13 research outputs found

    Improved Left Ventricular Mass Quantification with Partial Voxel Interpolation – In-Vivo and Necropsy Validation of a Novel Cardiac MRI Segmentation Algorithm

    Get PDF
    Background—CMR typically quantifies LV mass (LVM) via manual planimetry (MP), but this approach is time consuming and does not account for partial voxel components - myocardium admixed with blood in a single voxel. Automated segmentation (AS) can account for partial voxels, but this has not been used for LVM quantification. This study used automated CMR segmentation to test the influence of partial voxels on quantification of LVM. Methods and Results—LVM was quantified by AS and MP in 126 consecutive patients and 10 laboratory animals undergoing CMR. AS yielded both partial voxel (ASPV) and full voxel (ASFV) measurements. Methods were independently compared to LVM quantified on echocardiography (echo) and an ex-vivo standard of LVM at necropsy. AS quantified LVM in all patients, yielding a 12-fold decrease in processing time vs. MP (0:21±0:04 vs. 4:18±1:02 min; pFV mass (136±35gm) was slightly lower than MP (139±35; Δ=3±9gm, pPV yielded higher LVM (159±38gm) than MP (Δ=20±10gm) and ASFV (Δ=23±6gm, both pPV and ASFV correlated with larger voxel size (partial r=0.37, pPV yielded better agreement with echo (Δ=20±25gm) than did ASFV (Δ=43±24gm) or MP (Δ=40±22gm, both pPV and ex-vivo results were similar (Δ=1±3gm, p=0.3), whereas ASFV (6±3g, P\u3c0.001) and MP (4±5 g, P=0.02) yielded small but significant differences with LVM at necropsy

    Unsupervised Myocardial Segmentation for Cardiac BOLD

    Get PDF
    A fully automated 2-D+time myocardial segmentation framework is proposed for cardiac magnetic resonance (CMR) blood-oxygen-level-dependent (BOLD) data sets. Ischemia detection with CINE BOLD CMR relies on spatio-temporal patterns in myocardial intensity, but these patterns also trouble supervised segmentation methods, the de facto standard for myocardial segmentation in cine MRI. Segmentation errors severely undermine the accurate extraction of these patterns. In this paper, we build a joint motion and appearance method that relies on dictionary learning to find a suitable subspace.Our method is based on variational pre-processing and spatial regularization using Markov random fields, to further improve performance. The superiority of the proposed segmentation technique is demonstrated on a data set containing cardiac phase resolved BOLD MR and standard CINE MR image sequences acquired in baseline and is chemic condition across ten canine subjects. Our unsupervised approach outperforms even supervised state-of-the-art segmentation techniques by at least 10% when using Dice to measure accuracy on BOLD data and performs at par for standard CINE MR. Furthermore, a novel segmental analysis method attuned for BOLD time series is utilized to demonstrate the effectiveness of the proposed method in preserving key BOLD patterns

    Multi-views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images

    Full text link
    Left ventricular (LV) volumes estimation is a critical procedure for cardiac disease diagnosis. The objective of this paper is to address direct LV volumes prediction task. Methods: In this paper, we propose a direct volumes prediction method based on the end-to-end deep convolutional neural networks (CNN). We study the end-to-end LV volumes prediction method in items of the data preprocessing, networks structure, and multi-views fusion strategy. The main contributions of this paper are the following aspects. First, we propose a new data preprocessing method on cardiac magnetic resonance (CMR). Second, we propose a new networks structure for end-to-end LV volumes estimation. Third, we explore the representational capacity of different slices, and propose a fusion strategy to improve the prediction accuracy. Results: The evaluation results show that the proposed method outperforms other state-of-the-art LV volumes estimation methods on the open accessible benchmark datasets. The clinical indexes derived from the predicted volumes agree well with the ground truth (EDV: R2=0.974, RMSE=9.6ml; ESV: R2=0.976, RMSE=7.1ml; EF: R2=0.828, RMSE =4.71%). Conclusion: Experimental results prove that the proposed method may be useful for LV volumes prediction task. Significance: The proposed method not only has application potential for cardiac diseases screening for large-scale CMR data, but also can be extended to other medical image research fieldsComment: to appear on Transactions on Biomedical Engineerin

    Automatic initialization and quality control of large-scale cardiac MRI segmentations

    Get PDF
    Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies

    Image based approach for early assessment of heart failure.

