526 research outputs found

    Intercomparison of medical image segmentation algorithms

    Get PDF
    Magnetic Resonance Imaging (MRI) is one of the most widely-used high quality imaging techniques, especially for brain imaging, compared to other techniques such as computed tomography and x-rays, mainly because it possesses better soft tissue contrast resolution. There are several stages involved in analyzing an MRI image, segmentation being one of the most important. Image segmentation is essentially the process of identifying and classifying the constituent parts of an image, and is usually very complex. Unfortunately, it suffers from artefacts including noise, partial volume effects and intensity inhomogeneities. Brain, being a very complicated structure, its precise segmentation is particularly necessary to delineate the borders of anatomically distinct regions and possible tumors. Many algorithms have been proposed for image segmentation, the most important being thresholding, region growing, and clustering methods such as k-means and fuzzy c-means algorithms. The main objective of this project was to investigate a representative number of different algorithms and compare their performance. Image segmentation algorithms, including thresholding, region growing, morphological operations and fuzzy c-means were applied to a selection of simulated and real brain MRI images, and the results compared. The project was realized by developing algorithms using the popular Matlab® software package. Qualitative comparisons were performed on real and simulated brain images, while quantitative comparisons were performed on simulated brain images, using a variety of different parameters, and results tabulated. It was found that the fuzzy c-means algorithm performed better than all the other algorithms, both qualitatively and quantitatively. After comparing the performance of all algorithms, it was concluded that, by combining one or two basic algorithms, a more effective algorithm could be developed for image segmentation that is more robust to noise, considers both intensity and spatial characteristics of an image, and which is computationally efficient.Magnetic Resonance Imaging (MRI) is one of the most widely-used high quality imaging techniques, especially for brain imaging, compared to other techniques such as computed tomography and x-rays, mainly because it possesses better soft tissue contrast resolution. There are several stages involved in analyzing an MRI image, segmentation being one of the most important. Image segmentation is essentially the process of identifying and classifying the constituent parts of an image, and is usually very complex. Unfortunately, it suffers from artefacts including noise, partial volume effects and intensity inhomogeneities. Brain, being a very complicated structure, its precise segmentation is particularly necessary to delineate the borders of anatomically distinct regions and possible tumors. Many algorithms have been proposed for image segmentation, the most important being thresholding, region growing, and clustering methods such as k-means and fuzzy c-means algorithms. The main objective of this project was to investigate a representative number of different algorithms and compare their performance. Image segmentation algorithms, including thresholding, region growing, morphological operations and fuzzy c-means were applied to a selection of simulated and real brain MRI images, and the results compared. The project was realized by developing algorithms using the popular Matlab® software package. Qualitative comparisons were performed on real and simulated brain images, while quantitative comparisons were performed on simulated brain images, using a variety of different parameters, and results tabulated. It was found that the fuzzy c-means algorithm performed better than all the other algorithms, both qualitatively and quantitatively. After comparing the performance of all algorithms, it was concluded that, by combining one or two basic algorithms, a more effective algorithm could be developed for image segmentation that is more robust to noise, considers both intensity and spatial characteristics of an image, and which is computationally efficient

    On Martian Surface Exploration: Development of Automated 3D Reconstruction and Super-Resolution Restoration Techniques for Mars Orbital Images

    Get PDF
    Very high spatial resolution imaging and topographic (3D) data play an important role in modern Mars science research and engineering applications. This work describes a set of image processing and machine learning methods to produce the “best possible” high-resolution and high-quality 3D and imaging products from existing Mars orbital imaging datasets. The research work is described in nine chapters of which seven are based on separate published journal papers. These include a) a hybrid photogrammetric processing chain that combines the advantages of different stereo matching algorithms to compute stereo disparity with optimal completeness, fine-scale details, and minimised matching artefacts; b) image and 3D co-registration methods that correct a target image and/or 3D data to a reference image and/or 3D data to achieve robust cross-instrument multi-resolution 3D and image co-alignment; c) a deep learning network and processing chain to estimate pixel-scale surface topography from single-view imagery that outperforms traditional photogrammetric methods in terms of product quality and processing speed; d) a deep learning-based single-image super-resolution restoration (SRR) method to enhance the quality and effective resolution of Mars orbital imagery; e) a subpixel-scale 3D processing system using a combination of photogrammetric 3D reconstruction, SRR, and photoclinometric 3D refinement; and f) an optimised subpixel-scale 3D processing system using coupled deep learning based single-view SRR and deep learning based 3D estimation to derive the best possible (in terms of visual quality, effective resolution, and accuracy) 3D products out of present epoch Mars orbital images. The resultant 3D imaging products from the above listed new developments are qualitatively and quantitatively evaluated either in comparison with products from the official NASA planetary data system (PDS) and/or ESA planetary science archive (PSA) releases, and/or in comparison with products generated with different open-source systems. Examples of the scientific application of these novel 3D imaging products are discussed

    Use of Multicomponent Non-Rigid Registration to Improve Alignment of Serial Oncological PET/CT Studies

    Get PDF
    Non-rigid registration of serial head and neck FDG PET/CT images from a combined scanner can be problematic. Registration techniques typically rely on similarity measures calculated from voxel intensity values; CT-CT registration is superior to PET-PET registration due to the higher quality of anatomical information present in this modality. However, when metal artefacts from dental fillings are present in a pair of CT images, a nonrigid registration will incorrectly attempt to register the two artefacts together since they are strong features compared to the features that represent the actual anatomy. This leads to localised registration errors in the deformation field in the vicinity of the artefacts. Our objective was to develop a registration technique which overcomes these limitations by using combined information from both modalities. To study the effect of artefacts on registration, metal artefacts were simulated with one CT image rotated by a small angle in the sagittal plane. Image pairs containing these simulated artifacts were then registered to evaluate the resulting errors. To improve the registration in the vicinity where there were artefacts, intensity information from the PET images was incorporated using several techniques. A well-established B-splines based non-rigid registration code was reworked to allow multicomponent registration. A similarity measure with four possible weighted components relating to the ways in which the CT and PET information can be combined to drive the registration of a pair of these dual-valued images was employed. Several registration methods based on using this multicomponent similarity measure were implemented with the goal of effectively registering the images containing the simulated artifacts. A method was also developed to swap control point displacements from the PET-derived transformation in the vicinity of the artefact. This method yielded the best result on the simulated images and was evaluated on images where actual dental artifacts were present
    corecore