate 

model parameterised with a few crude variables independently was very limited in 

terms of sensitivity – the more distributed relation underlying the model, the worse 

performance gained. 
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Since the brain mechanisms to control gaze are relatively simple, we 

therefore expect the contrast of estimates between two approaches would be 

considerably greater with more complex behaviour. Indeed, in future work, our 

explanatory models must ascend to greater complexity not only to deepen our 

understanding of brain, but to identify the effectiveness of new treatments, including 

many hitherto erroneously thought to be ineffective through conventional studies. 

Accordingly, it is also crucial to continuously grow the scale of modelled data to 

achieve the right balance of dimensionality and data scale. 
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4.5 Conclusion 

Therapeutic inference in focally damaged human brain concerns the relation 

between induced structural change in the brain and its behavioural consequences. 

Conventionally, this causal relation has been established with models that rely on 

crude descriptions of the brain, and its damage, such as volume of lesion, age, sex, 

and discretised brain parcellations. As a result, individual variability arising from 

finely detailed differences in lesion anatomy is treated as noise, assuming each 

patient can be approximated no better than by the sample mean. We have shown 

that awareness of the intrinsic dimensionality of lesions, examined across a set of 

low- and high-dimensional models, has substantial impact on the ability to isolate a 

therapeutic effect within a hypothetical interventional trial. Conventional low-

dimensional models are shown to be remarkably insensitive to therapeutic effects, 

for both lesion-retaining and lesion-altering interventions. By contrast, the 

sensitivities obtained from high-dimensional models were dramatically and 

consistently better, more so for lesion-altering interventions. These results have 

substantial implications for translational research, providing one remediable 

explanation for the common failure of interventional studies in humans involving 

agents shown to be effective in simpler animals. A re-evaluation of such studies with 

high-dimensional techniques is shown to be warranted. 
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Chapter 5    The identification of 

individual susceptibility to treatments 

with prescriptive inference 

 

 

 

5.1 Introduction 

We have argued that the complexity of the human brain in the context of focal 

brain injury arises not only from its functional organisation at multiple levels (Bassett 

and Gazzaniga, 2011), but also the structure of pathological damage.  The fidelity of 

individual description is then intrinsically dependent on the fidelity of the description 

of each of these two aspects. The observed functional architecture may be grounded 

in relatively simple neuronal properties, but is clearly complexity and diverse as a 

whole (Yagi, 2013, Yoshimura et al., 2005). Equally, at the molecular level, though 

genetic factors specify individual neuronal trajectories of development, the overall 

organisation in any one individual cannot be easily derived from them. (Baaré et al., 

2001, Peper et al., 2007, Pol et al., 2006). So, it will take some time before this level 

or organisation is adequately described.  

Lesion architectures, by contrast, though very complex, may be easier to 

learn, and provide a mechanism through which the functional architecture may be 

further illuminated, as well as facilitating the management of patients with focal brain 

injury. In order to systematically demonstrate the dimensionality of distributed lesion 

anatomical patterns and reveal the hidden spatial bias caused by the conventional 

analysis, by modelling lesion-deficit analysis in low- and high-dimensionality, 

respectively, a couple of previous studies illustrated the inherent mislocalisation 

affected by univariate techniques (Mah et al., 2014b) and superior predictive 

performance obtained from high-dimensional multivariate analysis (Xu et al., 2017a). 

Crucially, these studies established a foundation which revealed the dimensionality 
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of lesion to be distinct from the functional dimensionality and contribute to 

understanding the brain mechanisms in parallel. 

This is relevant to clinical medicine, where intelligence drawn from 

populations needs to be “inverted” to the specific individual that is always the focus 

of clinical interest. A critical question arises: how to make the research findings 

derived from group analyses fit individuals well? In other words, how to model 

individuality when our intelligence is drawn from populations, and in particular in 

relation to interventions: the ultimate focus of clinical care. To investigate this broad 

question, two series of therapeutic inference models with high- and low-

dimensionality, were evaluated to discriminate the ability to detecting the effect of a 

specific intervention that facilitated the change of behavioural outcome in a previous 

study (Xu et al., 2017b). The results showed the sensitivity of therapeutic inference 

was dramatically improved in high-dimensional models, where the lesion architecture 

was modelled in detail commensurate with the complex functional architecture to 

identify the patient those were recovered spontaneously. This demonstrated the 

dependence of the causal relation between a therapeutic intervention and its 

functional outcome on numerous neurological factors as well as their interactions -- 

all of these are inherently sourced from descriptions of the brain with sufficient 

dimensionality to capture its individuality. Further to the studies on lesion-deficit 

prediction (Mah et al., 2014b, Xu et al., 2017a) mentioned above, the models 

seeking to infer therapeutic effects in focal brain injury further illustrate the 

importance and necessity of complex parameterisation – a high-dimensional model 

of focally damaged human brain.  

In the studies mentioned above, high-dimensional parameterisation of brain 

damage played a crucial role in extracting maximum performance from group level 

analysis. The reliability and sensitivity of any group study is naturally dependent on 

individual fidelity, but that is not its critical measure. In medical practice, however, the 

focus is the individual not the group: we wish to know how specific individuals 

respond to treatment. Although awareness of concepts has existed in clinical 

research and patient care for a long time – one instance is multi-dimensional 

immunological matching in transplantation – the adoption of tailored prescription in 

more complex pathological scenarios is very limited. Conventional medical practice 
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is still reliant on the averaged responses across groups and uses them as the 

standards to fit everyone. Owing to the wide variance of the individual susceptibilities 

to a given treatment (Park et al., 2017), this low-dimensional “one-size-fits-all” 

approach will miss the information integrated in individualities, and consequently fail 

to provide the necessary precision of prescription. We therefore need a valid model 

that is able to extract the individual patterns on susceptibility from the group data.  

In the following chapter, in order to identify individual susceptibility to 

treatments, we will combine patients with treatment to construct prescriptive 

inference with low- and high-dimensionality. We aim to examine whether or not a 

cohort of patients can be separated into sub-divisions to sensitively discriminate 

which medical decision, intervention or treatment is safe and efficacious to a specific 

patient; and which one is not. Methodologically, we expect the high-dimensional 

models that take into account individual features sufficiently will uncover the hidden 

sensitivity so as to contribute to the precision in tailoring treatments in practice. 

 

  



Chapter 5    The identification of individual susceptibility to treatments with prescriptive inference 

222 

 

5.2 Method 

5.2.1 Patients 

A set of 1333 patients admitted to University College London Hospital (UCLH) 

Hyper-acute Stroke Unit (HASU) over the past decade were selected. All patients 

were clinically diagnosed with acute ischemic stroke, and received MRI, including 

diffusion-weighted imaging (DWI), in which at least one acute ischemic lesion could 

be identified. A threshold for minimal DWI-quantified lesion volume was set at 50 

milliliters which covered the 90th centile of our entire clinical population in order to 

reduce the disproportionate impact from very large lesions. An adjusted cohort 

including 1172 patients was thus produced. 

The age distribution from the set of 1172 patients was in range of 18 to 97 

years old with a mean of 63.89 and a standard deviation of 15.91. The gender ratio 

(Male) was 0.561 (Appendix B. Figure 7.1). Ethnicity for 952 (81.2%) from the full set 

of patients was disclosed in the clinical record which is illustrated in Appendix B. 

Figure 7.2. The distribution of age and sex, and the constitution of ethnicity reflected 

the catchment of clinical population in UCLH naturally. 

