152 research outputs found

    Oximetry use in obstructive sleep apnea

    Get PDF
    Producción CientíficaIntroduction. Overnight oximetry has been proposed as an accessible, simple, and reliable technique for obstructive sleep apnea syndrome (OSAS) diagnosis. From visual inspection to advanced signal processing, several studies have demonstrated the usefulness of oximetry as a screening tool. However, there is still controversy regarding the general application of oximetry as a single screening methodology for OSAS. Areas covered. Currently, high-resolution portable devices combined with pattern recognition-based applications are able to achieve high performance in the detection this disease. In this review, recent studies involving automated analysis of oximetry by means of advanced signal processing and machine learning algorithms are analyzed. Advantages and limitations are highlighted and novel research lines aimed at improving the screening ability of oximetry are proposed. Expert commentary. Oximetry is a cost-effective tool for OSAS screening in patients showing high pretest probability for the disease. Nevertheless, exhaustive analyses are still needed to further assess unattended oximetry monitoring as a single diagnostic test for sleep apnea, particularly in the pediatric population and in especial groups with significant comorbidities. In the following years, communication technologies and big data analysis will overcome current limitations of simplified sleep testing approaches, changing the detection and management of OSAS.This research has been partially supported by the projects DPI2017-84280-R and RTC-2015-3446-1 from Ministerio de Economía, Industria y Competitividad and European Regional Development Fund (FEDER), the project 66/2016 of the Sociedad Española de Neumología y Cirugía Torácica (SEPAR), and the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León and FEDER. D. Álvarez was in receipt of a Juan de la Cierva grant IJCI-2014-22664 from the Ministerio de Economía y Competitividad

    Evaluation of Machine-Learning Approaches to Estimate Sleep Apnea Severity from at-Home Oximetry Recordings

    Get PDF
    Producción CientíficaComplexity, costs, and waiting lists issues demand a simplified alternative for sleep apnea-hypopnea syndrome (SAHS) diagnosis. The blood oxygen saturation signal (SpO2) carries useful information about SAHS and can be easily acquired from overnight oximetry. In this study, SpO2 single-channel recordings from 320 subjects were obtained at patients’ home. They were used to automatically obtain statistical, spectral, non-linear, and clinical SAHS-related information. Relevant and non-redundant data from these analyses were subsequently used to train and validate four machine-learning methods with ability to classify SpO2 signals into one out of the four SAHS-severity degrees (no-SAHS, mild, moderate, and severe). All the models trained (linear discriminant analysis, 1-vs-all logistic regression, Bayesian multi-layer perceptron, and AdaBoost), outperformed the diagnostic ability of the conventionally-used 3% oxygen desaturation index. An AdaBoost model built with linear discriminants as base classifiers reached the highest figures. It achieved 0.479 Cohen’s in the SAHS severity classification, as well as 92.9%, 87.4%, and 78.7% accuracies in binary classification tasks using increasing severity thresholds (apnea-hypopnea index: 5, 15, and 30 events/hour, respectively). These results suggest that machine learning can be used along with SpO2 information acquired at patients’ home to help in SAHS diagnosis simplification.This research has been supported by the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León, the project 265/2012 of the Sociedad Española de Neumología y Cirugía Torácica (SEPAR), the projects RTC-2015-3446-1 and TEC2014-53196-R from the Ministerio de Economía y Competitividad, and the European Regional Development Fund (FEDER). D. Álvarez was in receipt of a Juan de la Cierva grant from the Ministerio de Economía y Competitivida

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    A Panoramic Study of Obstructive Sleep Apnea Detection Technologies

    Get PDF
    This study offers a literature research reference value for bioengineers and practitioner medical doctors. It could reduce research time and improve medical service efficiency regarding Obstructive Sleep Apnea (OSA) detection systems. Much of the past and the current apnea research, the vital signals features and parameters of the SA automatic detection are introduced.The applications for the earlier proposed systems and the related work on real-time and continuous monitoring of OSA and the analysis is given. The study concludes with an assessment of the current technologies highlighting their weaknesses and strengths which can set a roadmap for researchers and clinicians in this rapidly developing field of study

    Multiscale entropy analysis of unattended oximetric recordings to assist in the screening of paediatric sleep apnoea at home