    Get PDF
    In diagnosing heart diseases, the estimation of cardiac performance indices requires accurate segmentation of the left ventricle (LV) wall from cine cardiac magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear images; however, it is impractical to manually process the huge number of images generated to calculate the performance indices. In this dissertation, we introduce a novel, fast, robust, bi-directional coupled parametric deformable models that are capable of segmenting the LV wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of the LV wall to track the evolution of the parametric deformable models control points. We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and mean AD value of 2.16±0.60 mm compared to two other level set methods that achieve mean DSC values of 0.904±0.033 and 0.885±0.02; and mean AD values of 2.86±1.35 mm and 5.72±4.70 mm, respectively. Also, a novel framework for assessing both 3D functional strain and wall thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced. The introduced approach is primarily based on using geometrical features to track the LV wall during the cardiac cycle. The 4D tracking approach consists of the following two main steps: (i) Initially, the surface points on the LV wall are tracked by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii) Secondly, the locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function using a generalized Gauss-Markov random field (GGMRF) image model in order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process. Then the circumferential strains are straight forward calculated from the location of the tracked LV surface points. In addition, myocardial wall thickening is estimated by co-allocation of the corresponding points, or matches between the endocardium and epicardium surfaces of the LV wall using the solution of the 3D laplace equation. Experimental results on in vivo data confirm the accuracy and robustness of our method. Moreover, the comparison results demonstrate that our approach outperforms 2D wall thickening estimation approaches

    Development, Implementation and Pre-clinical Evaluation of Medical Image Computing Tools in Support of Computer-aided Diagnosis: Respiratory, Orthopedic and Cardiac Applications

    Get PDF
    Over the last decade, image processing tools have become crucial components of all clinical and research efforts involving medical imaging and associated applications. The imaging data available to the radiologists continue to increase their workload, raising the need for efficient identification and visualization of the required image data necessary for clinical assessment. Computer-aided diagnosis (CAD) in medical imaging has evolved in response to the need for techniques that can assist the radiologists to increase throughput while reducing human error and bias without compromising the outcome of the screening, diagnosis or disease assessment. More intelligent, but simple, consistent and less time-consuming methods will become more widespread, reducing user variability, while also revealing information in a more clear, visual way. Several routine image processing approaches, including localization, segmentation, registration, and fusion, are critical for enhancing and enabling the development of CAD techniques. However, changes in clinical workflow require significant adjustments and re-training and, despite the efforts of the academic research community to develop state-of-the-art algorithms and high-performance techniques, their footprint often hampers their clinical use. Currently, the main challenge seems to not be the lack of tools and techniques for medical image processing, analysis, and computing, but rather the lack of clinically feasible solutions that leverage the already developed and existing tools and techniques, as well as a demonstration of the potential clinical impact of such tools. Recently, more and more efforts have been dedicated to devising new algorithms for localization, segmentation or registration, while their potential and much intended clinical use and their actual utility is dwarfed by the scientific, algorithmic and developmental novelty that only result in incremental improvements over already algorithms. In this thesis, we propose and demonstrate the implementation and evaluation of several different methodological guidelines that ensure the development of image processing tools --- localization, segmentation and registration --- and illustrate their use across several medical imaging modalities --- X-ray, computed tomography, ultrasound and magnetic resonance imaging --- and several clinical applications: Lung CT image registration in support for assessment of pulmonary nodule growth rate and disease progression from thoracic CT images. Automated reconstruction of standing X-ray panoramas from multi-sector X-ray images for assessment of long limb mechanical axis and knee misalignment. Left and right ventricle localization, segmentation, reconstruction, ejection fraction measurement from cine cardiac MRI or multi-plane trans-esophageal ultrasound images for cardiac function assessment. When devising and evaluating our developed tools, we use clinical patient data to illustrate the inherent clinical challenges associated with highly variable imaging data that need to be addressed before potential pre-clinical validation and implementation. In an effort to provide plausible solutions to the selected applications, the proposed methodological guidelines ensure the development of image processing tools that help achieve sufficiently reliable solutions that not only have the potential to address the clinical needs, but are sufficiently streamlined to be potentially translated into eventual clinical tools provided proper implementation. G1: Reducing the number of degrees of freedom (DOF) of the designed tool, with a plausible example being avoiding the use of inefficient non-rigid image registration methods. This guideline addresses the risk of artificial deformation during registration and it clearly aims at reducing complexity and the number of degrees of freedom. G2: The use of shape-based features to most efficiently represent the image content, either by using edges instead of or in addition to intensities and motion, where useful. Edges capture the most useful information in the image and can be used to identify the most important image features. As a result, this guideline ensures a more robust performance when key image information is missing. G3: Efficient method of implementation. This guideline focuses on efficiency in terms of the minimum number of steps required and avoiding the recalculation of terms that only need to be calculated once in an iterative process. An efficient implementation leads to reduced computational effort and improved performance. G4: Commence the workflow by establishing an optimized initialization and gradually converge toward the final acceptable result. This guideline aims to ensure reasonable outcomes in consistent ways and it avoids convergence to local minima, while gradually ensuring convergence to the global minimum solution. These guidelines lead to the development of interactive, semi-automated or fully-automated approaches that still enable the clinicians to perform final refinements, while they reduce the overall inter- and intra-observer variability, reduce ambiguity, increase accuracy and precision, and have the potential to yield mechanisms that will aid with providing an overall more consistent diagnosis in a timely fashion

    Developing advanced mathematical models for detecting abnormalities in 2D/3D medical structures.