 

5.2.2 Imaging 

5.2.2.1 MR data acquisition 

All acquisitions performed on the scanners manufactured by General Electric 

(GE) (Discovery MR 450, Genesis Signa and Signa Excite), Philips (Achieva, Ingenia 

and Intera), or Siemens (Avanto, Biograph mMR, Espree, Skyra, Symphony, 

Symphony Tim, Trio Tim and Verio) with field strength of either 1.5 or 3 Tesla in a 

single session for each patient were collected via a picture archiving and 

communication system (PACS) from UCLH (the specific range of scanners and 

related parameters are listed in appendix A). The originated voxel sizes were 

different in some extent between the scanners, and so were the according spatial 

resolutions. Typically, for 1.5 Tesla GE medical system, the voxel size was sampled 

as 1mm x 1mm x 6.5mm (Columns = 256, Rows = 256). For 1.5 Tesla Philips 
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medical system, the typical voxel size was 1.2mm x 1.2mm x 6mm (Columns = 192, 

Rows = 192); the voxel size was 1mm x 1mm x 6mm (Columns = 256, Rows = 256) 

performed on 3 Tesla Philips scanners. For Siemens, the voxels sizes and spatial 

resolution were 1.8mm x 1.8mm x 6.5mm (Columns = 128, Rows = 128) and 1.2mm 

x 1.2mm x 6.5mm (Columns = 192, Rows = 192) on 1.5 Tesla and 3 Tesla scanners, 

respectively. The routine of clinical practice with regular equipment upgrades and 

replacement is the main reason for the diversity of scanners over the period of data 

collection. All brain scans were performed for the purpose of clinical routine obeying 

clinical protocols. 

The specific sequences extracted from each MRI session were axially 

required echo planar DWI with b-values of 0 s/mm2 and 1000 s/mm2 which is used 

for lesion segmentation (Mah et al., 2014c) so as to implement the series of 

simulations designed for this study. DWI is able to indicate the restricted ability of 

Brownian motion for extracellular water protons where cytotoxic edema causes 

imbalance. So, DWI is sensitive for detecting ischemic stroke and widely used for 

locating acute ischemic lesions (Warach et al., 1995, Löuvbld et al., 1997, Lövblad et 

al., 1998). In the clinical application, a DWI sequence usually includes images with b 

values of 0 s/mm2 (a b0 image) and 1000 s/mm2 (a b1000 image). The former type 

image shows stronger contrast on normal tissues but relatively insensitive to 

ischaemia. Conversely, an image with high diffusion weighting is used to sense 

water molecules movement. So, it is sensitive to ischaemia but poor to the contrast 

of normal tissues. Both types of images are complementary for brain registration and 

lesion segmentation, which rely on the contrast between normal tissue types and the 

discrimination between normal tissues and lesions, respectively.  

 

5.2.5.2 Image pre-processing 

A processing pipeline was implemented within MATLAB (MATLAB and 

Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, 

United States.) associated with a configured SPM12 toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to ensure the images to be 

processed systematically. 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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For the purpose of scientific imaging analysis, typically, the raw clinical MR 

images needed to be firstly converted from the complicated format of Digital Imaging 

and Communications in Medicine (DICOM) images to Neuroimaging Informatics 

Technology Initiative (NIfTI) format. Subsequently, in order to provide accurate and 

robust performance on image registration and segmentation in the later stage, we 

employed a pre-processing pipeline with the following steps. We empirically clamped 

the signal between 0.1% and 99.9% of the cumulative distribution estimated with a 

kernel density method (Botev et al., 2010), removing unusually low and high signals 

in each NIfTI file. Then an oracle-based 3D discrete cosine transform (ODCT3D) 

(Manjón et al., 2012) denoising method was applied for further noise reduction. In 

the next step, image registration was conducted based on each pair of DWI files. In 

order to optimise the alignment between the b0 and b1000 images in each pair, we 

used SPM12’s standard co-registration function to have the b0 image rigidly co-

registered to the b1000 image. Then, the normalisation / segmentation routine 

integrated in SPM12 (Ashburner and Friston, 2005) was applied to the b0 image to 

calculate a deformation field which described the optimal non-linear transformation of 

the b0 image into Montreal Neurological Institute (MNI) stereotactic space. Next, the 

deformation field derived from the b0 image was applied to the b1000 image to 

transform it into MNI space using the same routine. The parameters involved in the 

whole process of image registration were set at defaults by SPM12. Finally, both b0 

and b1000 images in each pair were resampled to 2mm3 isotropic with 6th degree b-

spline interpolation (Mah et al., 2014b, Mah et al., 2014c) and manually checked 

against the SPM template to confirm the satisfactory of registration.  

 

5.2.2.3 Lesion segmentation 

A previously validated method based on the anomaly metric zeta (Mah et al., 

2014c) was applied to segment lesions from the 1172 normalised b1000 images in a 

voxel-wise manner.  

A set of preliminaries conducted to optimise the performance of lesion 

segmentation were performed as follows. First, 492 DWI images derived from 

patients suspected of acute stroke but found to have normal imaging were selected 
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to form a reference normal image set. No acute lesion was visible here in any 

patient, and none was reported by the corresponding radiological record. Every scan 

was pre-processed using the exact same pipeline and resliced at the same 

resolution of 2mm isotropic voxels, which spatially presented as a 91 x 109 x 91 

matrix. Then, by combing the tissue maps provided by SPM12 including white matter 

tissue, grey matter tissue and cerebrospinal fluid (CSF), an inclusive brain mask was 

created. So as to remove image artefacts, we set an empirical threshold to exclude 

areas in the frontal and temporal poles commonly prone to artefacts on DWI 

sequences, and adjusted the inclusive brain mask accordingly. Subsequent lesion 

segmentation was performed within the confines of this adjusted mask. Next, the 

signal distribution was normalised for both lesion and reference datasets. Such 

signal normalisation sought to reduce instrumental and other incidental signal 

heterogeneity, so that the comparison between individual images could be maximally 

sensitive. The procedure was performed as follows. A binary white matter mask was 

created from SPM12’s white matter tissue probability map by thresholding at a value 

of >0.9. A robust kernel density estimate method (Botev et al., 2010) was then 

applied to the voxels falling within both customised maps in each b1000 image to 

obtain the peak white matter distribution which was then subtracted from each 

corresponding b1000 image to normalise the signal distribution. Guided by 

information in the radiological report, signal normalisation on unilateral and bilateral 

lesions was performed differently. For unilateral lesions—the vast majority—only the 

unaffected hemisphere was used to estimate the peak. For bilateral lesions, since 

ischemic lesions tended to be small in these circumstances, the kernel density 

estimate was applied to the whole brain. In both cases, the signal normalisation was 

equally effective in adjusting the differences in the signal distribution across all scans 

performed by a variety of scanners and related technical and practical variance. 

Lesion segmentation was performed in a voxel-wise manner. We calculated 

the zeta anomaly metric for each single voxel in each image independently against 

the reference set. To be specific, the voxel-wise zeta value in the test image is 

derived from the mean distance to the k nearest neighbors drawn from the 

anatomically homologous voxels in the unlesioned reference set, normalised by the 

mean distance between the k neighbors themselves (Mah et al., 2014c). The 

measure was the Euclidean distance in signal space. The only manipulable 
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parameter here is the number of nearest neighbors – k – commonly chosen with 

reference to the size of the reference dataset. In this study, we set k at 23 based on 

the calculation as below: 

𝑘 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 (√492).  

Zeta is a continuous metric. An adaptive threshold was therefore determined 

for each image. In brief, volume connectivity computed by bwlabeln, an integrated 

function of MATLAB (MATLAB and Statistics Toolbox Release 2016b, The 

MathWorks, Inc., Natick, Massachusetts, United States.) was applied to segment 

each lesion map into connected clusters. Then, each cluster was estimated under a 

generalised extreme value (GEV) distribution to derive mean and variance values 

which were used to decide threshold adaptively as described in Mah et al, 2014. 

 

5.2.3 Dimensionality reduction 

Modelling performance is sensitive to the ratio of number of cases to number 

of features. A helpful preliminary is therefore to reduce the dimensionality of 

individual features while retaining the discriminability of each case. In human 

neuroanatomy, brain asymmetry between two hemispheres has been observed in 

two distinct aspects – neuroanatomical differences, and functional and behavioural 

lateralisation (Hugdahl, 2005, Toga and Thompson, 2003), but these differences are 

minor and do not generally extend to the vascular tree (Wright et al., 2013). Vascular 

lesions rarely cross the midline of brain and are generally literalised (Nachev et al., 

2008). It is therefore reasonable to collapse our stack of vascular lesions onto one 

hemisphere to reduce dimensionality for following predictive models. 

