617 research outputs found

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ Коши для расчСта ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²ΠΎΠ²

    Get PDF
    Автоматизований Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… систСм об’єктивів ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” застосування Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΠ³ΠΎ забСзпСчСння. Π’ основу Ρ‚Π°ΠΊΠΎΠ³ΠΎ спСціалізованого ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΠ³ΠΎ забСзпСчСння ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ ΠΏΠΎΠΊΠ»Π°Π΄Π΅Π½Ρ– сучасні Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½ΠΎΡ— ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ—. Π’ Π΄Π°Π½Ρ–ΠΉ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Ρ‡ΠΈΡΠ΅Π»ΡŒΠ½ΠΈΠΌ модСлюванням Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΡƒΡ”Ρ‚ΡŒΡΡ Π½Π΅Ρ‰ΠΎΠ΄Π°Π²Π½ΠΎ ΠΎΠΏΡƒΠ±Π»Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΉ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎΡ— Π΅Π²ΠΎΠ»ΡŽΡ†Ρ–Ρ— ΠšΠΎΡˆΡ–, який Π²ΠΈΡ€Ρ–Π·Π½ΡΡ”Ρ‚ΡŒΡΡ Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŽ Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½ΡŒΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡƒ Π°Π΄Π°ΠΏΡ‚Π°Ρ†Ρ–Ρ— Π΄Π²ΠΎΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π²-ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π² класичного ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎΡ— Π΅Π²ΠΎΠ»ΡŽΡ†Ρ–Ρ— Ρ‚Π° застосуванням Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ ΠšΠΎΡˆΡ– для гСнСрування Π½ΠΎΠ²ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ Ρ†ΠΈΡ… ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π². ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΡƒΡŽΡ‚ΡŒ Ρ‚Π΅, Ρ‰ΠΎ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎΡ— Π΅Π²ΠΎΠ»ΡŽΡ†Ρ–Ρ— ΠšΠΎΡˆΡ– дозволяє синтСзувати Π΄ΠΎΠ²Ρ–Π»ΡŒΠ½Ρƒ ΠΎΠΏΡ‚ΠΈΡ‡Π½Ρƒ систСму Π· Π·Π°Π΄Π°Π½ΠΈΠΌΠΈ Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Ρ‚Π° прийнятним Ρ€Ρ–Π²Π½Π΅ΠΌ ΠΊΠΎΡ€Π΅ΠΊΡ†Ρ–Ρ— ΠΌΠΎΠ½ΠΎΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Ρ‚Π° Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π°Π±Π΅Ρ€Π°Ρ†Ρ–ΠΉ. ΠŸΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ синтСзу ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΡ— систСми Π·Π½Π°Ρ‡Π½ΠΎ Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ структури сформованої ΠΎΡ†Ρ–Π½ΠΎΡ‡Π½ΠΎΡ— Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ—. Час, який ΠΏΠΎΡ‚Ρ€Ρ–Π±Π΅Π½ для здійснСння Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΡ— систСми Π· ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŽ ΠΏΠΎΡˆΡƒΠΊΠΎΠ²ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² біля 20, Π½Π΅ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΡƒΡ” Π΄Π΅ΠΊΡ–Π»ΡŒΠΊΠ° Π³ΠΎΠ΄ΠΈΠ½. Π―ΠΊΡ–ΡΡ‚ΡŒ зобраТСння ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… систСм дозволяє використовувати Ρ—Ρ… Π· Ρ–ΡΠ½ΡƒΡŽΡ‡ΠΈΠΌΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΠΌΠΈ ΠΏΡ€ΠΈΠΉΠΌΠ°Ρ‡Π°ΠΌΠΈ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ.For automated design of optical lens systems, the appropriate software is to be used. To provide a design process, modern algorithms of global optimization can be incorporated into such specialized software. In this paper, a recently published adaptive Cauchy differential evolution method is numerically studied for the purpose of lens design. This method is characterized by an availability of an internal mechanism for adapting two specific parameters (coefficients) of the classical differential evolution method, as well as by applying the Cauchy distribution to generate new values of these parameters. The obtained results confirm that the adaptive Cauchy differential evolution method enables to design an arbitrary optical system with the required functional parameters and an acceptable level of correction of both chromatic and monochromatic aberrations. The performance of a lens design process greatly depends on a structure of the given merit function. The time interval, required to carry out automated design of an optical system with a number of variables about 20, does not exceed a few hours. The image quality of the obtained lenses enables to use them with existing matrix image sensors.Автоматизированный расчСт оптичСских систСм ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²ΠΎΠ² Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ примСнСния ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния. Π’ основу Ρ‚Π°ΠΊΠΎΠ³ΠΎ спСциализированного ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Ρ‹ соврСмСнныС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ глобальной ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ числСнным ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ исслСдуСтся Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ Коши, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ отличаСтся Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²-коэффициСнтов классичСского ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ распрСдСлСния Коши для гСнСрирования Π½ΠΎΠ²Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ этих коэффициСнтов. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ Коши позволяСт ΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΎΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ систСму с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ монохроматичСских ΠΈ хроматичСских Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ синтСза оптичСской систСмы Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ зависит ΠΎΡ‚ структуры сформированной ΠΎΡ†Π΅Π½ΠΎΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ВрСмя, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ для осущСствлСния Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ расчСта оптичСской систСмы с количСством поисковых ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΠΊΠΎΠ»ΠΎ 20, Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… часов. ΠšΠ°Ρ‡Π΅ΡΡ‚Π²ΠΎ изобраТСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… систСм позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… с ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ°ΠΌΠΈ излучСния

