
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-21-2013

Firmware Counterfeiting and Modification Attacks
on Programmable Logic Controllers
Zachary H. Basnight

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Controls and Control Theory Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Basnight, Zachary H., "Firmware Counterfeiting and Modification Attacks on Programmable Logic Controllers" (2013). Theses and
Dissertations. 853.
https://scholar.afit.edu/etd/853

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=scholar.afit.edu%2Fetd%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/853?utm_source=scholar.afit.edu%2Fetd%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

FIRMWARE COUNTERFEITING AND MODIFICATION ATTACKS

ON PROGRAMMABLE LOGIC CONTROLLERS

THESIS

Zachry H. Basnight, First Lieutenant, USAF

AFIT-ENG-13-M-06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the o�cial
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-13-M-06

FIRMWARE COUNTERFEITING AND MODIFICATION ATTACKS

ON PROGRAMMABLE LOGIC CONTROLLERS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Zachry H. Basnight, B.S.C.S.

First Lieutenant, USAF

March 2013

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-13-M-06
Abstract

Recent attacks on industrial control systems (ICSs), like the highly publicized Stuxnet

malware, have perpetuated a race to the bottom where lower level attacks have a tactical

advantage. Programmable logic controller (PLC) firmware, which provides a software-

driven interface between system inputs and physically manifested outputs, is readily open

to modification at the user level. Current e↵orts to protect against firmware attacks

are hindered by a lack of prerequisite research regarding details of attack development

and implementation. In order to obtain a more complete understanding of the threats

posed by PLC firmware counterfeiting and the feasibility of such attacks, this research

explores the vulnerability of common controllers to intentional firmware modifications.

After presenting a general analysis process that takes advantage of various techniques

and methodologies applied to similar scenarios, this work derives the firmware update

validation method used for the Allen-Bradley ControlLogix PLC. A proof of concept

demonstrates how to alter a legitimate firmware update and successfully upload it to a

ControlLogix L61. Possible mitigation strategies discussed include digitally signed and

encrypted firmware as well as preemptive and post-mortem analysis methods to provide

protection. Results of this e↵ort facilitate future research in PLC firmware security through

direct example of firmware counterfeiting.

iv

Table of Contents

Page
Abstract . iv

Table of Contents . v

List of Figures . viii

List of Acronyms . x

I. Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Research Goals . 2
1.4 Approach . 3
1.5 Impact . 4
1.6 Organization . 4

II. Background . 6

2.1 Industrial Control Systems . 6
2.2 Industrial Control System Security . 8

2.2.1 History . 8
2.2.1.1 Past Incidents . 8
2.2.1.2 Stuxnet . 9

2.2.2 Future Threats . 10
2.3 Programmable Logic Controller Security 11

2.3.1 Programming Layer . 11
2.3.2 Hardware Layer . 13
2.3.3 Firmware Layer . 15

2.4 Previous Works on Reversing Firmware 16
2.4.1 Discovering Backdoors in Ethernet Modules 16
2.4.2 Creating Custom Firmware for Ethernet Modules 18
2.4.3 General Processes for Reverse Engineering Embedded Devices . . 19
2.4.4 Hardware Debugging . 21
2.4.5 Checksum Algorithms . 23

2.5 Summary . 26

v

Page

III. Methodology . 28

3.1 Problem Definition . 28
3.2 Approach and Scope . 28
3.3 Test Environment and Tools . 30
3.4 Reversing Process . 30

3.4.1 Firmware Acquisition . 31
3.4.2 Binary Analysis . 31
3.4.3 Disassembly . 33
3.4.4 Derivation of Firmware Update Validation Method 34
3.4.5 Reversing Process Considerations 34

3.5 Vulnerability Assessment . 35
3.5.1 Firmware Update Validation Method Analysis 35
3.5.2 Demonstration . 37

3.6 Summary . 38

IV. Reversing Process, Testing, and Demonstration 39

4.1 Reversing Process . 39
4.1.1 Firmware Acquisition . 39
4.1.2 Binary File Analysis . 40

4.1.2.1 Manual Inspection . 40
4.1.2.2 Binary Comparison . 41
4.1.2.3 Embedded File and Filesystem Analysis 44

4.1.3 Firmware Disassembly . 45
4.1.3.1 Processor Determination and Disassembly 45
4.1.3.2 Rebuilding Functions 47
4.1.3.3 Determining Base Address 47
4.1.3.4 Inspecting Strings . 48
4.1.3.5 Rebuilding Symbols . 50

4.1.4 Derivation of Firmware Update Validation Method 52
4.1.4.1 Disassembly Analysis 52
4.1.4.2 Black Box Testing . 54
4.1.4.3 Hardware Debugging 60

4.2 Firmware Update Validation Method Analysis 66
4.2.1 Verification of Correctness . 66
4.2.2 Design Analysis . 67
4.2.3 Refinement . 68

