3,716 research outputs found

    Automated metamorphic testing of variability analysis tools

    Get PDF
    Variability determines the capability of software applications to be configured and customized. A common need during the development of variability–intensive systems is the automated analysis of their underlying variability models, e.g. detecting contradictory configuration options. The analysis operations that are performed on variability models are often very complex, which hinders the testing of the corresponding analysis tools and makes difficult, often infeasible, to determine the correctness of their outputs, i.e. the well–known oracle problem in software testing. In this article, we present a generic approach for the automated detection of faults in variability analysis tools overcoming the oracle problem. Our work enables the generation of random variability models together with the exact set of valid configurations represented by these models. These test data are generated from scratch using step–wise transformations and assuring that certain constraints (a.k.a. metamorphic relations) hold at each step. To show the feasibility and generalizability of our approach, it has been used to automatically test several analysis tools in three variability domains: feature models, CUDF documents and Boolean formulas. Among other results, we detected 19 real bugs in 7 out of the 15 tools under test.CICYT TIN2012-32273CICYT IPT-2012- 0890-390000Junta de Andalucía TIC-5906Junta de Andalucía P12-TIC- 186

    Automated metamorphic testing on the analyses of feature models

    Get PDF
    Copyright © 2010 Elsevier B.V. All rights reserved.Context: A feature model (FM) represents the valid combinations of features in a domain. The automated extraction of information from FMs is a complex task that involves numerous analysis operations, techniques and tools. Current testing methods in this context are manual and rely on the ability of the tester to decide whether the output of an analysis is correct. However, this is acknowledged to be time-consuming, error-prone and in most cases infeasible due to the combinatorial complexity of the analyses, this is known as the oracle problem.Objective: In this paper, we propose using metamorphic testing to automate the generation of test data for feature model analysis tools overcoming the oracle problem. An automated test data generator is presented and evaluated to show the feasibility of our approach.Method: We present a set of relations (so-called metamorphic relations) between input FMs and the set of products they represent. Based on these relations and given a FM and its known set of products, a set of neighbouring FMs together with their corresponding set of products are automatically generated and used for testing multiple analyses. Complex FMs representing millions of products can be efficiently created by applying this process iteratively.Results: Our evaluation results using mutation testing and real faults reveal that most faults can be automatically detected within a few seconds. Two defects were found in FaMa and another two in SPLOT, two real tools for the automated analysis of feature models. Also, we show how our generator outperforms a related manual suite for the automated analysis of feature models and how this suite can be used to guide the automated generation of test cases obtaining important gains in efficiency.Conclusion: Our results show that the application of metamorphic testing in the domain of automated analysis of feature models is efficient and effective in detecting most faults in a few seconds without the need for a human oracle.This work has been partially supported by the European Commission(FEDER)and Spanish Government under CICYT project SETI(TIN2009-07366)and the Andalusian Government project ISABEL(TIC-2533)

    Mutation testing on an object-oriented framework: An experience report

    Get PDF
    This is the preprint version of the article - Copyright @ 2011 ElsevierContext The increasing presence of Object-Oriented (OO) programs in industrial systems is progressively drawing the attention of mutation researchers toward this paradigm. However, while the number of research contributions in this topic is plentiful, the number of empirical results is still marginal and mostly provided by researchers rather than practitioners. Objective This article reports our experience using mutation testing to measure the effectiveness of an automated test data generator from a user perspective. Method In our study, we applied both traditional and class-level mutation operators to FaMa, an open source Java framework currently being used for research and commercial purposes. We also compared and contrasted our results with the data obtained from some motivating faults found in the literature and two real tools for the analysis of feature models, FaMa and SPLOT. Results Our results are summarized in a number of lessons learned supporting previous isolated results as well as new findings that hopefully will motivate further research in the field. Conclusion We conclude that mutation testing is an effective and affordable technique to measure the effectiveness of test mechanisms in OO systems. We found, however, several practical limitations in current tool support that should be addressed to facilitate the work of testers. We also missed specific techniques and tools to apply mutation testing at the system level.This work has been partially supported by the European Commission (FEDER) and Spanish Government under CICYT Project SETI (TIN2009-07366) and the Andalusian Government Projects ISABEL (TIC-2533) and THEOS (TIC-5906)

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de Economía y Competitividad TIN2015-70560-RJunta de Andalucía TIC-186

    FLAME: a Formal Framework for the Automated Analysis of Software Product Lines Validated by Automated Specification Testing