    Get PDF
    Detecting abnormalities in two-dimensional (2D) and three-dimensional (3D) medical structures is among the most interesting and challenging research areas in the medical imaging field. Obtaining the desired accurate automated quantification of abnormalities in medical structures is still very challenging. This is due to a large and constantly growing number of different objects of interest and associated abnormalities, large variations of their appearances and shapes in images, different medical imaging modalities, and associated changes of signal homogeneity and noise for each object. The main objective of this dissertation is to address these problems and to provide proper mathematical models and techniques that are capable of analyzing low and high resolution medical data and providing an accurate, automated analysis of the abnormalities in medical structures in terms of their area/volume, shape, and associated abnormal functionality. This dissertation presents different preliminary mathematical models and techniques that are applied in three case studies: (i) detecting abnormal tissue in the left ventricle (LV) wall of the heart from delayed contrast-enhanced cardiac magnetic resonance images (MRI), (ii) detecting local cardiac diseases based on estimating the functional strain metric from cardiac cine MRI, and (iii) identifying the abnormalities in the corpus callosum (CC) brain structure—the largest fiber bundle that connects the two hemispheres in the brain—for subjects that suffer from developmental brain disorders. For detecting the abnormal tissue in the heart, a graph-cut mathematical optimization model with a cost function that accounts for the object’s visual appearance and shape is used to segment the the inner cavity. The model is further integrated with a geometric model (i.e., a fast marching level set model) to segment the outer border of the myocardial wall (the LV). Then the abnormal tissue in the myocardium wall (also called dead tissue, pathological tissue, or infarct area) is identified based on a joint Markov-Gibbs random field (MGRF) model of the image and its region (segmentation) map that accounts for the pixel intensities and the spatial interactions between the pixels. Experiments with real in-vivo data and comparative results with ground truth (identified by a radiologist) and other approaches showed that the proposed framework can accurately detect the pathological tissue and can provide useful metrics for radiologists and clinicians. To estimate the strain from cardiac cine MRI, a novel method based on tracking the LV wall geometry is proposed. To achieve this goal, a partial differential equation (PDE) method is applied to track the LV wall points by solving the Laplace equation between the LV contours of each two successive image frames over the cardiac cycle. The main advantage of the proposed tracking method over traditional texture-based methods is its ability to track the movement and rotation of the LV wall based on tracking the geometric features of the inner, mid-, and outer walls of the LV. This overcomes noise sources that come from scanner and heart motion. To identify the abnormalities in the CC from brain MRI, the CCs are aligned using a rigid registration model and are segmented using a shape-appearance model. Then, they are mapped to a simple unified space for analysis. This work introduces a novel cylindrical mapping model, which is conformal (i.e., one to one transformation and bijective), that enables accurate 3D shape analysis of the CC in the cylindrical domain. The framework can detect abnormalities in all divisions of the CC (i.e., splenium, rostrum, genu and body). In addition, it offers a whole 3D analysis of the CC abnormalities instead of only area-based analysis as done by previous groups. The initial classification results based on the centerline length and CC thickness suggest that the proposed CC shape analysis is a promising supplement to the current techniques for diagnosing dyslexia. The proposed techniques in this dissertation have been successfully tested on complex synthetic and MR images and can be used to advantage in many of today’s clinical applications of computer-assisted medical diagnostics and intervention

    Zeitabhängige, multimodale Modellierung und Analyse von Herzdaten

    Get PDF
    Kardiovaskuläre Erkrankungen stellen in den westlichen Industrienationen eine der Haupttodesursachen dar. Für die Diagnostik steht inzwischen mit der Computer-Tomographie ein leistungsfähiges bildgebendes Verfahren zur Verfügung. Im Rahmen dieser Arbeit wurden Verfahren entwickelt, um dem Radiologen durch eine weitgehend automatische und umfassende Analyse von 4D-CTA-Daten und der automatischen Berechnung wichtiger diagnostischer Parameter zu unterstützen
    corecore