4.3 Demonstration . 70
4.3.1 Firmware Modification . 70
4.3.2 Device Exploitation . 71

4.4 Discussion . 72

vi

Page

4.5 Summary . 79

V. Conclusions and Future Work . 80

5.1 Conclusions . 80
5.2 Significance . 82
5.3 Future Work . 83

5.3.1 Direct Extensions . 83
5.3.2 Preventative Measures . 83
5.3.3 Detection and Forensic Analysis 85

5.3.3.1 Indirect Methods . 85
5.3.3.2 Direct Methods . 86

5.4 Summary . 87

Appendix A: ControlLogix Firmware Operation Flowcharts 88

Appendix B: Contents of Firmware Update Package 90

Appendix C: VBinDi↵ Examples . 92

Appendix D: Physical Component Analysis . 94

Appendix E: Source Code . 98

Appendix F: IDA Scripts . 99

Appendix G: ARM DS-5 Debugger Scripts . 102

Bibliography . 103

vii

List of Figures

Figure Page

2.1 Typical structure of a SCADA system [55]. 7

2.2 Operational layers of a programmable logic controller. 12

3.1 Reversing Process. 32

4.1 Contents of PN-86270.RES in HxD. 41

4.2 Beginning of FRN19.011 binary in HxD. 42

4.3 VBinDi↵ of the beginning of FRN20.013 and FRN13.071. 43

4.4 List of gzip file candidates identified by Binwalk. 46

4.5 Initial IDA disassembly status. 46

4.6 IDA status after function identification. 47

4.7 ARM compiler version string. 49

4.8 BigDigits library copyright string. 49

4.9 OUTPUT COMPENSATION data structure strings. 50

4.10 Example symbol string usage. 51

4.11 Modular summation test cases with changes highlighted. 57

4.12 Terminal commands for RevEng search cases. 59

4.13 Flow chart of ExecLoader.s. 65

4.14 Modification of FRN 16.081 version number in function to 20.066.099. 71

4.15 Modification of FRN 16.081 version number in header to 20.066.099. 71

4.16 Successful firmware update to FRN 16.081 with spoofed 20.66.99 version

number. 72

A.1 Overview of ControlLogix L61 operation. 88

A.2 Flow chart of ExecLoader.s. 89

B.1 Contents of PN-86270.RES in HxD. 91

viii

Figure Page

B.2 Beginning of FRN19.011 binary in HxD. 91

C.1 VBinDi↵ of FRN16.081 and FRN16.057 beginning. 92

C.2 VBinDi↵ of FRN16.081 and FRN16.057 end. 92

C.3 VBinDi↵ of FRN20.013 and FRN13.071 beginning. 93

C.4 Length-corrected VBinDi↵ of FRN20.013 and FRN13.071 end. 93

D.1 Circuit board of the 1756-L61/B. 94

D.2 14-pin ARM JTAG pin configuration as viewed in Figure D.1 96

ix

List of Acronyms

Acronym Definition

ARM Advanced RISC Machine

ASCII American Standard Code for Information Interchange

CISC complex instruction set computing

CRC cyclic redundancy check

cramfs compressed read-only memory (ROM) file system

DCS distributed control system

ELF executable and linkable format

FRN firmware revision number

IC integrated circuit

ICE in-circuit emulator

ICS industrial control system

IDA Interactive Disassembler

IDS intrusion detection system

IEEE Institute of Electrical and Electronics Engineers

IO input/output

IP internet protocol

IPS intrusion prevention system

IT information technology

JFFS2 Journalling Flash File System version 2

JTAG Joint Test Action Group

LRC longitudinal redundancy check

LZMA Lempel-Ziv-Markov chain algorithm

MD message digest

x

Acronym Definition

NIST National Institute of Standards and Technology

OS operating system

PE portable executable

PLC programmable logic controller

RAM random-access memory

RISC reduced instruction set computing

ROM read-only memory

RSA Rivest, Shamir, Adleman

SCADA supervisory control and data acquisition

SHA secure hash algorithm

TAP test access port

TCP transmission control protocol

UART universal asynchronous receiver/transmitter

XML Extensible Markup Language

XOR exclusive or

YAFFS Yet Another Flash File System

xi

FIRMWARE COUNTERFEITING AND MODIFICATION ATTACKS

ON PROGRAMMABLE LOGIC CONTROLLERS

I. Introduction

1.1 Background

Modern industrial applications necessitate the utilization of advanced automation and

management networks collectively referred to as industrial control systems (ICSs). Such

systems are responsible for the precise and consistent operation of many applications

associated with national critical infrastructure. As ICSs become increasingly reliant

on modern information technology (IT) solutions, including internet protocol (IP)-based

networking and embedded computing, related security concerns also arise [55]. The

progressive amalgamation of these technologies from two traditionally distinct cultures

creates an apparent schism in the cyber security capabilities of IT and ICS environments.

ICS cyber security implementations lag behind the sophistication of more dedicated IT

solutions by comparison.

Cyber attacks on ICSs are increasing in number and scale [24]. Incidents like the

2010 Stuxnet worm exemplify this fact and provide insight into the future of cyber-based

threats. Similar to traditional attacks on IT systems, ICS attacks are targeting lower

level control to allow for more powerful and flexible system manipulation. The allure

of ICS attacks, and the ultimate goal of such malicious manipulation, is the ability to elicit

physical manifestations through cyber means. As the final link between cyber and physical

components of ICSs, programmable logic controllers (PLCs) are critical in the proper

operation of such systems. PLCs are embedded devices programmed to manage and control

physical components responsive to system inputs and requirements. The lowest abstraction

1

layer controlling PLC interpretation of programming, the firmware, represents a significant

potential threat if compromised. Indeed, the malicious modification or counterfeiting

of controller firmware allows complete control over the device and any physical system

components under its purview.

1.2 Motivation

Defensive strategies to mitigate firmware threats must be established. In order to

develop e↵ective defense strategies, the threat must be thoroughly understood. Currently,

little information detailing this threat is readily available. However, if an attacker is able to

successfully manipulate the firmware on a PLC, they can directly control the behavior of

the device to a↵ect the control system while simultaneously masking such actions from the

operator or control software. Although the risk exists, the extent to which an attacker

is capable of exploiting the risk is unknown. There are currently no known examples

of firmware modification attacks on PLCs [24]. Furthermore, research requiring the

availability of malicious or counterfeit firmware lacks test samples for use in analysis. The

creation of custom counterfeit firmware samples can aide in the development of detection

and forensic analysis techniques.

1.3 Research Goals

The goal of this thesis is to determine the feasibility of firmware modification attacks

on PLCs. Specifically, this research investigates and assesses the vulnerability of a

common PLC to counterfeit firmware updates. This research proposes that common

PLCs are vulnerable to such an attack as a result of design weaknesses associated with

firmware update validation methods. This may be verified by a successful demonstration

of counterfeit firmware uploaded to a common PLC.

2

1.4 Approach

To test a PLC’s vulnerability to counterfeit firmware attacks, the firmware update

validation method is derived through reverse engineering techniques. The firmware

update validation method is analyzed for weaknesses that facilitate firmware counterfeiting.

Weaknesses are exploited to create a counterfeit firmware sample that is uploaded and

executed on a PLC. This approach is applied to a relevant test environment, consisting

primarily of an Allen-Bradley ControlLogix L61 controller, to allow for a realistic

assessment of the potential vulnerability on a common PLC.

The process to derive the firmware update validation method is based on a review

of previous research describing techniques related to the reverse engineering of PLCs and

other types of embedded devices. By combining and organizing these techniques, a general

process is conceived for deriving the firmware update validation method of a PLC. The

major steps in the process are: (i) firmware sample acquisition, (ii) binary analysis of

firmware, (iii) firmware disassembly, and (iv) derivation of the firmware update validation

method. Step (iv) is further broken down into three approaches: (a) disassembly analysis,

(b) black box analysis, and (c) hardware debugging analysis.

Firmware samples are obtained directly from the vendor website as firmware update

packages. The firmware binaries are extracted from these packages. Following sample

acquisition, binary analysis of the firmware files determine likely image formats and

identify sections of interest related to validation (e.g., header information and candidate

checksum fields). Firmware disassembly requires the determination of the target processor

architecture, disassembly of binary to assembly code, identification of assembly functions,

determination of the firmware base address, string analysis, and rebuilding function names

in the disassembly.

For derivation of the firmware update validation method, disassembly analysis consists

of searching for strings or recovered function names relevant to validation. Black box

3

analysis uses characteristics of common validation algorithms to narrow the search space as

well as brute force techniques to attack the firmware update validation method. Hardware

debugging is also used to physically connect to the controller. This enables direct access to

the execution path of the processor and device memory including the executive loader,

which is typically inaccessible to the user. These techniques result in a preliminary

candidate for the firmware update validation method, which is then confirmed, analyzed,

and exploited to the extent possible.

In order to provide a more complete understanding of the prerequisites for successful

firmware modification, the advantages and limitations of techniques used in the derivation

process are discussed. The e↵ectiveness of each technique is considered in relation to any

time or cost requirements as well as the complexity of their implementation.

1.5 Impact

This research examines and determines the feasibility of counterfeit firmware attacks

on a common PLC. Demonstrating this ability helps distinguish the true nature of the threat

posed by firmware counterfeiting. The described reversing process identifies prerequisite

capabilities of an attacker and limitations of any potential attack. This information provides

the insight necessary to develop defensive and forensic analysis techniques for firmware

modification attacks. In addition to the analysis enabled by this process, direct results

enable the creation of realistic counterfeit firmware samples for analysis in future research.

This aids in the development of e↵ective strategies and tactics for preventing and detecting

firmware modification attacks.

1.6 Organization

Chapter 2 discusses ICS security and reviews associated work in the area of embedded

firmware. Chapter 3 details the approach taken by this research and presents the process

applied to derive the firmware update validation method on the test controller. Chapter 4

4

applies the process to a PLC and analyzes the results. Finally, Chapter 5 concludes the

research by discussing significance and relevant future work.