Based on the collapsed lesion maps, a study on classifying stroke lesion 

anatomy employed non-negative matrix factorisation (NMF) (Lee and Seung, 1999) 

to further reduce the dimensionality to fifty. As a parts-learning paradigm, NMF is 

capable to capture the natural hierarchical structure of vascular lesions to yield 

reasonably compact representations. Although we have other options, such as 

principal component analysis (PCA), we did not exhaustively estimate the marginal 

differences between techniques because our focus here is to compare the 
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performance of high- and low-dimensional models rather than identify optimal 

technique for dimensionality reduction.   

The fifty-dimensional representation was further reduced with t-distributed 

stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008) to derive a two-

dimensional representation. t-SNE is a robust technique to effectively capture non-

linear structure in the data, analogous in its utility to uniform manifold approximation 

and projection (UMAP) (McInnes et al., 2018). 

 

5.2.4 Synthetic ground truths of lesion-deficit and susceptibility to 

treatments 

To model response to treatment, two sets of ground truths were prepared 

empirically. The first determined whether or not a lesion caused a behavioural deficit. 

The second determined whether or not the patient responded to the intervention. 

The anatomical patterns of 1333 ischemic lesions were reduced to twenty-one 

distinct clusters (Figure 5.1) (Bonkhoff et al., 2019), from which two sets of clusters 

were selected as definitions for each of the two ground truths (Figure 5.2 and Figure 

5.3). The details are specified in Table 5.1 and Table 5.2. An SVM model evaluated 

by 10-fold cross-validation provided (Chang and Lin, 2011) applied to both sets of 

ground truths showed reliable separability (sensitivity: 96.38%-97.03%; specificity: 

88.45%-89.07% and sensitivity: 95.37%-96.24%; specificity: 93.29%-94.13%). 
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Figure 5.1 Two-dimensional clusters of lesion anatomy (Bonkhoff et al., 2019) 

The compact lesion representation derived from t-SNE (Maaten and Hinton, 2008) illustrates a total of 21 
stereotyped clusters. Base on this clustering, the ground truths for subsequence analysis would be established 

empirically. 
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Figure 5.2 Ground truth: the separation of affected and unaffected lesions 

Based on the 21 subdivisions, the first ground truth referred as affect (orange dots) versus unaffected 
(cranberry dots) by a hypothetical functional deficit was empirically sampled. 

 

 

 

 

 



Chapter 5    The identification of individual susceptibility to treatments with prescriptive inference 

230 

 

Affected Clusters Unaffected Clusters 

Thalamoperforators Anterior choroidal 

Basilar tip Posterior choroidal 

Basilar perforating Lenticulostriate 

Calcarine Long insular perforating 

Cerebellar Angular 

Total PCA Inferior MCA 

ACA Anterior MCA 

Posterior borderzone Total MCA 

Rolandic Opercular 

Precentral Parietal 

 Prefrontal 

Table 5.1 The separation of lesions by the underlying functional deficit 
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Figure 5.3 Ground truth: the separation of susceptibility 

Based on the 21 subdivisions, the first ground truth referred as susceptible (pink dots) versus unsusceptible 
(purple dots) to a hypothetical treatment was empirically sampled. 
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Susceptible Clusters Unsusceptible Clusters 

ACA Posterior borderzone  

Total PCA Rolandic  

Cerebellar Precentral 

Calcarine Prefrontal 

Basilar perforating Parietal 

Basilar tip Opercular 

Thalamoperforators Total MCA 

Anterior choroidal Anterior MCA 

Posterior choroidal Inferior MCA 

Lenticulostriate Long insular perforating 

Angular  

Table 5.2 The separation of lesions by the susceptibility to a specific treatment 

 

5.2.5 Prescriptive inference 

We have seen that the complex structure of lesion is directed by the 

underlying pathological process. Evolving from the work presented in previous 

chapters, in order to further examine the importance of lesion anatomy in its interplay  

with the functional network, here we evaluated in simulation two series of models, 

now to address the question of detecting an individual response to treatment. We 

opted for a hypothetical functional deficit and determination of susceptibility rather 

than real ground truths because our major focus was to demonstrate the impact of 

the parameterisation of the lesion, and that can only be isolated if the other 

components of the causal chain are explicitly known. 
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Briefly, in both types of models, a simulated treatment varying in efficacy was 

applied to half of the patients, sampled randomly. In the first series of simulations, 

patients with the hypothetical deficit and who were susceptible to the treatment were 

proportionally responsive to the treatment with a positive outcome (“recovery”) based 

on the specified interventional efficacy, and those who were not responsive were not 

affected by the treatment at all. In the other series of simulations, the arrangement 

was the same, except that those defined as non-responsive were associated with a 

worse outcome if randomised to the treatment arm. In the second series of 

simulations, we involved counterfactual analysis, on one hand, to enhance the 

causality derived from the impact evaluation; on the other, to extent the contrast of 

inferential models in low- and high-dimensionality. In the following sections, two 

series of inferential models will be descripted in detail. 

 

5.2.5.1 Prescriptive inference with a positive response to a given 

treatment 

In this series of simulations, the ground truth was that patients affected by a 

hypothetical functional deficit and susceptible to the treatment recovered if treated, 

with a probability dependent on the set treatment efficacy. Treatment was allocated 

randomly in equal proportion. For each patient, treatment status was registered as a 

binary variable and appended to the space of lesion anatomy as an additional 

feature. A variety of treatment effect sizes was defined from 10% to 90% in steps of 

20%, and as well as 100%. For each effect size, the specified proportion of patients 

who were susceptible recovered from the functional deficit, whereas the others were 

unaffected. Thus, a series of models for prescriptive inference was simulated to 

identify the patients with susceptibility to a specific treatment. 

 

5.2.5.2 Prescriptive inference with a polarised response to a given 

treatment  

Here the ground truth was more complex. Whereas susceptible patients 

behaved as above, those who were labelled as not susceptible would now receive a 
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poor outcome if treated. The idea was to model a two-sided treatment-outcome 

relationship where treatment is not cost-free, and may cause a worse outcome in 

patients not suited to it. To establish the models, we also allocated a binary marker 

to each patient and appended it to according lesion anatomy as an extra feature. In 

this way, the whole set of patients was randomly divided into two equal sub-groups 

referred as treated or non-treated. By varying the effect size mentioned in the above 

simulations, the corresponding proportion of affected susceptible treated patients 

recovered from the functional deficit, and a corresponding proportion of unaffected 

non-susceptible treated patients became affected. All the other patients were 

unaffected by the treatment. Thus, the second series of prescriptive inference was 

simulated to identify the patients susceptible to a specific treatment with a dual, 

polarised response. 

 

5.2.5.3 Low- and high-dimensional models  

Two sets of lesion representations derived from dimensionality reduction 

(Bonkhoff et al., 2019) were used for modelling predictive inference with low- and 

high-dimensionality. Specifically, the 1333 lesion anatomy presented in fifty-

dimensional space derived from NMF (Lee and Seung, 1999) was employed to 

model high-dimensional models, and the two-dimensional feature matrix compacted 

by t-SNE (Maaten and Hinton, 2008) was used for low-dimensional models. 

Contrasting two levels of lesion parameterisation, two sets of analysis models were 

thus used for estimating the sensitivity to identifying the susceptibility of patients to a 

specific treatment.  

In order to reveal the information hidden behind the lesion anatomical 

patterns, we employed LIBSVM – A Library for Support Vector Machines (Chang and 

Lin, 2011) to implement the both low- and high-dimensional analysis. We have seen 

SVM is flexible enough to cope with complex models, and the radial basis function 

(RBF) kernel integrated in LIBSVM is available to incorporate the interactions 

between the attributes. In addition, the well maintained LIBSVM 

(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) provides a wide range of extensions and 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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related functions, such as AUC calculation and ROC plotting, which allows for more 

convenience and reliability for our purpose of analysis and estimates. 

 

5.2.5.3.1 Model implementation 

Following the arrangement described above, 500 randomisations were 

performed to divide the stack of 1333 patients into two equal proportions assigned to 

the treated and untreated groups, mimicking a randomised controlled trial. In each 

randomisation, a set of treatment efficacies varying across 10%, 30%, 50%, 70%, 

90% and 100% were sequentially conducted to identify the relation between lesion 

architecture and susceptibility of patients iteratively. For each effect size, 50 

iterations that randomly split the set of patients into two parts (70% and 30%) were 

performed for the purpose of training a classifier and performance testing. Over each 

iteration, the selection of patients for training and test was completely independent. 