    NASA Tech Briefs, July 2007

    Get PDF
    Topics covered include: Miniature Intelligent Sensor Module; "Smart" Sensor Module; Portable Apparatus for Electrochemical Sensing of Ethylene; Increasing Linear Dynamic Range of a CMOS Image Sensor; Flight Qualified Micro Sun Sensor; Norbornene-Based Polymer Electrolytes for Lithium Cells; Making Single-Source Precursors of Ternary Semiconductors; Water-Free Proton-Conducting Membranes for Fuel Cells; Mo/Ti Diffusion Bonding for Making Thermoelectric Devices; Photodetectors on Coronagraph Mask for Pointing Control; High-Energy-Density, Low-Temperature Li/CFx Primary Cells; G4-FETs as Universal and Programmable Logic Gates; Fabrication of Buried Nanochannels From Nanowire Patterns; Diamond Smoothing Tools; Infrared Imaging System for Studying Brain Function; Rarefying Spectra of Whispering-Gallery-Mode Resonators; Large-Area Permanent-Magnet ECR Plasma Source; Slot-Antenna/Permanent-Magnet Device for Generating Plasma; Fiber-Optic Strain Gauge With High Resolution And Update Rate; Broadband Achromatic Telecentric Lens; Temperature-Corrected Model of Turbulence in Hot Jet Flows; Enhanced Elliptic Grid Generation; Automated Knowledge Discovery From Simulators; Electro-Optical Modulator Bias Control Using Bipolar Pulses; Generative Representations for Automated Design of Robots; Mars-Approach Navigation Using In Situ Orbiters; Efficient Optimization of Low-Thrust Spacecraft Trajectories; Cylindrical Asymmetrical Capacitors for Use in Outer Space; Protecting Against Faults in JPL Spacecraft; Algorithm Optimally Allocates Actuation of a Spacecraft; and Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets

    NASA Tech Briefs, February 2001

    Get PDF
    The topics include: 1) Application Briefs; 2) National Design Engineering Show Preview; 3) Marketing Inventions to Increase Income; 4) A Personal-Computer-Based Physiological Training System; 5) Reconfigurable Arrays of Transistors for Evolvable Hardware; 6) Active Tactile Display Device for Reading by a Blind Person; 7) Program Automates Management of IBM VM Computer Systems; 8) System for Monitoring the Environment of a Spacecraft Launch; 9) Measurement of Stresses and Strains in Muscles and Tendons; 10) Optical Measurement of Temperatures in Muscles and Tendons; 11) Small Low-Temperature Thermometer With Nanokelvin Resolution; 12) Heterodyne Interferometer With Phase-Modulated Carrier; 13) Rechargeable Batteries Based on Intercalation in Graphite; 14) Signal Processor for Doppler Measurements in Icing Research; 15) Model Optimizes Drying of Wet Sheets; 16) High-Performance POSS-Modified Polymeric Composites; 17) Model Simulates Semi-Solid Material Processing; 18) Modular Cryogenic Insulation; 19) Passive Venting for Alleviating Helicopter Tail-Boom Loads; 20) Computer Program Predicts Rocket Noise; 21) Process for Polishing Bare Aluminum to High Optical Quality; 22) External Adhesive Pressure-Wall Patch; 23) Java Implementation of Information-Sharing Protocol; 24) Electronic Bulletin Board Publishes Schedules in Real Time; 25) Apparatus Would Extract Water From the Martian Atmosphere; 26) Review of Research on Supercritical vs Subcritical Fluids; 27) Hybrid Regenerative Water-Recycling System; 28) Study of Fusion-Driven Plasma Thruster With Magnetic Nozzle; 29) Liquid/Vapor-Hydrazine Thruster Would Produce Small Impulses; and 30) Thruster Based on Sublimation of Solid Hydrazin

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrΓ³nicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    NASA Tech Briefs, November 2000

    Get PDF
    Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Data Acquisition

    NASA Tech Briefs, June 1993

    Get PDF
    Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    NASA Tech Briefs, September 1990

    Get PDF
    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    NASA Tech Briefs, October 2001

    Get PDF
    Topics include: special coverage section on composites and plastics, electronic components and systems, software, mechanics, physical sciences, information sciences, book and reports, and a special sections of Photonics Tech Briefs and Motion Control Tech Briefs

    Field Guide to Genetic Programming

    Get PDF
    • …
    corecore