5

II. Background

2.1 Industrial Control Systems

An industrial control system (ICS) comprises a set of components used for the

automated management and control of an industrial process. The term may refer to

a multitude of di↵erent control system schemes, devices, and implementations, which

include the control of production industry processes like automotive assembly plants as

well as critical infrastructure systems including the electrical power grid, water treatment

systems, and chemical industry. This thesis focuses on the protection of such critical

infrastructure.

As an example, supervisory control and data acquisition (SCADA) systems represent

one specific type of ICS. SCADA systems are typically used in the control and management

of geographically dispersed industrial systems [55]. In the structure illustrated in

Figure 2.1, the human user interacts with the control system through a human machine

interface (HMI). The HMI functions as the operator’s main method of monitoring and

altering physical components to provide external oversight of correct operation. The HMI

connects to a master terminal unit (MTU) that acts as the central automated supervisory

unit of the SCADA system. The MTU monitors and manages the various physical sites

composing the system, but it does not directly control end nodes. This responsibility

is placed on field devices. Specifically, remote terminal units (RTUs) are field devices

designed to control physical aspects of the system. SCADA systems branch out over

various communication channels to assorted RTUs that control and monitor actual physical

objects in the system such as valves and sensors. Another type of ICS, called a distributed

control system (DCS), is a type of system that focuses more specifically on the control of

localized processes. Unlike SCADA systems, DCSs are typically implemented in scenarios

where the entire control system is contained within the same local network.

6

Figure 2.1: Typical structure of a SCADA system [55].

A commonly used device in ICSs is the PLC. PLCs are embedded computer systems

specifically designed to control and, to an extent, independently monitor the physical

system components under their supervision. PLCs are commonly used in DCSs and

often times in place of RTUs in SCADA systems due to their enhanced capabilities. As

the name implies, PLCs enable customized control of system components by providing

a user-programmable interface between physical inputs and outputs. PLCs typically

require proprietary software installed on a standard computer (usually running Microsoft

Windows) to provide a method of programming the controller. Examples of such

programming software include Rockwell Software’s RSLogix series for managing Allen-

Bradley controllers and Siemens’s Simatic Step 7 for Simatic controllers. With these

applications, engineers commonly utilize a graphical programming language called ladder

logic to create a representation of how the controller should respond to given inputs. By

creating virtual projects in the programming application, a user is able to view the logic

currently running on a PLC as well as write new ladder logic to the device for execution.

7

2.2 Industrial Control System Security

The history of ICSs encompasses decades of steady advancement building to the

complex systems present today. However, the evolution of these systems does not lend

itself well to a satisfactory development of security practices and implementations. While

such development continues to progress through the influence of regulation and research, it

is often outpaced by advancing threats [13]. This section provides an overview of growing

threats to ICSs and their significance on the future of ICS security.

2.2.1 History.

2.2.1.1 Past Incidents.

Cyber incidents related to ICSs are certainly not new; however, much has changed

regarding the subject in a relatively short amount of time. A true history of ICS cyber

incidents is di�cult to compile considering low reporting rates due both to unrecognized

incidents as well as the implications of recognized incidents on the reputation of those

involved. Without any obligatory reporting procedures, only highly visible incidents are

publicly reported.

The incident widely considered the first reported cyber attack against critical

infrastructure took place in 1997 [1, 21]. In March, a teenager successfully hacked into

a local service provider’s loop carrier and disabled it. This resulted in the disruption of

communications to and from the Worcester Regional Airport air tra�c control tower. Also

a↵ected were communications for airport security, fire department, and weather service,

as well as about 600 homes in the nearby area of Rutland, MA. The attack was executed

using a dial-up modem connected to the disabled loop carrier. Three years later, in 2000,

another attack took place in Queensland, Australia [54]. After three months of what was

thought to be system glitches at the Maroochy Water Services plant, intentional malicious

action was discovered. The actions were traced back to a disgruntled contractor who had

failed to procure a new job with the Maroochy Shire Council. Over the course of the three

8

months he had used a laptop and radio transmitter to create problems in the system and

consequently released a total of around 1 million liters of sewage into local waterways.

In addition to these early attacks on critical infrastructure, the combined proliferation

of computer worms and viruses over the past decades has led to unintentional e↵ects

resulting from the propagation of malware to ICSs. The first major reported incident of

such a situation occurred in 2003 by means of the Sobig worm [42]. The Sobig worm

managed to propagate to critical areas on CSX train systems, causing the shutdown of train

signaling and dispatch services along the east coast of the United States. As a result, a

cascade of delays was created, a↵ecting many trains for hours. The same year was also

marked by the Davis-Besse incident [45]. As a result of uncontrollable propagation of the

Slammer worm, the safety monitoring system at the Davis-Besse Nuclear Power Station

in Ohio was disabled. Fortunately, the plant was idled at the time, so no reactors were

active. There also remained an analog backup safety system that remained una↵ected;

however, the fact that the worm could so easily impact the power station with no specific

intent is concerning. Slammer was originally introduced into the unsecured network of

a plant contractor. From there it was able to propagate across a T1 line that completely

bypassed the plant firewall. In another 2005 case, the Zotob worm unintentionally attacked

DaimlerChrysler [47]. By exploiting a bu↵er overflow in Microsoft’s Plug and Play service,

Zotob propagated onto DaimlerChrysler manufacturing plant networks and forced random

system reboots [40, 48]. These disruptions shut down 13 manufacturing plants across 6

states for about an hour.

2.2.1.2 Stuxnet.

In 2010, the Stuxnet worm was discovered. This malware is now infamous as the

epitome of advanced ICS threats. Reports indicate that Stuxnet was a highly targeted attack

against specifically configured PLCs controlling particular ICS processes [12, 14]. The

reports suspect that the initial infection vector was through the use of removable media

9

devices. These may have been planted for unsuspecting employees to find and use, or the

attackers may have breached physical security to deliver the worm [19]. Once introduced to

a computer running Microsoft Windows, Stuxnet bypasses antivirus software and detects if

Step 7 software is installed. If so, the worm replaces the main function library used by Step

7 with a malicious version. Stuxnet also places itself in any other removable media attached

to the computer and any Step 7 project files for future propagation. When the malicious

Step 7 library is loaded by a program, it runs a routine to search for specific PLC models

that are connected to specific frequency converter drives used to control motor speeds. If

such a PLC is found, Stuxnet injects malicious programming to the PLC that alters the

motor speed, causing damage. In addition to the injection of malicious programming, the

malicious Step 7 function library also masks the modified PLC code from the operator on

an infected computer.

2.2.2 Future Threats.

In June of 2011, the National Institute of Standards and Technology (NIST) released

the most recent version of their Guide to ICS Security [55]. The authors note that ICS

technology is advancing by integrating with more traditional IT system solutions like IP-

based communications and standard computers. As this occurs, ICSs become less isolated

and more vulnerable to security threats. Traditional IT security solutions may be applicable

to modern ICSs in some regards, but special consideration must be made in areas where

traditional IT has no experience. Because of the cyber-physical link ICSs provide, issues

such as human safety [21, 42, 45] and environmental [54] e↵ects may be impacted by any

gap in security.

A common trend witnessed in traditional computer malware is a race to the bottom

where lower level attacks have the advantage over more overt and limited high level attacks.

For example, user mode malware may be easily detectable as a file or running process and

may be limited by security features present in the operating system. Alternatively, kernel

10

mode malware is able to hide itself with rootkit functionality and may control kernel level

processes inaccessible to a user mode program.