During the training procedure, a binary marker indicating whether or not a patient 

received the treatment was appended to the corresponding lesion feature vector. 

Thus, treated patients who recovered from the hypothetical functional deficit due to 

the susceptibility to the treatment could be recorded. The learnt classifier was then 

applied to each datum in the test dataset twice: first, with the treated feature set to 1, 

i.e. treated, and second with the treated feature set to 0, i.e. untreated. By 

quantifying the difference in the predicted outcome under the two different treatment 

value, the inferred susceptibility of the test patient was thus identified. A total of 

150000 (500 x 6 x 50) classifiers and 300000 (500 x 6 x 50 x 2) predictions with low- 

and high-dimensional models were computed. 

The second series of simulations were implemented in exactly the same way, 

except for the difference in ground truth to reflect a polarised outcome as outlined in 

the preceding section. 

 

5.2.5.3.2 Model evaluation 

The evaluations were focused on two aspects. Within each series of 

simulations, we were interested in the difference in fidelity between the low- and 
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high-dimensional models. Across both series of simulations, we were interested in 

the impact the relationship between the treatment and the outcome where 

susceptibility is polarised into both positive and negative outcomes.  

The evaluation metrics to evaluate the classifiers’ predictive power included 

accuracy, sensitivity, specificity. A confidence interval at level of 95% was applied to 

yield the range of reliability. The details are as follows:  

accuracy =  
number of true positives + number of true negatives

the total number of cases
 ;  

sensitivity =  
number of true positves

number of true positives + number of false negatives

=  
number of true positives

the total number of "affected" cases
 ;  

specificity =  
number of true negatives

number of true negatives + number of false positives

=  
number of true negatives

the total number of "unaffected" cases
 .  

Then, for each series of simulations, the performance of inferential models 

through the 500 randomisations was further interpreted with violin plots. As an 

adaptation of the box plot, a violin plot synergistically combines the box plot and the 

density distribution of the data to enrich the visualisation (Hintze and Nelson, 1998, 

Potter et al., 2006). Specifically, in a typical violin plot (Figure 5.x), the data are 

usually partitioned into quartiles. A box positioned in the centre of the violin indicates 

the range of upper and lower quartiles, and a line extended through the box shows 

the limits of data at 95% confidence intervals. The violin plot is shaped by the kernel 

density estimate (KDE).  
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Figure 5.4 The components of violin plot 

As a variation of the original boxplot. Violin plot is used to further enrich the visualisation. The central mark (in 
red) is the median. The bottom and top boundaries of the box (in black) indicate the 1st and 3rd quartiles. The 

whisker through the box is extended to indicate upper and lower limits of 95% confidence intervals. At last, the 
violin is shaped by a kernel density estimate. 

 

5.2.6 Software and hardware 

All simulated prediction models were implemented in the environment of 

MATLAB (MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., 

Natick, Massachusetts, United States.).  

In both series of simulations, a 12-core Inter® Xeon® CPU E5-2620 2.00GHz 

processor with 64GB RAM and 9TB 7200 RPM SATA hard drive was used to 

conduct analysis under 64-bit Linux operation system (Ubuntu version 15.04).  



Chapter 5    The identification of individual susceptibility to treatments with prescriptive inference 

238 

 

5.3 Results 

5.3.1 Prescriptive inference with positive response to a given 

treatment 

The purpose of this series of simulations was two-fold. First, to determine 

whether empirically observed lesion patterns that could confer individual 

susceptibility to a specific treatment could be learnt to infer individual treatment 

susceptibility. Second, if so, to quantify the differential performance of low- and high-

dimensional models. 

Both low- or high-dimensional models were capable of identifying susceptible 

patients, with a fidelity that increased with effect size. At each specific effect size, 

high-dimensional models were markedly superior. The contrast was greater the 

higher the effect size (Figure 5.5). The mean range of sensitivity of the high-

dimensional models across the 500 randomisations was from 11.86% (95% 

confidence interval: 1.87^10-5) to 77.92% (95% confidence interval: 0.56^10-5); 

whereas the range of the low-dimensional models was 4.42% (95% confidence 

interval: 7.43^10-5) to 44.62% (95% confidence interval: 12.81^10-5). This indicates 

the sensitivity of the prescriptive inference was highly relied on the efficacy of 

provided treatment, but only given sufficient parameterisation. The mean value 

across the 500 randomisations and related confidence intervals are listed in table 

5.3. 
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Figure 5.5 Sensitivities in low- and high-dimensional models 

For both low- and high-dimensional models, a set of effect sizes was applied to determine the corresponding 
proportion of treated susceptible patients affected by a hypothetical functional deficit who recovered as a 

result of the treatment. For each effect size, a total of 500 randomisations were conducted to enhance model 
reliability. The ability to detect susceptible patients achieved in low- (in blue) and high-dimensional models (in 
black) were visualised with boxplot. For each box, the central mark refers to the median. The bottom and top 

edges are 25th and 75th percentiles, respectively. The maximum and minimum values were shown by the 
extended whiskers through the box. Outliers were plotted individually with red ‘+’. 
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               Evaluation 

Efficacy 

Mean of sensitivity (high) Mean of sensitivity (low) Difference 

10% 11.86% (95%CI:1.87^10-5) 4.42% (95%CI:7.43^10-5) 7.44% 

30% 27.72% (95%CI:4.40^10-5) 12.73% (95%CI:8.98^10-5) 14.99% 

50% 45.57% (95%CI:8.67^10-5) 21.42% (95%CI:2.21^10-5) 24.15% 

70% 60.26% (95%CI:30.51^10-5) 30.75% (95%CI:9.05^10-5) 29.51% 

90% 71.17% (95%CI:10.17^10-5) 39.91% (95%CI:2.32^10-5) 31.26% 

100% 77.92% (95%CI:0.56^10-5) 44.59% (95%CI:12.81^10-5) 33.33% 

Table 5.3 Simulation one: sensitivity 

 

5.3.2  Prescriptive inference with a polarised response to a given 

treatment 

Elaborating the series of simulations described above, the models were 

extended to further examine whether or not the patients susceptible to a specific 

treatment could be effectively identified and whether or not high-dimensional models 

consistently performed superiorly in the context of a more complex, polarised 

response to treatment.   

In this series, the pre-defined ground truths allowed for two set of divisions 

across the stack of 1333 patients referred as ‘affected’ versus ‘unaffected’, and 

‘susceptible’ versus ‘non-susceptible’. A set of effect sizes varying from 10% to 

100% was applied. In contrast with the first series of simulations, for each effect size, 

whereas the patients who were given treatment and were susceptible to the 

treatment recovered, treated patients who were not susceptible to the treatment 

became affected.  

As before, both low- and high-dimensional models were capable of identifying 

susceptible patients, with a fidelity that increased with effect size. Moreover, high-

dimensional models were markedly superior. The difference was closely correlated 
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to the efficacy of treatment (Figure 5.6). For instance, when the effect size was 10%, 

the contrast was 7.74% (95% confidence interval: 5.57^10-5) versus 6.21% (95% 

confidence interval: 1.20^10-5); whereas, in the case of 100%, the values were 

84.64% (95% confidence interval: 0.92^10-5) versus 50.77% (95% confidence 

interval: 6.90^10-5). Once again, the results also reflected the importance of 

treatment efficacy as well as dimensionality. The mean value across the 500 

randomisations and related confidence intervals were list in table 5.4. 

 

Figure 5.6 Sensitivities in low- and high-dimensional models 

For both low- and high-dimensional models, a set of effect sizes was applied to determine the according 
proportion of patients 1. affected by a hypothetical functional deficit who recovered as a result of the 

treatment; 2. unaffected by the hypothetical functional deficit who were accidentally attacked as a result of 
the treatment. For each effect size, a total of 500 randomisations were conducted to enhance model 
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reliability. The ability to detect susceptible patients achieved in low- (in blue) and high-dimensional models (in 
black) were visualised with boxplot. For each box, the central mark refers to the median. The bottom and top 

edges are 25th and 75th percentiles, respectively. The maximum and minimum values were shown by the 
extended whiskers through the box. Outliers were plotted individually with red ‘+’. 

