16 research outputs found

    5. Generische Infrastruktur und spezifische Forschung: Angebote und Lösungen

    Get PDF
    Die empirische Forschung an natürlichsprachlichen Daten geht mit grundlegenden methodischen Veränderungen einher. Immer mehr Texte stehen in digitaler Form zu Verfügung. Eine rein manuelle Vorgehensweise ist nicht möglich oder extrem zeitaufwendig. Wir zeigen welche Vorteile der Einsatz von generischen Infrastrukturkomponenten für spezifische Forschung haben kann:(i) effiziente Untersuchungen auf größeren Datenmengen, (ii) reproduzierbare und übertragbare Ergebnisse. Wir zeigen an einer konkreten Studie, wie generische Infrastruktur spezifisch angepasst und durch spezifische Lösungen ergänzt werden kann.Die im Artikel beschriebenen Arbeiten wurden durch das Bundesministeriums fürBildung und Forschung im Rahmen des CLARIN-D Projekts unterstützt

    Assessing the Impact of Automated Suggestions on Decision Making: Domain Experts Mediate Model Errors but Take Less Initiative

    Full text link
    Automated decision support can accelerate tedious tasks as users can focus their attention where it is needed most. However, a key concern is whether users overly trust or cede agency to automation. In this paper, we investigate the effects of introducing automation to annotating clinical texts--a multi-step, error-prone task of identifying clinical concepts (e.g., procedures) in medical notes, and mapping them to labels in a large ontology. We consider two forms of decision aid: recommending which labels to map concepts to, and pre-populating annotation suggestions. Through laboratory studies, we find that 18 clinicians generally build intuition of when to rely on automation and when to exercise their own judgement. However, when presented with fully pre-populated suggestions, these expert users exhibit less agency: accepting improper mentions, and taking less initiative in creating additional annotations. Our findings inform how systems and algorithms should be designed to mitigate the observed issues.Comment: Fixed minor formattin

    Cody: An AI-Based System to Semi-Automate Coding for Qualitative Research

    Get PDF
    Qualitative research can produce a rich understanding of a phenomenon but requires an essential and strenuous data annotation process known as coding. Coding can be repetitive and time-consuming, particularly for large datasets. Existing AI-based approaches for partially automating coding, like supervised machine learning (ML) or explicit knowledge represented in code rules, require high technical literacy and lack transparency. Further, little is known about the interaction of researchers with AI-based coding assistance. We introduce Cody, an AI-based system that semi-automates coding through code rules and supervised ML. Cody supports researchers with interactively (re)defining code rules and uses ML to extend coding to unseen data. In two studies with qualitative researchers, we found that (1) code rules provide structure and transparency, (2) explanations are commonly desired but rarely used, (3) suggestions benefit coding quality rather than coding speed, increasing the intercoder reliability, calculated with Krippendorff’s Alpha, from 0.085 (MAXQDA) to 0.33 (Cody)

    Automatic Annotation Suggestions and Custom Annotation Layers in WebAnno

    No full text

    Designing AI-Based Systems for Qualitative Data Collection and Analysis

    Get PDF
    With the continuously increasing impact of information systems (IS) on private and professional life, it has become crucial to integrate users in the IS development process. One of the critical reasons for failed IS projects is the inability to accurately meet user requirements, resulting from an incomplete or inaccurate collection of requirements during the requirements elicitation (RE) phase. While interviews are the most effective RE technique, they face several challenges that make them a questionable fit for the numerous, heterogeneous, and geographically distributed users of contemporary IS. Three significant challenges limit the involvement of a large number of users in IS development processes today. Firstly, there is a lack of tool support to conduct interviews with a wide audience. While initial studies show promising results in utilizing text-based conversational agents (chatbots) as interviewer substitutes, we lack design knowledge for designing AI-based chatbots that leverage established interviewing techniques in the context of RE. By successfully applying chatbot-based interviewing, vast amounts of qualitative data can be collected. Secondly, there is a need to provide tool support enabling the analysis of large amounts of qualitative interview data. Once again, while modern technologies, such as machine learning (ML), promise remedy, concrete implementations of automated analysis for unstructured qualitative data lag behind the promise. There is a need to design interactive ML (IML) systems for supporting the coding process of qualitative data, which centers around simple interaction formats to teach the ML system, and transparent and understandable suggestions to support data analysis. Thirdly, while organizations rely on online feedback to inform requirements without explicitly conducting RE interviews (e.g., from app stores), we know little about the demographics of who is giving feedback and what motivates them to do so. Using online feedback as requirement source risks including solely the concerns and desires of vocal user groups. With this thesis, I tackle these three challenges in two parts. In part I, I address the first and the second challenge by presenting and evaluating two innovative AI-based systems, a chatbot for requirements elicitation and an IML system to semi-automate qualitative coding. In part II, I address the third challenge by presenting results from a large-scale study on IS feedback engagement. With both parts, I contribute with prescriptive knowledge for designing AI-based qualitative data collection and analysis systems and help to establish a deeper understanding of the coverage of existing data collected from online sources. Besides providing concrete artifacts, architectures, and evaluations, I demonstrate the application of a chatbot interviewer to understand user values in smartphones and provide guidance for extending feedback coverage from underrepresented IS user groups
    corecore