A similar trend is developing in the field of ICS security. Already, attacks like Stuxnet

focus on the PLC given that it provides a link between the ICS and components a↵ecting

the physical world. At the highest level of PLC control, many current exploits focus on

application layer vulnerabilities using hard-coded passwords to access control interfaces.

Stuxnet takes this a step further by modifying the programming on PLCs and masking

the change from operators using rootkit functionality on the Step 7 Windows machines.

However, these modifications are not malicious to the PLC itself. The PLC is designed to

be remotely programmable and the code loaded on the PLC by Stuxnet is valid operating

code, so the device is only a conduit for the attack. Stuxnet takes advantage of the malicious

Step 7 function library to hide modifications from infected Step 7 machines [19]. The

PLC continues to run as it is instructed and the operator cannot observe modifications

to the code; however, if the PLC is accessed from a non-infected Step 7 machine, the

modifications are visible. The logical progression of attacks is to a↵ect the PLC in such a

way that no external observer can readily detect malicious modifications.

2.3 Programmable Logic Controller Security

Specific focus on cyber security from the perspective of PLCs remains a serious issue

in ICSs. In a 2012 paper, McMinn et al. describe the existence of three operational layers

on a PLC: (i) programming, (ii) firmware, and (iii) hardware [33]. This section discusses

the major vectors available to attack PLCs and their related concerns following this model

(see Figure 2.2).

2.3.1 Programming Layer.

The programming layer is the main channel of interaction between ICS operators and

the PLC. Through this layer, a user provides the device with logic required to operate the

11

Figure 2.2: Operational layers of a programmable logic controller.

controller’s given application. Many di↵erent languages are used at the programming layer

including modified implementations of traditional languages such as C or BASIC [27];

however, the typical method used to program controllers is a graphical language called

ladder logic. Ladder logic provides engineers, who may be unfamiliar with traditional

programming languages, an intuitive interface to the controller. Programming software

used to upload the logic to the PLC (e.g., RSLogix) compiles the graphical language to

low level code for execution before uploading the code to the device. The programming

uploaded to the device is analogous to a desktop application run on a traditional computer.

For the PLC, the programming dictates how the controller responds to input. Because

the program loaded on the controller is managed by programming software, modifications

solely made to the program can be readily detected, as mentioned in the Stuxnet discussion.

12

2.3.2 Hardware Layer.

The hardware layer consists of the physical chips and components that make up the

PLC. Among other components, this layer includes the microprocessor, volatile run-time

memory, and non-volatile storage memory. Security at this layer is based on physical

protection. From a malicious perspective, three main vectors are available to attack the

hardware layer: physical manipulation of the hardware, software exploitation of hardware

design flaws, and supply chain compromise to intentionally create vulnerabilities. Of these,

physical manipulation is the least likely in an operational scenario as this would require the

attacker to have intimate access to the device, possibly for extended periods of time. Such

an attack implies an insider threat scenario, in which case more straightforward methods

of attack like direct malicious reprogramming are possible. The second vector of attack

at the hardware layer reduces to a software-based attack where physical design flaws are

exploited by software running on the device. This requires exploitation through either the

programming layer or the firmware as discussed in the following section.

The remaining attack vector is supply chain compromise. If an attacker can

compromise the supply chain of components for a device, they may be able to influence

their design and engineer vulnerabilities, providing backdoors to the system. Detection

of supply chain compromise is a di�cult and costly endeavor. The analysis and reverse

engineering of a physical component in an attempt to detect malicious logic requires a

significant amount of time. Modern microprocessors have become so complex that such

methods are not feasible in many cases. In those cases where it is, the device is likely

destroyed in the process. For these reasons, researchers are investigating viable alternatives

using side channel methods [57]. By analyzing changes in signal metrics such as timing

and power, comparisons are made to known-good reference circuits to determine if any

di↵erences are present in the test device. This method assumes that the modification

of a circuit results in a noticeable change in the power requirement or timing of the

13

circuit. However, many challenges remain in this area of research. Not only is a trusted

baseline required for comparison, but the possible implementations of malicious logic are

so numerous and complex that choosing appropriate detection metrics is di�cult.

Presenting a comprehensive approach, Baldwin et al. explore the issue of supply chain

trust from a strategic perspective and propose new policies to integrate “system security

engineering” into the current Department of Defense acquisition life cycle [7]. This

proposal follows a cradle-to-grave approach to security. Pre-development planning focuses

on security from the start by analyzing possible vulnerabilities of system components.

Supply chain risk management is discussed and encompasses various techniques to

minimize the threat of supply chain compromise. For critical components, a full scope

supply chain analysis is performed to identify all suppliers involved with component

production. The concept of trusted suppliers is introduced where strict requirements are

imposed for such vendors. The purchasing of components should also follow diverse

redundancy and anonymous buyer practices to minimize the probability of compromise.

System testing focuses specifically on critical components as they interact with the rest of

the system as well as many other non-hardware based secure design practices throughout

the system life cycle.

While a serious issue warranting concern, hardware layer security is ultimately

immaterial in the context of current production systems. At some point, assumptions must

be made about the security of the hardware. Indeed, these assumptions are already made

by vendors and consumers by the fact that the devices are in use. This fact reinforces the

concept that while strict physical security, thorough quality control, and a secure supply

chain are important, these are complex issues requiring more specialized and long-term

solutions unconcerning many field devices in current production or operation.

14

2.3.3 Firmware Layer.

Bridging the low level hardware layer to the upper level programming layer is the

firmware layer. Firmware is the low level software run on the device to support higher level

operations. For this reason, firmware is commonly referred to as the operating system (OS)

of embedded devices. In a broader sense, however, firmware also includes lower level

functionality like bootloader code to initialize and load the OS.

This layer in a PLC that controls the basic behavior of the device including

communication with management systems and execution of the user-level program written

to the device. Firmware handles all interactions between the user and the device hardware,

including physical inputs and outputs. The functional analogy of OS firmware is further

extended when discussing potential threats to the PLC. The traditional operation of a rootkit

on a standard computer is equivalent in concept to how an attacker may take advantage of

OS firmware in a controller to hide modifications. Rootkits typically exploit kernel-level

processes to gain privileged access to OS functionality. Using this access, rootkits are able

to modify the underlying behavior of the OS. In the same way, an attacker with access to

the firmware on a PLC has potentially limitless control over the device including the ability

to covertly alter device behavior in a malicious fashion.

In some embedded devices, firmware is programmed from the factory and designed

such that it remains static and not reprogrammable. In such cases, firmware is relatively

safe from modification attacks. However, modern embedded devices including PLCs are

commonly designed with the capability to update the firmware. This ability allow vendors

to patch bugs present in the firmware as well as enable new features without requiring

physical updates of the hardware. Given a device with reprogrammable firmware, the

procedure of performing the update is usually the responsibility of the user, typically

through the application of an update software package. Since a user has access to update the

15

firmware, however, the process facilitates an attacker’s ability to upload modified firmware

to a device.

2.4 Previous Works on Reversing Firmware

2.4.1 Discovering Backdoors in Ethernet Modules.

In a December 2011 web article, independent security researcher Ruben Santamarta

describes a process used to discover backdoor accounts and passwords for a Modicon

Quantum PLC Ethernet module [51]. While the goal of his research was not to modify

the firmware, but to uncover these backdoors, the process he follows is applicable to search

for validation algorithms in firmware.

To begin the reversing process, Santamarta obtains a copy of firmware for the target

controller. He does so by downloading the firmware from the vendor website. An

entire update package is obtained, where the actual firmware binary is contained within.