 

               Evaluation 

Efficacy 

Mean of sensitivity (high) Mean of sensitivity (low) Difference 

10% 7.74% (95%CI:5.57^10-5) 6.21% (95%CI:1.20^10-5) 1.53% 

30% 20.88% (95%CI:0.48^10-5) 15.45% (95%CI:1.11^10-5) 5.43% 

50% 49.23% (95%CI:11.15^10-5) 24.55% (95%CI:2.87^10-5) 24.68% 

70% 68.48% (95%CI:1.99^10-5) 34.31% (95%CI:1.24^10-5) 34.17% 

90% 78.91% (95%CI:4.62^10-5) 44.94% (95%CI:11.43^10-5) 33.97% 

100% 84.64% (95%CI:0.92^10-5) 50.77% (95%CI:6.90^10-5) 33.87% 

Table 5.4 Simulation two: sensitivity 

 

5.3.3  Comparison between the two series of simulations. 

In the first series of simulations, we identified which patients could be benefit 

from the correct treatment. In the second series of simulations, we quantified fidelity 

with a polarised treatment. The latter series was more complex as the behavioural 

outcome changed in either direction. It was reasonable for the inferential models in 

the latter series of simulations to achieve higher sensitivity because the outcome 

changed for more patients.  

Specifically, to compare the performance between two series of simulations, a 

set of violin plot varying by efficacious ratios were generated. From the figures (5.9 – 

5.14), we can see the functional outcome of untreated patients remained more or 

less the same – the difference was consistently in the range of 0 to 0.2 whatever the 

effect size or the dimensionality. Moreover, in the set of plots, the violin shapes were 
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very flat, and their central whiskers were very short. In some extent, this reflected the 

stability of the inferential models in both series.  

The low- and high-dimensional model results for the treated group in the first 

series of simulations are plotted in the middle of each figure. The difference after 

treatment in the high-dimensional models was consistently larger than in the low-

dimensional models. The higher the effect sizes, the greater the difference between 

the two types of models. Similarly, the pair of violins on the right in each figure 

illustrated the difference of behavioural outcome after treatment in the second series 

of simulations. The larger difference showed not only the patients who were 

susceptible were correctly identified; but the patients whose outcome changed from 

‘unaffected’ to ‘affected’ were also identified. This further proved the superiority of 

high-dimensional models and enhanced the feasibility of the proposed inferential 

framework. 



Chapter 5    The identification of individual susceptibility to treatments with prescriptive inference 

244 

 

 

Figure 5.7 Identification of patients with treatment (efficacy ratio: 10%) 

By plotting the outcome change before and after treatment, the ability to detect whether or not a patient is 
treated is thus visualised. As the outcome adopted in this study is binarised, the absolute range of change is 0 
to 2. Three pairs of violins are plotted in the same figure to visualise the straightforward contrast. In each pair, 

left violin represents high-dimensional approach; and right violin represents the low-dimensional approach. 
For the first pair of violins in blue, the outcome almost barely changed (<0.2) in proportion of patients who 
were not treated. Fundamentally, this indicated the reliability and stability of the models in both low- and 

high-dimensionality. For the second pair of violins, the susceptible patients with treatment could be recovered 
from the hypothetical functional deficit. Where the treatment effect was 10%, a small proportion of patients 

were affected by the treatment, so the high-dimensional approach (purple) showed slightly larger impact 
responding to the treatment than the low-dimensional approach (in orange). For the first pair of violins, the 
susceptible patients with treatment could be recovered from the hypothetical functional deficit. Meanwhile, 

the unsusceptible patients with treatment could develop a deficit even though they were originally unaffected. 
Plausibly, the impact of treatment should have been further enlarged, but at the case of 10% treatment 
efficacy, the relatively small number of treated patients leaded to the instability of inferential models. 

Comparing to the former scenario, high-dimensional approach (in cranberry) showed slightly small impact and 
low-dimensional approach (in green) showed marginally larger impact. 
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Figure 5.8 Identification of patients with treatment (efficacy ratio: 30%) 

For the case of treatment efficacy at 30%, in both scenarios, high-dimensional approach shows large impact 
responding to the treatment comparing to the low-dimensional approach. Comparing to the case of 10% 

efficacy, the discrimination between two approaches was extended. To be similar to the case at 10% efficacy, 
the small proportional involved patients resulted in instability. The latter scenario did not demonstrate 

superior impact. 
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Figure 5.9 Identification of patients with treatment (efficacy ratio: 50%) 

For the case of treatment efficacy at 50%, in both scenarios, high-dimensional approach shows large impact 
responding to the treatment comparing to the low-dimensional approach. Comparing to the case of 30% 

efficacy, the discrimination between two approaches was extended. Moreover, the latter scenario where the 
treated patients might change their outcome from dual directions demonstrated further superior impact. 
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Figure 5.10 Identification of patients with treatment (efficacy ratio: 70%) 

For the case of treatment efficacy at 70%, in both scenarios, high-dimensional approach shows large impact 
responding to the treatment comparing to the low-dimensional approach. Comparing to the case of 50% 

efficacy, the discrimination between two approaches was further extended. Moreover, the latter scenario 
where the treated patients might change their outcome from dual directions demonstrated further superior 

impact. 
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Figure 5.12 Identification of patients with treatment (efficacy ratio: 90%) 

For the case of treatment efficacy at 90%, in both scenarios, high-dimensional approach shows large impact 
responding to the treatment comparing to the low-dimensional approach. Comparing to the case of 70% 

efficacy, the discrimination between two approaches was further extended. Moreover, the latter scenario 
where the treated patients might change their outcome from dual directions demonstrated further superior 

impact. 
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Figure 5.12 Identification of patients with treatment (efficacy ratio: 100%) 

For the case of treatment efficacy ideally at 100%, in both scenarios, high-dimensional approach shows large 
impact responding to the treatment comparing to the low-dimensional approach. Comparing to the case of 

90% efficacy, the discrimination between two approaches was maximised. Moreover, the latter scenario 
where the treated patients might change their outcome from dual directions demonstrated further superior 

impact. 
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5.4 Discussion 

In medicine, the conventional criteria for prescribing a particular treatment to 

an individual tend to be low dimensional. Typically, an evidence-based criterion of 

treatment usually rely on a compact set of specifiable parameters. For example, 

when treating brain infarction, the guidance might be all patients under the age of 75 

should have thrombolysis if they do not have middle cerebral artery (MCA) occlusion 

and mechanical thrombectomy if they do. However, given the intrinsically complex 

architecture of injured brain (Mah et al., 2015, Mah et al., 2014b, Xu et al., 2017a, Xu 

et al., 2017b) and its interaction with the complex pathological processes, the causal 

relation between a particular treatment and outcome should be individualised with a 

multiplicity of interacting factors rather than standardised with a small number of 

crude parameters.  

We therefore modelled two series of interactions between treatment and 

outcome in low- and high-dimensionality, respectively. By contrast with the poor 

performance obtained in low-dimensional models, the inference modelled in high-

dimensionality successfully distinguished between susceptible and non-susceptible 

patients. On the one hand, based on hypothetical ground truths, we established an 

inferential framework to reveal individual susceptiblity; on the other, we distinguished 

between the performance of low- and high-dimensional models of the lesion 

architecture.  

We did not use observed outcome data to model such inference, because we 

would like to build an inferential framework that is readily translatable to any 

predictive model - a universally adaptive model, not constrained with a specified 

relation. Although the set of synthetic ground truths might be different from the 

fidelity in the context of a real treatment, our primary focus here is to contrast the 

models in low- and high-dimensionality. In essence, we opted for the notion of 

counterfactuals to model agnosticism. As the basis of causal inference, the concept 

of counterfactual gained increasing popularity, especially, in medicine (Höfler, 2005, 

Johansson et al., 2016). Counterfactual explanations can be clearly interpreted in 

causal terms. Moreover, the inferential framework implemented with counterfactuals 

can provide a wide range of statistical procedures to estimate the causality and 
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demonstrate the limitations of factual data (Höfler, 2005). Additionally, in order to 

stabilise our framework, a relatively large number of randomisations (500) to assign 

the treatment (50% treated versus 50% non-treated) were iteratively conducted to 

minimise covariate shifts. 