    Get PDF
    Artículo publicado on-line el 14/12/2015.In a literature review on the last 20 years of automated analysis of feature models, the formalization of analysis operations was identified as the most relevant challenge in the field. This formalization could provide very valuable assets for tool developers such as a precise definition of the analysis operations and, what is more, a reference implementation, i.e. a trustworthy, not necessarily efficient implementation to compare different tools outputs. In this article, we present the FLAME framework as the result of facing this challenge. FLAME is a formal framework that can be used to formally specify not only feature models, but other variability modeling languages (VMLs) as well. This reusability is achieved by its two-layered architecture. The abstract foundation layer is the bottom layer in which all VML-independent analysis operations and concepts are specified. On top of the foundation layer, a family of characteristic model layers-one for each VML to be formally specified-can be developed by redefining some abstract types and relations. The verification and validation of FLAME has followed a process in which formal verification has been performed traditionally by manual theorem proving, but validation has been performed by integrating our experience on metamorphic testing of variability analysis tools, something that has shown to be much more effective than manually-designed test cases. To follow this automated, test-based validation approach, the specification of FLAME, written in Z, was translated into Prolog and 20,000 random tests were automatically generated and executed. Tests results helped to discover some inconsistencies not only in the formal specification, but also in the previous informal definitions of the analysis operations and in current analysis tools. After this process, the Prolog implementation of FLAME is being used as a reference implementation for some tool developers, some analysis operations have been formally specified for the first time with more generic semantics, and more VMLs are being formally specified using FLAME.Junta de Andalucía P12-TIC-1867Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía TIC-5906Ministerio de Economía y Competitividad IPT-2012-0890-

    Automated testing on the analysis of variability-intensive artifacts: An exploratory study with SAT Solvers

    Get PDF
    The automated detection of faults on variability analysis tools is a challenging task often infeasible due to the combinatorial com plexity of the analyses. In previous works, we successfully automated the generation of test data for feature model analysis tools using metamor phic testing. The positive results obtained have encouraged us to explore the applicability of this technique for the efficient detection of faults in other variability-intensive domains. In this paper, we present an auto mated test data generator for SAT solvers that enables the generation of random propositional formulas (inputs) and their solutions (expected output). In order to show the feasibility of our approach, we introduced 100 artificial faults (i.e. mutants) in an open source SAT solver and com pared the ability of our generator and three related benchmarks to detect them. Our results are promising and encourage us to generalize the tech nique, which could be potentially applicable to any tool dealing with variability such as Eclipse repositories or Maven dependencies analyzers.Comisión Interministerial de Ciencia y Tecnología (CICYT) SETI (TIN2009-07366)Junta de Andalucía P07-TIC-2533 (Isabel)Junta de Andalucía P10-TIC-5906 (THEOS

    A Survey on Metamorphic Testing

    Get PDF
    A test oracle determines whether a test execution reveals a fault, often by comparing the observed program output to the expected output. This is not always practical, for example when a program's input-output relation is complex and difficult to capture formally. Metamorphic testing provides an alternative, where correctness is not determined by checking an individual concrete output, but by applying a transformation to a test input and observing how the program output “morphs” into a different one as a result. Since the introduction of such metamorphic relations in 1998, many contributions on metamorphic testing have been made, and the technique has seen successful applications in a variety of domains, ranging from web services to computer graphics. This article provides a comprehensive survey on metamorphic testing: It summarises the research results and application areas, and analyses common practice in empirical studies of metamorphic testing as well as the main open challenges

    A Survey on Metamorphic Testing

    Get PDF
    A test oracle determines whether a test execution reveals a fault, often by comparing the observed program output to the expected output. This is not always practical, for example when a program’s input-output relation is complex and difficult to capture formally. Metamorphic testing provides an alternative, where correctness is not determined by checking an individual concrete output, but by applying a transformation to a test input and observing how the program output “morphs” into a different one as a result. Since the introduction of such metamorphic relations in 1998, many contributions on metamorphic testing have been made, and the technique has seen successful applications in a variety of domains, ranging from web services to computer graphics. This article provides a comprehensive survey on metamorphic testing: It summarises the research results and application areas, and analyses common practice in empirical studies of metamorphic testing as well as the main open challenges.European Commission (FEDER)Spanish Govermen

    Spectrum-Based Fault Localization in Model Transformations

    Get PDF
    Model transformations play a cornerstone role in Model-Driven Engineering (MDE), as they provide the essential mechanisms for manipulating and transforming models. The correctness of software built using MDE techniques greatly relies on the correctness of model transformations. However, it is challenging and error prone to debug them, and the situation gets more critical as the size and complexity of model transformations grow, where manual debugging is no longer possible. Spectrum-Based Fault Localization (SBFL) uses the results of test cases and their corresponding code coverage information to estimate the likelihood of each program component (e.g., statements) of being faulty. In this article we present an approach to apply SBFL for locating the faulty rules in model transformations. We evaluate the feasibility and accuracy of the approach by comparing the effectiveness of 18 different stateof- the-art SBFL techniques at locating faults in model transformations. Evaluation results revealed that the best techniques, namely Kulcynski2, Mountford, Ochiai, and Zoltar, lead the debugger to inspect a maximum of three rules to locate the bug in around 74% of the cases. Furthermore, we compare our approach with a static approach for fault localization in model transformations, observing a clear superiority of the proposed SBFL-based method.Comisión Interministerial de Ciencia y Tecnología TIN2015-70560-RJunta de Andalucía P12-TIC-186
    corecore