Therefore, the binary image itself is found and extracted from the rest of the package. An

inspection of the the update package contents reveals the location of the firmware image

to extract. Santamarta advises that other files in the update package may contain useful

information about the firmware and continues examining the firmware itself.

The first step is a manual inspection of the binary image using a binary file editor.

This procedure reveals a file header followed by a zlib-compressed section, identified by

its leading binary signature. After decompressing this section, he proceeds to identify the

processor type, which is a PowerPC. While he does not go into detail about his method

of processor type determination, Santamarta references a presentation by Igor Skochinsky

[53] detailed in Section 2.4.3.

Following this determination, Santamarta begins the process of disassembly by

loading the binary file into the Hex-Rays Interactive Disassembler (IDA), a disassembler

tool. At this point, he presents a common process for reconstructing the firmware code in

IDA. The process begins by collecting information from strings contained in the firmware

16

image. A copyright string identifies the firmware as VxWorks-based OS. Next, since IDA

is not able to automatically detect functions in this binary image, Santamarta describes a

method to resolve functions in the disassembly by searching for common function prologue

bytes. He then commands IDA to treat these addresses as functions by disassembling their

code and adding them to an internal database. Santamarta provides the source code of the

IDA script he uses to perform this task.

Now that IDA has disassembled and identified functions in the image using the

standard prologue, Santamarta “rebases” the image by altering the code base address to that

which it assumes at runtime. He suggests that the true base address may be located in the

firmware header or other documentation, but determines this is not so for his case. Instead,

he uses the “‘[load immediate] instructions’ trick” [58]. This method consists of searching

the disassembly for instructions that load an immediate (i.e., absolute) address value into

a register. The technique presumes that a significant number of immediate addresses refer

to locations in the firmware itself, and therefore have the same base address. Candidate

base addresses are then tested by rebasing the firmware and determining if the immediate

addresses correctly align with target data such as strings or other functions.

After successfully rebasing the firmware, Santamarta rebuilds the function symbols,

or names. He begins by searching the firmware for a symbol table. This is identified as

a section of the code containing a regularly repeating data structure that includes function

name strings. He discovers such a table and, using another IDA script, parses the symbol

table and relabels the disassembled functions with their proper names. This enables

Santamarta to use symbol names in finding sections of the firmware relevant to his goal

of discovering backdoor accounts. Indeed, he finds many undocumented accounts for the

Ethernet module.

17

2.4.2 Creating Custom Firmware for Ethernet Modules.

In a 2009 paper, Peck and Peterson demonstrate a successful upload of customized

firmware to an Allen-Bradley ControlLogix Ethernet module [44]. Their goal is to show

that an attacker can learn how to upload custom firmware to a field device Ethernet

card using commonly available tools. They justify their choice of Ethernet card targets

by describing the vulnerable state of Ethernet modules and their ease of access through

remote network means. Peck and Peterson proceed to explain their method of reversing the

Ethernet module firmware and subverting the card’s validation algorithm.

Peck and Peterson first acquire multiple firmware samples for the target Ethernet

module. These samples are downloaded from the manufacturer website. Peck and Peterson

explain the importance of obtaining multiple samples for comparison as a way to identify

static fields in the images. With firmware samples available, Peck and Peterson begin

inspecting the binary files, looking for and identifying di↵erent segments that exist in the

image (e.g., blocks of code, filesystems, or strings).

After the manual inspection, Peck and Peterson utilize a binary analysis tool called

Deezee, which searches binary files for embedded zlib-compressed sections, extracts, and

decompresses them [38]. Using this tool, Peck and Peterson discover a zlib-compressed

section containing the symbol table for the firmware, identified by a regularly repeating

pattern of addresses and string symbol names. Further analysis of the symbol table reveals

function addresses listed as absolute values. Using these addresses they infer the base

address of the image.

Peck and Peterson next attempt to disassemble the firmware code using IDA. However,

a known processor type is required, so they initially assume that the target uses an ARM

core. They are incorrect, but infer from the result of the attempted disassembly that the true

processor type is PowerPC. Another attempt with this target processor type is successful

and produces disassembled code. A rebase of the image is then performed using the base

18

address derived from the symbol table. Finally, Peck and Peterson use a script to add the

symbol names to the disassembly.

Peck and Peterson continue to search for the firmware validation algorithm used by

the Ethernet module. By searching through the symbol names, they discover a function

named nv RamValidateChecksumsWriteFlash. An examination of this function reveals

a subfunction call that performs a checksum validation calculation. Peck and Peterson

reverse engineer this function to derive the entirety of the checksum validation algorithm

used by the firmware. Their target device uses a 2-byte summation of the image header

and a 2-byte summation of the remaining firmware image, both of which are located in the

header.

With knowledge of the validation algorithm, as well as the location of the checksum

values, Peck and Peterson customize the firmware with a proof-of-concept that instructs the

Ethernet card to continually ping a specific IP address in addition to its normal operation.

The authors note the importance of taking care not to disrupt default operation of the device.

Finally, the customized firmware is uploaded to the Ethernet module using the ControlFlash

firmware programming software Rockwell Software provides. While they admit that a

custom flash program could be written to accomplish the task, Peck and Peterson argue

that it is simpler to use the vendor supplied software.

2.4.3 General Processes for Reverse Engineering Embedded Devices.

In a presentation at the 2010 Recon security conference, Igor Skochinsky, a software

developer on the Hex-Rays IDA team, provides an introduction on reverse engineering

embedded firmware [53]. In Skochinsky’s process, he first retrieves a firmware image.

He provides various methods for doing so, the first of which is obtaining a firmware

update from the vendor. Skochinsky notes that this method for acquiring firmware is

straightforward and that the updates obtained may also contain firmware upload programs,

filesystems, or bootloader images in addition to the main firmware, which may be relevant.

19

One may also take advantage of external communications with the device. While taking

more time and e↵ort, a communication program on a separate computer from the device

could be reverse engineered to reveal methods of instructing the device to transmit sections

of memory containing firmware code. Another technique is the use of a universal

asynchronous receiver/transmitter (UART) port on the device. This method is complex,

possibly involving the identification of and connection to physical UART pins on the device

if no standard serial port is present. After physical connection, it may be possible to

dump the firmware from the device using certain commands sent over UART, depending on

the device’s support for UART. Similarly, Skochinsky also discusses the use of hardware

debugging tools to dump the contents of memory, as discussed in Section 2.4.4. Finally,

Skochinsky mentions the tactic of reading flash memory directly from the storage device;

however, this typically requires the physical removal of an embedded flash chip from the

board by desoldering.

With possession of the firmware, Skochinsky next characterizes the image. This

begins by identifying any filesystems embedded in the firmware. He discusses various

common filesystems utilized by embedded systems, how to identify them (typically using

binary signatures), and how to unpack them into a usable form and access the files within.

Following this, Skochinsky’s discusses how to identify the embedded operating system

type. Again, he walks through various embedded operating systems and how to identify

them. Identification usually involves locating copyright strings containing the developer or

operating system name. The final characterization before code disassembly is identification

of the processor type. Skochinsky begins by explaining the di↵erences between major

design types (e.g., reduced instruction set computing (RISC) versus complex instruction

set computing (CISC)), then discusses the general attributes of several popular embedded

architectures and how to identify them by signature byte patterns common to that

architecture’s instruction coding.