    Get PDF
    Producción CientíficaUntreated paediatric obstructive sleep apnoea syndrome (OSAS) can severely affect the development and quality of life of children. In-hospital polysomnography (PSG) is the gold standard for a definitive diagnosis though it is relatively unavailable and particularly intrusive. Nocturnal portable oximetry has emerged as a reliable technique for OSAS screening. Nevertheless, additional evidences are demanded. Our study is aimed at assessing the usefulness of multiscale entropy (MSE) to characterise oximetric recordings. We hypothesise that MSE could provide relevant information of blood oxygen saturation (SpO2) dynamics in the detection of childhood OSAS. In order to achieve this goal, a dataset composed of unattended SpO2 recordings from 50 children showing clinical suspicion of OSAS was analysed. SpO2 was parameterised by means of MSE and conventional oximetric indices. An optimum feature subset composed of five MSE-derived features and four conventional clinical indices were obtained using automated bidirectional stepwise feature selection. Logistic regression (LR) was used for classification. Our optimum LR model reached 83.5% accuracy (84.5% sensitivity and 83.0% specificity). Our results suggest that MSE provides relevant information from oximetry that is complementary to conventional approaches. Therefore, MSE may be useful to improve the diagnostic ability of unattended oximetry as a simplified screening test for childhood OSAS.Sociedad Española de Neumología y Cirugía Torácica (SEPAR) project 153/2015Junta de Castilla y León (Consejería de Educación) y el Fondo Europeo de Desarrollo Regional (FEDER), projects (RTC-2015-3446-1) y (TEC2014-53196-R)Ministerio de Economía y Competitividad (MINECO) y FEDER, y el proyecto POCTEP 0378_AD_EEGWA_2_P de la Comisión Europea. L.National Institutes of Health (NIH) grant 1R01HL130984-01Ministerio de Asuntos Económicos y Transformación Digital, grant IJCI-2014-2266

    A review of automated sleep disorder detection

    Get PDF
    Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand

    Classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndrome

    Get PDF
    In the present study, multilayer perceptron (MLP) neural networks were applied to help in the diagnosis of obstructive sleep apnoea syndrome (OSAS). Oxygen saturation (SaO2) recordings from nocturnal pulse oximetry were used for this purpose. We performed time and spectral analysis of these signals to extract 14 features related to OSAS. The performance of two different MLP classifiers was compared: maximum likelihood (ML) and Bayesian (BY) MLP networks. A total of 187 subjects suspected of suffering from OSAS took part in the study. Their SaO2 signals were divided into a training set with 74 recordings and a test set with 113 recordings. BY-MLP networks achieved the best performance on the test set with 85.58% accuracy (87.76% sensitivity and 82.39% specificity). These results were substantially better than those provided by ML-MLP networks, which were affected by overfitting and achieved an accuracy of 76.81% (86.42% sensitivity and 62.83% specificity). Our results suggest that the Bayesian framework is preferred to implement our MLP classifiers. The proposed BY-MLP networks could be used for early OSAS detection. They could contribute to overcome the difficulties of nocturnal polysomnography (PSG) and thus reduce the demand for these studies

    Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome

    Get PDF
    Sleep apnea-hypopnea syndrome (SAHS) is a chronic and highly prevalent disease considered a major health problem in industrialized countries. The gold standard diagnostic methodology is in-laboratory nocturnal polysomnography (PSG), which is complex, costly, and time consuming. In order to overcome these limitations, novel and simplified diagnostic alternatives are demanded. Sleep scientists carried out an exhaustive research during the last decades focused on the design of automated expert systems derived from artificial intelligence able to help sleep specialists in their daily practice. Among automated pattern recognition techniques, artificial neural networks (ANNs) have demonstrated to be efficient and accurate algorithms in order to implement computer-aided diagnosis systems aimed at assisting physicians in the management of SAHS. In this regard, several applications of ANNs have been developed, such as classification of patients suspected of suffering from SAHS, apnea-hypopnea index (AHI) prediction, detection and quantification of respiratory events, apneic events classification, automated sleep staging and arousal detection, alertness monitoring systems, and airflow pressure optimization in positive airway pressure (PAP) devices to fit patients’ needs. In the present research, current applications of ANNs in the framework of SAHS management are thoroughly reviewed

    Diseño y evaluación de metodologías de análisis automático de la oximetría nocturna como método simplificado de detección del síndrome de apnea-hipopnea obstructiva del sueño en niños. Validación en el hospital y en el domicilio.

    Get PDF
    El síndrome de apnea-hipopnea obstructiva del sueño (SAHOS) es una enfermedad de alta prevalencia en la población infantil, con una importante morbilidad y elevado impacto sociosanitario, en la que la detección precoz es esencial para iniciar un adecuado tratamiento, el cual debe ser siempre individualizado. El SAHOS es una alteración fisiopatológica compleja y multifactorial, en la que no sólo influye una susceptibilidad genética e individual (factores anatómicos y dinámicos), sino también de estilo de vida. Los factores de riesgo más frecuentes son la hipertrofia adenoamigdalar y la obesidad. Los síntomas en los niños son escasos, son principalmente nocturnos y requieren un alto nivel de sospecha. El SAHOS no diagnosticado o no tratado se relaciona con diferentes consecuencias metabólicas, cardiovasculares, neurocognitivas, inflamatorias, conductuales y falta de desarrollo estaturoponderal, lo que conduce a un empeoramiento del estado de salud en términos generales y disminución de calidad de vida.Departamento de Anatomía y RadiologíaDoctorado en Investigación en Ciencias de la Salu
    corecore