The causality between treatment and outcome was interpreted with 

counterfactual explanations. But, to quantify the impact models in low- and high-

dimensionality, the set of hypothetical deficit and treatment must be evaluated with 

real damaged brain. The dimensionality of the model was commensurate with the 

scale of data. We employed vascular brain injury as a representative to establish the 

inference – on one hand, it was more feasible to obtain a relatively large-scale 

dataset; on the other, as one of the most prominent neurological disorder. A high-

dimensional model that took into account numerous interacting factors across the 

entire brain maps implemented with computation intensive machine learning 

techniques improved our understanding of human brain mechanisms by uncovering 

the anatomical patterns of lesion data that were hardly detectable with a 

conventional low-dimensional models. High-dimensional analysis showed substantial 

advantages and is expected to supersede low-dimensional approaches, even if 

clinical adoption may not be straightforward. A key question is whether guidance on 

treatment derived from a high-dimensional inferential framework is too complicated 

to be intelligible for the clinician to follow, and equally if a clinician would ever defer 

to a mathematical model he or she cannot understand. Since the primary duty of 

clinicians directs them to seek the best possible outcome rather than the most 

perspicuous outcome, this obstacle is likely to be overcome in due course.  

To optimise this high-dimensional framework and improve its adoption in 

clinical domain are our major targets in the future. Large-scale data is essential for 

modelling with high-dimensionality. It is clear we must grow our source data 

continuously so that we can enhance existing models, and more importantly, 

implement new models with greater flexibility. This will allow us to demonstrate the 

validity and necessity of high-dimensional analysis from a more comprehensive 

perspective. Technically, the notion of counterfactual explanations enables us to 

model causal inference with high adaptability. Yet, nothing is omnipotent. In some 

situations, the reference condition for assessing counterfactual causal effects is not 



Chapter 5    The identification of individual susceptibility to treatments with prescriptive inference 

252 

 

always easy to choose. Moreover, each instance can be usually explained by 

multiple counterfactuals, which is inconvenient sometimes (Höfler, 2005). Hence, it is 

worth exploring new concept of modelling to enrich our framework.  
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5.5 Conclusion 

By combining a particular treatment with a particular patient, in this chapter, 

two series of prescriptive inference in focally damaged human brain were conducted 

to identify individual susceptibility to treatment. To make the models aware of the 

complexity of lesion anatomy to varying degrees, we implemented the inference with 

low- and high-dimensionality, respectively. Low-dimensional models were based on 

a two-dimensional space derive from t-SNE (Maaten and Hinton, 2008); whereas, 

the parametrisations of high-dimensional models were dependent on a part-based 

decomposition in fifty dimensions derived from NMF (Lee and Seung, 1999), where 

the natural hierarchical structure of vascular injury was effectively retained. As 

predicted, in both series of counterfactuals, high-dimensional modelling was 

consistently superior in identifying individual-level susceptibility. 

The complexity of the human brain interacts with the complexity of the 

pathological process determining the intrinsic dimensionality of brain lesions, across 

both prediction and prescription. Methodologically and conceptually, our 

counterfactual explanations would be applicable to a wide range of prediction and 

inference in medical domain. 
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The ultimate objective of understanding the human brain is to explain how it 

responds to various physiological and pathological perturbations. Though an 

extraordinarily complex system, the anatomically specified architecture underlying 

human brain opens a path to such understanding, at least at the macroscopic level 

of organisation.  

Over the history of neuroscience, lesion-symptom mapping and functional 

magnetic resonance imaging (fMRI) are two major approaches to model the relations 

between brain anatomy and function. fMRI has been very popular during the past 

two decades as it provides excellent spatial resolution to localise brain activation. By 

identifying the activated regions in the brain during a particular task, specific brain 

regions are implicated in specific functions. However, given the complexity of large, 

densely connected neural networks, one primary limitation of fMRI is the activations 

induced by a specific task allow for multiple explanatory possibilities, leading to 

multiple interpretations. The other limitation is that fMRI merely identifies a change in 

neural activity related to a specific function, and cannot prove the function is critically 

dependent on the integrity of the activated regions. By contrast, the inferences 

generated by lesion-deficit mapping studies are based on the loss of function 

following focal damage. Lesion studies intrinsically model the causal relation 

between brain damage and function, enabling more robust prediction as well as 

illuminating the underlying mechanistic picture with greater intensity. The history of 

lesion studies can be traced back to 19th century -- from the period of post-mortem 

examinations (Broca, 1861, Wernicke, 1874) to in vivo imaging analysis in the 

contemporary era, the approaches to conducting lesion studies have evolved 

dramatically with the development of technology. Yet, the complexity hidden behind 

the architecture of brain injury is still ignored by conventional means of analysis. The 

behavioural outcome resulting from the complex interactions between the human 
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brain and the pathological process plausibly requires complex anatomical patterns to 

interpret. Hence, high-dimensional modelling commensurate with complexity of brain 

damage is essentially necessary. 

Crucially, sufficient parameterisation of lesion dimensionality is the foundation 

of lesion-function inference. The power of this foundation will be reflected in a wide 

range of contexts in medical research across advanced prediction of lesion-deficit 

and superior sensitivity of therapeutic and prescriptive inference. 
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6.1 The limits of lesion-deficit prediction 

Although lesion-deficit mapping has a long history, the spatial patterns 

underlying the anatomical structure of brain injury have not received adequate 

attention. Instead, mass-univariate analysis, as a conventional approach, is widely 

employed in lesion mapping studies, where each volume unit, regardless of 

resolution, is modelled as an independent variable. This is true of the template 

overlay method, which implicitly treats each discrete brain region as spatially 

independent of any other (Frey et al., 1987). In recent years, voxel-based lesion 

symptom mapping (VLSM) (Bates et al., 2003) has become the technique of choice. 

It relies on a voxel-wise measure of confidence to quantify the contribution of each 

voxel independently. Some proponents of VLSM have proposed involving lesion 

volume as a covariate to marginally enhance the superficial performance of statistics 

(de Haan and Karnath, 2018, Sperber and Karnath, 2016, Wiesen et al., 2019). 

The fundamental issue of mass-univariate analysis is the assumption of 

spatial independence, or at least simple spatial dependence such as Gaussian 

smoothness. This induces spatial biases arising from the complexity of the 

underlying lesion architecture. A previous study (Mah et al., 2014b) systematically 

explored this issue, showing substantial mislocalisation, for both very simple single-

voxel ground truths and more plausible regional dependence, when mass-univariate 

mapping methods were used. By contrast, high-dimensional multivariate analysis 

was far less prone to mislocalisation. This study quantified the biases induced by 

complex spatial dependence and showed its potential remedy through high-

dimensional techniques.  

The mislocalisation was greatly remedied by a high-dimensional multivariate 

approach, which indicated the ability of high-dimensional modelling to cope with 

complexity. We therefore expected the validity of high-dimensional models could 

improve the performance of lesion-deficit prediction. In Chapter 2, we obtained an 

extended dataset including 1172 ischemic lesions normalised into a generic space at 

voxel size of 2mm. By collapsing the lesions to right hemisphere, a stack of 1172 

lesion maps in binary including 66770 features was established. In order to validate 

the dimensionality of this largest reported vascular lesion set, t-SNE was used to 
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generate a two-dimensional embedding of the lesion anatomy labelled by the volume 

of each lesion (Figure 2.1). The resultant clustering illustrated the distribution to be 

neither simply uniform nor wholly random, which implied the spatial structure of 

lesion anatomy could not be explained by any single or small number of factors. 