20

Skochinsky’s final step is disassembly of the firmware code. If the firmware is

contained in a structured image such as an executable and linkable format (ELF) or other

OS-specific format, a disassembler like IDA may be able to automatically disassemble the

code, determining much of the code structure from the wrapper. However, if the firmware

format is raw binary, additional work is required to create the equivalent disassembly. The

first step of this process is determining the correct base address for the binary. Skochinsky

suggests initializing the base address to 0, then searching the code for hints of the true

base address if the use of 0 fails to produce complete disassembly. Such hints include

self-relocating algorithms that copy code using the correct base address, initialization code

that uses the base address to load code from non-volatile flash memory to volatile random-

access memory (RAM), jump tables that contain absolute addresses, or string table o↵sets

to compare with the addresses of strings they point to. After successfully rebasing the

code, Skochinsky discusses recovering symbol information. He explains the extraction of

symbols from a Linux kernel and provides an example of the VxWorks symbol structure.

Skochinsky also suggests searching for a demonstration or evaluation copy of the OS type,

if it is known, to allow for comparisons between it and unknown code in the disassembly.

2.4.4 Hardware Debugging.

Hardware debugging is commonly used in the production of embedded systems as a

method to test and verify system components as well as debug software at the processor

level. One common hardware debugging standard is the the Institute of Electrical and

Electronics Engineers (IEEE) Standard 1149.1 Standard Test Access Port and Boundary

Scan Architecture [25]. This standard is often referred to as Joint Test Action Group

(JTAG), after the name of the consortium that created the standard [43]. Boundary scanning

with JTAG requires a specialized hardware debugger connected to the test board through

special pins called test access ports (TAPs). The standard specifies certain pin signals

required to control the device under test. Four signal pins and an optional fifth are the

21

minimum defined by the standard: clock synchronization (TCK), mode select (TMS), data

input (TDI), data output (TDO), and the optional reset signal (TRST). JTAG operates on a

per-chip basis, so an integrated circuit (IC) on the target board must be designed to support

JTAG. Typically, these chips are microprocessors. Given multiple components on a board

that support JTAG boundary scanning, the same TAPs can be used to access all of them.

This is known as chaining.

In a 2006 paper, Breeuwsma provides an introduction on JTAG and how to take

advantage of it for forensic imaging of embedded applications [10]. Breeuwsma describes

three main modes of operation for a JTAG-enabled device: normal operation mode, external

test mode, and debug mode. Normal mode bypasses boundary-scan functionality to allow

normal operation of the chip. External test mode provides basic JTAG functionality. In

this mode, the processor core of the target is disabled. Instead, the input/output (IO) pins

of the target chip are driven by values stored in the boundary-scan test register called test

vectors. Using test vectors, the hardware debugger can completely control the IO signals

on the target. This is useful for hardware validation and low level debugging operations

including direct memory accesses.

Debug mode is an advanced operating mode allowed by JTAG to facilitate software

testing and debugging. This mode requires special circuitry built into the target chip not

specifically defined by the standard. Therefore, it is not uncommon for the implementation

of debug mode to vary among di↵erent chips. In some cases, JTAG enabled components

may lack debug circuitry altogether and only support external test mode. However, if

the chip is designed with support for this mode, software executing on the chip may be

debugged in real time. Depending on the target’s implementation, debug mode may also

enable access to memory on the target system without requiring specifically crafted test

vectors as with external test mode.

22

Breeuwsma continues by describing techniques to identify JTAG TAPs on a device.

The general process beings by searching for test pads on the target circuit board and

eliminating as many as possible from the list of TAP candidates. Breeuwsma provides a list

of characteristics common to JTAG TAPs that bound the search space. Such characteristics

include the fact that TAP signals should remain constant while the system is running with

no debugger attached. TAP traces should also not connect to non-IC components like

capacitors (however, pull-up or pull-down resistors may be present). Lastly, TAP signals

should not be driven by an output. After applying these rules for elimination, Breeuwsma

provides additional detail on TAP characteristics to confirm those remaining candidates as

TAPs.

2.4.5 Checksum Algorithms.

As discussed in Section 2.3.3, firmware on embedded devices such as PLCs is

often updated by manufacturers. Firmware update processes typically include the use of

validation methods to confirm that the newly uploaded image is not corrupt [44]. This

section provides an overview of various types of algorithms commonly used for data

validation with a specific focus on the validation of firmware updates.

A hash function is defined as a function that maps data of an arbitrary length to a fixed-

length value called the hash value [34]. A checksum algorithm, then, is any type of hash

function used for the purposes of validating data integrity [59]. The resulting hash value

generated by a checksum algorithm is referred to as the checksum value or, succinctly, the

checksum. There exist various algorithms used for calculating checksums that fall into five

general categories: parity checks, modular summations, cyclic redundancy check (CRC),

non-cryptographic hashes, and cryptographic hashes. Parity check algorithms, typically

synonymous with longitudinal redundancy checks (LRCs) [39], calculate a checksum value

by applying the exclusive or (XOR) operation to each n-bit word over the data set. This

produces an n-bit checksum value representing the “parity” of each bit position in every

23

word [28]. Parity algorithms have the advantage of being computationally inexpensive and

straightforward implementations; however, they are less accurate in detecting data errors

then other algorithm types mentioned here. Typically, the only variation between parity

check implementations is the bit width of each word in the calculation.

Modular summation algorithms are based on the addition of each n-bit word in a data

set with the next. The resulting sum is represented using a given modulus to create a

checksum value of the desired bit width. Note that the term “checksum” is sometimes used

by other works in reference to modular summation algorithms specifically; hence, there is

common cause for confusion. This thesis, however, uses the term “checksum” in reference

to the resulting value of any hash function used for the purposes of validating data integrity.

Another specific type of modular summation algorithm is the Fletcher algorithm [20]. This

algorithm calculates a modular summation as before, but also includes a second modular

sum of those simple sums, creating two values that compose the checksum. Fletcher

algorithms can be calculated with various moduli to achieve bit widths of 16, 32 or 64

bits. Each of these widths has a commonly used modulus associated with it. A further

specific variation of the Fletcher algorithm is the Adler-32 algorithm which uses the specific

modulus of 65,521 for both sums [17]. Modular summation algorithms allow for more

accurate error detection than parity checks while remaining straightforward to implement.

However, the variability of di↵erent modular summation methods is much higher than

parity algorithms. Since several di↵erent schemes are based on the summation concept,

determination of a specific algorithm is more di�cult than for parity checks.

A CRC is a type of algorithm that uses polynomial division on a data set to produce

a checksum value representing the remainder of this division. The specific process

used in the CRC calculation is detailed by Ramabadran and Gaitonde [46]. In general,

implementation include a series of incremental XOR operations over the data, where the

result of each increment is dependent on the polynomial, the data, and the preceding

24

result. A CRC is based on variable parameters including width of the checksum value,

the static polynomial value, initial checksum value, the final XOR value applied to the

resulting checksum, and whether or not input and output bytes are reflected for endianness.

Therefore, the specifics of CRC algorithm implementations are highly variable. CRCs have

the benefit of more accurate error detection rates than modular summations [32]. While

more computationally complex than the above algorithms, CRCs remain less complex than

the remaining categories.

Dedicated hash functions are categorized as either non-cryptographic or cryptographic.

While, by definition, all the algorithms discussed here are hash functions, these two cat-

egories refer to functions specifically designed to minimize collisions. A collision occurs

when a hash function is applied to two unique sets of data and the resulting calculations

produce identical hash values. Since the previous categories of algorithms are not designed

specifically to prevent this outcome, they remain vulnerable to collisions. Thus, dedicated

hash functions are better suited to detect changes in input data, but usually at the cost of

computational speed and complexity.

