6 research outputs found

    Localisation à partir de données laser d'un robot naviguant autour d'un avion

    Get PDF
    National audienceThis article discusses the pose estimation of the mobile platform Air-Cobot relative to the aircraft around which it operates. Autonomous and collaborative, this robot inspects aircrafts. It is equipped with distance sensors laser scans. The presented localization methods have been successfully tested in a real environment.Cet article traite du calcul de la pose de la plateforme mobile Air-Cobot par rapport à l'avion autour duquel elle évolue. Autonome et collaboratif, ce robot inspecte des aéronefs. Il est équipé de capteurs de distance à balayage laser. Les méthodes de localisation présentées ont été testées avec succès en environnement réel

    Détection d'amers visuels pour la navigation d'un robot autonome autour d'un avion et son inspection

    Get PDF
    National audienceThis article discusses the detection of visual features for the navigation of the platform Air-Cobot around an aircraft. This autonomous mobile and collaborative robot is dedicated to the inspection of airplane. A new visual detection and inspection approach is proposed.Cet article traite de la détection d'amers visuels pour la navigation de la plateforme robotique Air-Cobot autour d'un avion. Ce robot mobile autonome et collaboratif est dédié à l'inspection des aéronefs. Une nouvelle méthode de détection et d'inspection visuelle est proposée

    Output-based structural damage detection by using correlation analysis together with transmissibility

    Get PDF
    Output-based structural damage detection is becoming increasingly appealing due to its potential in real engineering applications without any restriction regarding excitation measurements. A new transmissibility-based damage detection approach is presented in this study by combining transmissibility with correlation analysis in order to strengthen its performance in discriminating damaged from undamaged scenarios. From this perspective, damage detection strategies are hereafter established by constructing damage-sensitive indicators from a derived transmissibility. A cantilever beam is numerically analyzed to verify the feasibility of the proposed damage detection procedure, and an ASCE (American Society of Civil Engineers) benchmark is henceforth used in the validation for its application in engineering structures. The results of both studies reveal a good performance of the proposed methodology in identifying damaged states from intact states. The comparison between the proposed indicator and the existing indicator also affirms its applicability in damage detection, which might be adopted in further structural health monitoring systems as a discrimination criterion. This study contributed an alternative criterion for transmissibility-based damage detection in addition to the conventional ones

    Automatic Inspection of Aeronautical Mechanical Assemblies by Matching the 3D CAD Model and Real 2D Images

    Get PDF
    International audienceIn the aviation industry, automated inspection is essential for ensuring quality of production. It allows acceleration of procedures for quality control of parts or mechanical assemblies. As a result, the demand of intelligent visual inspection systems aimed at ensuring high quality in production lines is increasing. In this work, we address a very common problem in quality control. The problem is verification of presence of the correct part and verification of its position. We address the problem in two parts: first, automatic selection of informative viewpoints before the inspection process is started (offline preparation of the inspection) and, second, automatic treatment of the acquired images from said viewpoints by matching them with information in 3D CAD models is launched. We apply this inspection system for detecting defects on aeronautical mechanical assemblies with the aim of checking whether all the subparts are present and correctly mounted. The system can be used during manufacturing or maintenance operations. The accuracy of the system is evaluated on two kinds of platform. One is an autonomous navigation robot, and the other one is a handheld tablet. The experimental results show that our proposed approach is accurate and promising for industrial applications with possibility for real-time inspection

    A NOVEL APPROACH FOR DETECTION FAULT IN THE AIRCRAFT EXTERIOR BODY USING IMAGE PROCESSING

    Get PDF
    The primary objective of this thesis is to develop innovative techniques for the inspection and maintenance of aircraft structures. We aim to streamline the entire process by utilizing images to detect potential defects in the aircraft body and comparing them to properly functioning images of the aircraft. This enables us to determine whether a specific section of the aircraft is faulty or not. We achieve this by employing image processing to train a model capable of identifying faulty images. The image processing methodology we use involves the use of images of both defective and operational parts of the aircraft\u27s exterior. These images undergo a preprocessing phase that preserves valuable details. During the training period, a new image of the same section of the aircraft is used to validate the model. After processing, the algorithm grades the image as faulty or normal. To facilitate our study, we rely on the Convolutional Neural Network (CNN) approach. This technique collects distinguishing features from a single patch created by the frame segmentation of a CNN kernel. Furthermore, we use various filters to process the images using the image processing toolbox available in Python. In our initial trials, we observed that the CNN model struggled with the overfitting of the faulty class. To address this, we applied image augmentation by converting a small dataset of 87 images to an augmented dataset of 4000 images. After passing the data through multiple convolutional layers and executing multiple epochs, our proposed model achieved an impressive training accuracy of 98.28%. In addition, we designed a GUI-based interface that allows users to input an image and view the results in terms of faulty or normal. Finally, we propose that the application of this research in the field of robotics would be an ideal area for future work

    Automated exterior inspection of an aircraft with a pan-tilt-zoom camera mounted on a mobile robot

    No full text
    International audienceThis paper deals with an automated preflight aircraft inspection using a pan-tilt-zoom camera mounted on a mobile robot moving autonomously around the aircraft. The general topic is image processing framework for detection and exterior inspection of different types of items, such as closed or unlatched door, mechanical defect on the engine, the integrity of the empennage, or damage caused by impacts or cracks. The detection step allows to focus on the regions of interest and point the camera toward the item to be checked. It is based on the detection of regular shapes, such as rounded corner rectangles, circles, and ellipses. The inspection task relies on clues, such as uniformity of isolated image regions, convexity of segmented shapes, and perio-dicity of the image intensity signal. The approach is applied to the inspection of four items of Airbus A320: oxygen bay handle, air-inlet vent, static ports, and fan blades. The results are promising and demonstrate the feasibility of an automated exterior inspection
    corecore