642 research outputs found

    Real Time Automated Counterfeit Integrated Circuit Detection using X-ray Microscopy

    Get PDF
    Determining the authenticity of integrated circuits is paramount to preventing counterfeit and malicious hardware from being used in critical military, healthcare, aerospace, consumer, and industry applications. Existing techniques to distinguish between authentic and counterfeit integrated circuits (ICs) often include destructive testing requiring subject matter experts. We present a nondestructive technique to detect ICs using x-ray microscopy and advanced imaging analysis with different pattern recognition approaches. Our proposed method is completely automated, and runs in real time. In our approach, images of an integrated circuit are obtained from an x-ray microscope. Local binary pattern features are then extracted from the x-ray image, followed by dimensionality reduction through principal component analysis, and alternatively through a nonlinear principal component methodology using a stacked autoencoder embedded in a deep neural network. From the reduced dimension features, we train two types of learning machines, a support vector machine with a nonlinear kernel and a deep neural network. We present experiments using authentic and ICs to demonstrate that the proposed approach achieves an accuracy of 100% in distinguishing between the counterfeit and authentic samples.This work was supported by the NSF grant NSF/CISE Award #CNS–134427

    Firmware Counterfeiting and Modification Attacks on Programmable Logic Controllers

    Get PDF
    Recent attacks on industrial control systems (ICSs), like the highly publicized Stuxnet malware, have perpetuated a race to the bottom where lower level attacks have a tactical advantage. Programmable logic controller (PLC) firmware, which provides a software-driven interface between system inputs and physically manifested outputs, is readily open to modification at the user level. Current efforts to protect against firmware attacks are hindered by a lack of prerequisite research regarding details of attack development and implementation. In order to obtain a more complete understanding of the threats posed by PLC firmware counterfeiting and the feasibility of such attacks, this research explores the vulnerability of common controllers to intentional firmware modifications. After presenting a general analysis process that takes advantage of various techniques and methodologies applied to similar scenarios, this work derives the firmware update validation method used for the Allen-Bradley ControlLogix PLC. A proof of concept demonstrates how to alter a legitimate firmware update and successfully upload it to a ControlLogix L61. Possible mitigation strategies discussed include digitally signed and encrypted firmware as well as preemptive and post-mortem analysis methods to provide protection. Results of this effort facilitate future research in PLC firmware security through direct example of firmware counterfeiting

    Digital supply chain surveillance using artificial intelligence: definitions, opportunities and risks

    Get PDF
    Digital Supply Chain Surveillance (DSCS) is the proactive monitoring and analysis of digital data that allows firms to extract information related to a supply network, without the explicit consent of firms involved in the supply chain. AI has made DSCS to become easier and larger-scale, posing significant opportunities for automated detection of actors and dependencies involved in a supply chain, which in turn, can help firms to detect risky, unethical and environmentally unsustainable practices. Here, we define DSCS, review priority areas using a survey conducted in the UK. Visibility, sustainability, resilience are significant areas that DSCS can support, through a number of machine-learning approaches and predictive algorithms. Despite anecdotal narrative on the importance of explainability of algorithmic results, practitioners often prefer accuracy over explainability; however, there are significant differences between industrial sectors and application areas. Using a case study, we highlight a number of concerns on the unchecked use of AI in DSCS, such as bias or misinterpretation resulting in erroneous conclusions, which may lead to suboptimal decisions or relationship damage. Building on this, we develop and discuss a number of illustrative cases to highlight risks that practitioners should be aware of, proposing key areas of further research
    • …
    corecore