The di↵erence then between non-cryptographic and cryptographic hash algorithms

is that in addition to their sensitivity to accidental modifications of data, like previous

functions, cryptographic hash algorithms are also capable of detecting intentional

modifications. Specifically, cryptographic hash functions are not feasibly vulnerable to

collisions or reversal. To a lesser extent than previous categories, one is still feasibly

able to find collisions in non-cryptographic hash functions or reverse them to determine

a data set that produces a given hash value. Cryptographic hash functions, however, are

not considered vulnerable to such attacks in any feasible manner. For example, it may

be technically possible to find a collision in a cryptographic hash function through brute

force, but the computational resources required to do so in a reasonable amount of time

25

are unrealistic. Many cryptographic hash functions exist, most notably the secure hash

algorithm (SHA) family of algorithms [41].

Given that embedded devices are typically limited in available memory and compu-

tational ability, less complex checksum algorithms are more feasible than cryptographic

hash functions for such applications [32]. However, there exists a trade o↵ between the

simplicity of an algorithm and its ability to accurately detect changes in data. For these

reasons, modular summation and CRC algorithms are commonly used as validation meth-

ods for embedded systems. Their balance of computationally inexpensive calculation and

reasonably accurate detection rates of unintentional errors make them popular in applica-

tions such as Ethernet, transmission control protocol (TCP), and the VxWorks embedded

OS [26, 44]. As discussed by Maxino and Koopman, however, some embedded applica-

tions may also take advantage of completely proprietary checksum algorithms, especially

in the case of embedded control networks [32].

2.5 Summary

Much of the nation’s critical infrastructure relies on ICSs to monitor and automate

control processes. As these systems evolve from traditionally isolated and specialized

implementations to adopt common IT solutions, they become exposed to cyber attacks.

This is witnessed as ICS cyber incidents progress from isolated attacks to unintentional

impacts caused by computer malware, culminating in the highly targeted Stuxnet attack

on control systems. As these attacks advance, focus is shifted from targeting high-

level application systems to direct threats against PLCs. PLCs consist of a user-level

programming layer, a low-level firmware layer, and a physical hardware layer. The

ability of firmware to completely dictate behavior of the device with no direct operator

oversight presents an attack vector accessible by legitimate means and capable of masking

malicious activity, unlike the observable programming layer and inaccessible hardware

layer. Previous works discuss various techniques for reverse engineering embedded devices

26

with a specific focus on PLCs and firmware modification. Other works on the topics of

hardware debugging and checksum algorithms as they relate to embedded devices augment

such techniques to provide a comprehensive survey of the field.

27

III. Methodology

This chapter outlines the methodology by providing a problem definition and general

approach, briefly describing the procedure and purpose of each step in the conceived

process, and finally detailing the factors considered in assessing advantages and limitations

of the composed techniques.

3.1 Problem Definition

Strategically, the intended result of this research is to further defensive measures

and forensic analysis techniques targeted toward advanced ICS threats by determining the

feasibility of firmware modification attacks on PLCs. Specifically, the goal of this e↵ort

is to investigate and assess the vulnerability of a common PLC to counterfeit firmware

updates. The achievement of this goal provides valuable information and insight regarding

the feasibility, technical requirements, and characteristic implementation of future firmware

related threats to PLCs.

This research proposes that common PLCs are vulnerable to firmware modification

attacks as a result of design weaknesses in firmware update validation methods. A design

weakness is defined as a failure of the device to properly detect intentional modifications

to firmware. An appropriately counterfeited firmware is expected to be accepted through

the standard firmware update process of the controller and execute on the device in

no distinguishably di↵erent manner than any given legitimate firmware, save for any

modifications present in the counterfeit version.

3.2 Approach and Scope

The process to derive the firmware update validation method is based on a thorough

review of previous research involving the reverse engineering of similar embedded devices

(see Section 2.4). Relevant tactics and procedures are compiled into a general process to

28

identify the firmware update validation method. The approach is applied to a production

PLC that is both commercially available and commonly used in ICS implementations.

Through this application, the constituent techniques of the reversing process are assessed

for advantages and limitations in their ability to derive the firmware update validation

method. Furthermore, feasibility of the threat posed by firmware modification attacks on

PLCs is determined by a successful upload of counterfeit firmware. The reversing process

provides a basis for the strategic intent of furthering defensive and analytic research on the

topic.

The scope of this research is limited to PLC firmware counterfeiting. In a layered

operational model, each layer is functionally independent of every layer above it and

functionally dependent on every layer below it. Given the layered operational model of

a PLC, the firmware layer is independent of the programming layer or any higher layer

control mechanisms because the firmware dictates how those higher layer actions are

interpreted. For this reason, no layers higher than the firmware layer are considered in

the scope of this research. Similarly, the firmware layer is dependent on every layer below

it to consistently interpret its actions. Therefore, as the only layer below the firmware,

the hardware layer is considered in the scope of this research. External to the operational

model, the only other considered system component is the firmware update procedure.

Specifically, this research is based on legitimate firmware update procedures only. This

includes any interaction with the device that the firmware interprets as a legitimate firmware

update request, including the manufacturer supplied firmware update procedure or any

procedure su�ciently similar to initiate a firmware update. No other external mechanisms

or components are considered in the scope of this approach including, but not limited to,

auxiliary controller components or the interaction of firmware updates with any external

system.

29

3.3 Test Environment and Tools

The testing environment for this research includes an Allen-Bradley ControlLogix

1756-L61, Series B, Standard Controller module manufactured by Rockwell Automation.

This hardware is accompanied by standard firmware available from the manufacturer which

is applied to the device using Rockwell’s standard ControlFlash update software. Since the

scope of this evaluation is bounded to the PLC hardware and firmware layers with standard

update procedures, this specific test environment is equivalent to the intended manufacturer

configuration. The L61 controller module is accompanied in this test environment by a

standard ControlLogix 1756-PA72/C power supply, 1756-A7 chassis/backplane, and 1756-

ENBT Ethernet communications module to support operation and testing. However, none

of these additional components are considered by the research presented here. Thus, results

of this evaluation are accurate for any standard L61 controller within the given scope.

Additional tools used throughout the evaluation process include the Notepad++

standard text editor and the HxD binary file editor. The binary analysis step of the process

takes advantage of the binary file di↵erence tool Visual Binary Di↵ (VBinDi↵) to perform a

binary file comparison as well as the static binary analysis tool BinWalk for embedded file

and filesystem analysis. Firmware disassembly takes advantage of the IDA tool extensively

for further analysis. Brute forcing techniques discussed as part of black box testing use the

CRC RevEng tool by Gregory Cook. Finally, the explored hardware debugging techniques

include the use of the Advanced RISC Machine (ARM) RealView in-circuit emulator (ICE)

device along with the ARM Development Studio 5 (DS-5) debugging software.

3.4 Reversing Process

An integration of related works discussed in Section 2.4 results in the general reversing

process illustrated by Figure 3.1. This section details the steps in the process: (i) firmware

sample acquisition, (ii) binary analysis of firmware, (iii) firmware disassembly, and (iv)

derivation of the firmware update validation method. While the presented process is based

30

on several common methods previously discussed, the nature of reverse engineering is

at times as much an art as it is a science. The process externally requires intuition and

experience on behalf of the investigator. The success and e↵ectiveness of each step may

rely in part on this variable aspect of the process. Nonetheless, the process serves as a

roadmap to follow in deriving operation of the system.