Instead, it was apprehensible in a complex pattern. We subsequently conducted two 

series of simulations to contrast the predictive power of low-dimensional models to 

the models in high-dimensionality (2.2.4.1 and 2.2.4.2). Mass-univariate based 

Fisher’s exact test was adopted as the technique in low-dimensional analysis; 

whereas, the technique employed in high-dimensional analysis was multivariate-

based support vector machines (SVM). In both series of simulations, the prediction 

depends on the causal relation between lesion and function, so we adopted the 

notion of counterfactuals to involve a hypothetical functional deficit to construct 

causality. In addition, as the major objective of the simulations was to examine to 

what extent a high-dimensional multivariate analysis can lift the limit of lesion-deficit 

prediction, the benefit from the counterfactual explanations is the maximum flexibility 

for modelling. A hypothetical functional deficit allowed us to construct the prediction 

covering the whole brain which provided the optimal reliability to discriminate the 

performance between two approaches. 

The first series of simulations was based on a single Brodmann region. For a 

total of 39 Brodmann regions, if 20% of a particular lesion’s volume was overlapped 

with a particular region, the patient was assumed to be affected by the hypothetic 

functional deficit. The models were complicated in the second series of simulations, 

which were based on a combinatorial pair of Brodmann regions. A total of 819 pairs 

covered the completed combination of Brodmann areas: a challenge of 

computational complexity. As predicted, in both series of simulations, high-

dimensional models achieved significant superiority compared with the 

corresponding low-dimensional models. In the dual-region scenario, the extent of 

advantage was further magnified. For the mass-univariate analysis, the voxel-wise 

significant was derived from a p-value for each voxel independently; whereas, in 

SVM models, a weighted map took into account the all of the brain voxels and their 

interactions determined the significance. High-dimensional multivariate analysis 

mitigated the spatial biases induced in the mass-univariate analysis, hence 

improving predictive performance. Moreover, the issue of spatial independence was 
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proportional to the complexity of predictive models. The more complex the causation, 

the more severe biases were induced. Although we were not able to further 

complicate the predictive model, such as by combining three or more Brodmann 

areas, owing to the constraints on computation, it is plausible that greater contrasts 

will be demonstrated with more complex ground truths, given sufficient data.  

1172 has been the largest sample size reported in a lesion study. But, given 

the dimensionality of the feature space (66770 brain voxels were involved in the 

studies of Chapter 2 and 3), increased sample size can be expected to enhance the 

reliability and improve the performance of multivariate analysis. The distinct 

characteristics of clinical data determine the difficulties of rapid growth in scale. 

Taking maximum advantage of existing datasets is therefore worth exploring. As a 

variation of the original SVM, Transductive SVM (TSVM) -- a semi-supervised 

learning technique -- naturally extends learning to both labelled and unlabelled 

instances. Replicating our simulation approach, we thus sampled five single and ten 

combinatorial pairs of Brodmann regions to evaluate predictive models with 

supervised and semi-supervised learning methods (Chapter 3). In theory, by taking 

into account an extra set of unlabelled data, TSVM can adjust the optimised 

hyperplane with labelled data points alone towards the regions in lower data density. 

Hence, TSVM is effective in enhancing the classifier while reducing the probability of 

overfitting. In the case single Brodmann region ground truths, semi-supervised 

learning models improved prediction fidelity in comparison with purely supervised 

methods. In the more complicated dual-region case, semi-supervised learning 

models showed apparent superiority, but not significantly within the 95% confidence 

interval. The former case illustrated the fundamental value of including unlabelled 

data in such models, though this will interact with the complexity of the underlying 

relation. In the future, further investigation is required to clarify the limits of semi-

supervised learning prediction.  

The dimensionality of lesion anatomical structure compels a high-dimensional 

multivariate analysis. Indeed, we have to construct complex models to be 

commensurate with the complex anatomy of brain damage, which does not allow 

any compromise in terms of intensive computation and a large-scale dataset. In 



Chapter 6    General discussion 

259 

 

practice, the remarkably superior predictive power achieved by high-dimensional 

modelling will likely contribute to the precision of diagnoses substantially. 
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6.2 Enhanced detectability of therapeutic effects by high-

dimensional modelling 

We have seen that both conceptually and technically, awareness of brain 

lesion dimensionality could revolutionise the approach to modelling focal brain injury. 

High-dimensional multivariate analysis has the theoretical power to solve the 

systematic biases induced by complex patterns of spatial dependence present in 

lesions, even if this will always be dependent on sufficient data. High-dimensional 

multivariate analysis that is capable of taking into account the full complexity of 

lesion anatomical patterns has great potential to illuminate the causal relations 

between lesion and behaviours across an extensive range of contexts.  

Therapeutic inference aims to identify the effectiveness of a drug across the 

target population. It is conventionally done with simple statistical models relying on a 

small number of crude parameters, such as age, sex, and basic lesion parameters 

that are too simple to capture individual variation across the population. 

Consequently, large positive effects may be entirely missed within a randomised 

controlled trial, a phenomenon that might explain the common failure of interventions 

at the human level already proven at the much simpler animal level. To address this 

question, in Chapter 4, we therefore evaluated therapeutic functions at low- and 

high-dimensionality to demonstrate to what extent the approach of high-dimensional 

multivariate analysis could uncover drug effects concealed by conventional studies. 

Counterfactually, we simulated non-lesion altering and lesion-altering simulations 

and quantified the sensitivities of low- and high-dimensional models in two series of 

simulations, showing substantial differences (62.90.0% vs. 56.00% and 78.40% vs. 

55.00%). This combination of simulated ground truths with real lesion data allowed 

us to traverse the full space of possibility, quantifying the impact of modelled 

dimensionality with the greatest generalizability. Two series of simulations differing in 

the nature of the modelled intervention illuminated two cardinal modes of therapy in 

stroke: lesion-altering and non-lesion altering approaches. 

Modelling therapeutic inference with these two contrasting approaches, we 

showed the relation between lesion and outcome to be best determined by a causal 

field of a multiplicity of collateral factors numerous in their scale and complex in their 
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interactions. Simple low-dimensional models representing lesions merely by their 

volumes were shown to result in poorly sensitive models across all our simulations. 

The spatial dependencies of brain damage determine the complexity of valid models, 

which is proportional to the complexity of behavioural mechanism underlying the 

neural system in play and of the pathology that has deranged its operation. Here, a 

patient’s neurological state was indicated by gaze control, whose complexity can be 

exceeded by many other behavioural mechanisms. In Chapters 2 and 3, we have 

elaborated the contrast between low- and high-dimensional models to a more 

complex context. We expect the difference in our ability to detect interventional 

effects will be more prominent the more complex the outcome, though we need to 

construct more complex explanatory models correspondingly.  

Therapeutic inference not only to reveals the causal relation of lesion and 

behaviour; but also potentially the mechanism of the behaviour itself. Practically, the 

high-dimensional approach could contribute to the precision of targeted drug 

development; it will also be an opportunity to review the effects of interventions 

judged to be failures on the basis of low-dimensional trails that may well have been 

erroneous. 
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6.3 High-dimensional modelling of heterogeneous 

treatment effects 

Our studies on lesion prediction and therapeutic inference have investigated 

the mapping between brain injury and function, and the effectiveness of a drug 

across the population. In the final section of this thesis, we modelled treatments with 

heterogeneous effects to investigate how a particular patient responded to a 

particular treatment. Strategically, this allowed us to explore achieving greater 

precision in tailoring treatment. 

The concept of individualised medicine is not new. The critical question is how 

to develop valid approach to identifying the inherent differences across individuals so 

as to reveal individual susceptibility to a particular treatment. Fundamental research 

has shown convincingly that the complexity of the human brain is determined by the 

interactions between multiple physical and functional levels (Bassett and Gazzaniga, 

2011). For example, at the physiological level, the selective response properties of 

each individual neuron give rise, in massive combinatorial interaction, to the 

complexity and diversity of functional neural networks (Yagi, 2013, Yoshimura et al., 

2005); whilst, at the molecular level, neurobiological studies have revealed how 

genetic patterns individuate neurons (Baaré et al., 2001, Peper et al., 2007, Pol et 

al., 2006). All these studies imply the individual brain is bound to be unique, 

organised according to a complex order. To realise the goal of personalised 

treatment will thus ultimately require innovative approaches covering various levels. 

The conventional approach of relying on low-dimensional representations of the 

crude average of the population could never succeed outside niche, unusually 

simple cases.  

In line with the models in preceding chapters, here we employed simulated 

ground truths to investigate prescriptive inference, because we are interested in 

isolating the contribution of the lesion architecture, for which we have empirical data, 

and which real-world ground truths of outcome would otherwise conceal. Simulating 

both functional deficits and treatment susceptibility, both dependent on complex 

features of the lesion architecture, we constructed low- and high-dimensional 

prescriptive models. In contrast with the models investigated in Chapter 2-4, we 
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employed two techniques of dimensionality reduction to derive our dimensionally 

contrasting representations. In the high-dimensional case, non-negative matrix 

factorisation (NMF) was used to compact the lesion maps into a 50-dimensional 

space (Lee and Seung, 1999). The low-dimensional representation was derived from 

t-SNE – a nonlinear technique for dimensionality reduction (Maaten and Hinton, 

2008).  

The subsequent analysis showed, as predicted, that high-dimensional models 

were superior in identifying susceptibility to the given treatment. In the second series 

of simulations in particular (5.3.2), the corresponding proportion of patients 

responded to the treatment in a polarised way (outcome changed from persistence 

to recovery if susceptible, conversely if not) demonstrated more prominent 

discrimination that the other series (outcome was only affected from persistence to 

recovery if susceptible.) (5.3.1). This further revealed the ability of high-dimensional 

modelling to deal with complexity.  

In essence, we demonstrated the potential feasibility of high-dimensional 

multivariate analysis in individualised prescription in the context of heterogeneous 

treatment effects. This further enriched the applicability of high-dimensional 

modelling to the neurological realm. 
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6.4 Limitations and future work 

The spatial dependencies studied here stemmed from the intrinsic complexity 

of lesion anatomy and determined the foundation of lesion-function inference – a 

high-dimensional multivariate analysis. In this thesis, we demonstrated the approach 

of high-dimensional modelling in terms of ideas and methodology progressively – 

from lesion-deficit prediction about patients in general, therapeutic inference about a 

treatment in general, finally to prescriptive inference in the setting of heterogeneous 

treatment effects.  

Lesion-deficit prediction contributes to our understanding of how individuals 

respond to focal brain injury. Practically, the superior predictive power achieved in 

high-dimensional approach allows for the greater precision in diagnosis and 

prognosis. Our models were based on a single and combinatorial pair of Brodmann 

regions, respectively. Given greater computational resource and a wider time frame, 

we could have constructed more complex models, such as combinations of three 

Brodmann regions, to enhance the exploration of the differences between low- and 

high-dimensional models. For the Brodmann atlas including 41 distinct regions, the 

number of three-region combinations will be 10660, which is indeed a great 

challenge. So, in the future, we may apply independent component analysis (ICA) to 

randomly sample a certain number of three-region combinations to demonstrate the 

predictive in a more complex context. On the other hand, besides the atlases derived 

from cytoarchitecture or anatomy, there have been some parcellations driven by 

brain connectivity (Glasser et al., 2016b) in recent years. It is worth establishing 

physiologically more plausible lesion-deficit mapping models with state-of-the-art 

brain parcellations in the future. 

Therapeutic inference contributes to revealing the sensitivity of clinical trials, 

which enables greater precision in targeted drug development. In our study, the 

direction of gaze was measured by a semi-automated algorithm which required an 

experienced neurologist to localise the centre of the pupil before calculating the 

deviated degree automatically. Future work is therefore proposed to perform gaze 

segmentation in a full automated way. In addition, we are naturally motivated to 
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explore other behaviours with plausibly much more complex mechanisms to see if 

the superiority of high-dimensional approach can be amplified.  

Prescriptive inference contributes to identifying individual susceptibility to 

treatments. Inference capable of handling heterogeneous treatment effects will 

provide greater precision in therapeutic selection at the individual level. In our study, 

two sets of synthetic ground truths – affected or not by a functional deficit and 

susceptible or not to a give treatment – formed a 2 x 2 confusion matrix. Fifty- and 

two-dimensional representations were used for high- and low-dimensional feature 

space. The inferential models were smoothly constructed under a relatively simple 

context. In the next stage, we would like to extend the current model to a multi-label 

inference by involving a multiplicity of treatments because it is practically plausible 

for a patient to receive multiple treatments simultaneously. Evolving from the work 

we have done, future work could also model individual susceptibility to disease 

prevention. 

In terms of concept and methodology, we demonstrated the intrinsic complex 

lesion architecture distributed in human brain which compels complex and intensive 

computational models to commensurate with. Certainly, this is the very much 

beginning to bind neuroimaging with state-of-art machine learning and artificial 

intelligence techniques for exploring the interactions and covariance of pathological 

processes. Regarding with the future phase, the works need to be improved and 

extended in serveral following aspects. First and foremost, the high-dimensional 

multivariate modelling can only release its power by feeding the sufficient data. 

Theoretically, the more complex and advanced computational model, the larger 

volume of data set is required. Therefore, we need data at massive scale, allied with 

improvements in algorithmics and computation. Moreover, a growing scale of dataset 

and developing machine learning algorithms are complementary with each other. 

Rapid advances in machine learning and artificial intelligence techniques will unlock 

new areas of understanding that were previously inaccessible within the high-

dimensional multivariate analysis framework. Secondly, since we aim to continuously 

collect the data to approximate the population level as much as possible, a practical 

question is that it is necessary to establish a solid and efficient pipeline or framework 

to pre-process the heterogeneous clinical data, which is fundamental and 
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prerequisite for any big data study. The manual and labour-intensive works are not 

feasible any more to prepare for a study involving a large-scale dataset, instead, we 

need a pipeline to be automatic and reliable. Ideally, it is worth of trying to build up 

an open source platform to generalise its functionality and benefit more research. 

Thirdly, the counterfactual explanations were broadly applied to model the 

hypothetical simulations. This is the initial step to demonstrate the concept and 

method derived from the high-dimensional modelling. In order to enhance and 

extend its superiorities, we need to upgrade the models by involving the real and 

complicated clinical outcomes. Fourthly, the translation of the complex computational 

models to the clinical applications is a crucial concern. We need to simplify the 

operation and optimise the user interface to fill the gap between the researchers and 

clinicians. Thereby, in the future, we need to closely work with the clinicians to see 

how the advances derived from the superior analysis models can actually benefit the 

routines in clinical environment. Last but not least, as aforementioned, the proposed 

method in this thesis is to establish the generalisability of relating the focal brain 

injury and its clinical behaviour, but not any subgroup study. We implemented a 

large-scale acute ischaemic stroke dataset in this thesis, because it is one of the 

most common and typical vascular damage not only in the UK but across the world. 

In future, we would like to translate our model to a broad range of neurological 

disorders, hence, establish the multidisciplinarily collaborations and impacts among 

multi-organisations.  
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Chapter 7    Appendix  

 

 

 

7.1 Appendix A: the details of scanners involved into this 

thesis 

Manufacturer Model Tesla 

GE Medical System Discovery MR 450 1.5 

GE Medical System Genesis Signa 1.5 

GE Medical System Signa Excite 1.5 

GE Medical System Signa HD 1.5 

Philips Medical System Achieva 1.5 

Philips Medical System Achieva 3 

Philips Medical System Ingenia 1.5 

Philips Medical System Ingenia 3 

Philips Medical System Intera 1.5 

Siemens Avanto 1.5 

Siemens Biograph mMR 1.5 

Siemens Espree 1.5 

Siemens Skyra 3 

Siemens Symphony 1.5 

Siemens Symphony Tim 1.5 
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Siemens Trio Tim 3 

Siemens Verio 3 

 Table 7.1. The list of scanner details 

  



Chapter 7    Appendix 

269 

 

7.2 Appendix B: demographic information 

  

Figure 7.1 Age and sex distribution 

The distribution of age was divided into seven bins to show the most involved age range. For each bin, the 
proportion with filled colour represented the ratio of male patients. 
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Figure 7.2 Ethnical group 

The distribution of self-reported patient ethnicity is shown in this figure. 81.2% of the stack of 1172 patients 
was recorded. 
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