3.4.1 Firmware Acquisition.

In order to begin reverse engineering the firmware, sample copies are first obtained.

The primary method for accomplishing this is by procuring firmware updates from the

vendor, which are typically available from online sources. The firmware binary images

are then extracted from these update packages. Should this not be possible, alternative

measures are taken such as memory acquisition through JTAG or desoldering the flash chip

to directly read its contents. As many di↵erent firmware samples are obtained as possible

to enable a thorough binary file analysis and comparison.

3.4.2 Binary Analysis.

This initial interaction with the firmware involves an examination of the raw binary

files intent on gaining general knowledge required for a detailed inspection. Three

techniques are applied: manual inspection, binary file comparison, and embedded

file/filesystem analysis. A manual inspection reveals information about the general

structure and contents of the binary file. In addition to static fields discussed by Peck

and Peterson [44], dynamic fields of the firmware are also identified. Both are determined

through the binary comparison of di↵erent firmware samples with the goal of identifying

header contents and organization as well as fields in the image used for validation purposes.

Embedded file and filesystem analysis is intended to detect the existence of any embedded

files or filesystems in the firmware, which may contain information relevant to the firmware

code operation or organization.

31

Figure 3.1: Reversing Process.

32

3.4.3 Disassembly.

The next step in the reversing process is disassembly of the binary code. To begin, the

target processor of the binary code is identified. This can be accomplished using techniques

such as Skochinsky’s method of pattern matching [53]. Alternatively, a physical inspection

of the target device hardware, if available, may also reveal details of the processor, as may

a thorough review of o�cial documentation for the system. Once the target processor is

determined, the firmware binary is loaded into the IDA tool for disassembly. Depending

on the format of the binary image, IDA may disassemble the code more accurately and

completely in some cases rather than others. Assuming the firmware format is raw binary,

the initial base addresses is set to 0. Following this, the disassembly function locations

are fixed before proceeding further. Using Santamarta’s IDA script as a template [51] and

knowledge of the target processor’s typical function prologue, IDA disassembles and adds

the firmware function locations to its database, making code traversal and cross references

in IDA more thorough and accurate. Note, however, this does not mean the functions are

correctly named yet, only that they are identified as functions. The disassembled code is

rebased if the initial loaded base address of 0 is incorrect. The correct base address may be

discovered by applying methods described in the Section 2.4. Once the correct base address

is used to disassemble the firmware, IDA matches cross references to more accurately

and thoroughly traverse the code. Next, a thorough inspection of strings contained in the

firmware is performed in order to identify any specifics of the firmware including OS type

and any symbol names or data structure strings. The information gleaned from a string

analysis is useful in learning more about how the code functions and leads into the next

step: recovering symbol information. Rebuilding the firmware symbols may or may not

be completely possible depending on results from the previous step, but strategies such as

scripted renaming of functions based on apparent string names as discussed in Section 2.4,

if successful, result in disassembled code that is more human readable to assist in analysis.

33

3.4.4 Derivation of Firmware Update Validation Method.

The goal of modifying the firmware relies on the ability to reverse engineer the

firmware update validation method used by the PLC. The general approach consists of

three phases: disassembly analysis, black box analysis, and hardware debugging methods.

Disassembly analysis begins by searching symbol names for relevant titles indicative of the

validation algorithm, such as those including the terms “checksum” or “CRC.” Afterwards,

the disassembly of such functions is analyzed to determine the validation method. Without

symbol names, this process is hindered. Black box analysis uses several techniques to

infer as much information as possible about the validation algorithm by narrowing down

the search space, testing for the use of common algorithms, and attempting a brute force

attack. Beyond this, the use of hardware debugging tools is also applied. If supported by

the target device, this technique potentially allows for direct access to the device including

live memory and control over execution on the processor to observe the validation as it

occurs.

3.4.5 Reversing Process Considerations.

Advantages and limitations of the techniques used throughout the reversing processes

are considered. A discussion is provided regarding factors including the e↵ectiveness

of each technique in contributing to the successful derivation of the validation method

as well as time, cost, and complexity requirements for doing so. In the firmware

acquisition step, specific considerations include the availability and ease of access to

multiple firmware image samples from the manufacturer through firmware update packages

or direct acquisition from the device. For the binary analysis step, each technique is

individually considered. The discussion of manual analysis considers the technique’s

ability to extract file header and structure information. Binary file comparison is intended

to identify static and dynamic sections of the firmware images and is assessed on the extent

to which this is possible as well as the significance of information gained by doing so.

34

Discussion of the embedded file and filesystem analysis considers the success in identifying

embedded files or containers as well as the accuracy and significance of any findings.

In the disassembly step, the discussion considers if the correct processor type is

identified and the di�culty in doing so. Function identification is assessed by the extent

to which firmware functions are successfully identified in the code. The accuracy of the

determined base address is next considered, as is the rebasing technique’s e↵ectiveness in

finding it. The string inspection discussion considers the number and quality of informative

string values found in the firmware. To conclude this step, the accuracy of firmware

functions renaming is considered.

Derivation of the firmware update validation method is divided into each component

technique. The disassembly analysis is assessed on the ability to identify the validation

method as implemented in the firmware and the e↵ectiveness of being able to find relevant

functions based on the details available. For black box analysis, considerations include the

extent to which a likely class of the validation method is identified as well as the range of

the firmware image covered by the method. Additionally, the brute force technique applied

is assessed on its ability to determine the validation method and the feasibility in using this

technique. Finally, the hardware debugging technique discussion considers the discovery

of the validation method and the costs and e↵ort required to do so.

3.5 Vulnerability Assessment

3.5.1 Firmware Update Validation Method Analysis.

The given candidate for the firmware update validation method is verified for

correctness by applying the reversed method to all available firmware sample images. If all

sample images pass the implemented candidate validation, then verification is successful.

If verification fails, an iterative approach is taken to revisit the derivation process and

determine the cause of the inconsistency before reattempting verification.

35

Following the verification of correctness, the reversed firmware update validation

method is analyzed for potential design weaknesses. The existence of such a design

weakness, as previously defined, means an arbitrary modification to a legitimate firmware

sample image does not hinder the ability of that image to pass validation. To determine

a design weakness, the derived firmware update validation method is analyzed for any

functionality intent on obstructing alteration of the firmware in such a way that prevents

its successful validation. For example, if the firmware is validated with a checksum and

there is no functionality to prevent the successful recalculation of the checksum value

given an arbitrary modification, then a design weakness is determined to exist. If such

a weakness is successfully determined, a solution to take advantage of this weakness is

implemented. This implemented solution, when given an arbitrarily modified firmware

image, processes the image to produce a version of the modified image specifically capable

of passing validation on the device.

Assuming the presence of a design weakness in the validation method and an

implemented solution to take advantage of it, the solution is now tested. This testing

involves determining an innocuous location in the firmware where alteration has no

apparent a↵ect on its operation. One example of such a location is an output string not

used in comparison operations. After making a minor modification in this location, the

implemented solution is applied to the modified image, producing a firmware version

to test for general validity. This modified firmware version is next applied to the same

test environment described above using the standard firmware update procedure for the

device. While it cannot be guaranteed that the device will execute all possible states of the

modified firmware logic, the test is considered successful if the device accepts the modified

firmware as valid and continues to execute the modified firmware version with no apparent

adverse e↵ects. While it is straightforward to determine whether the device faults or not,

its use of the modified firmware version may not be transparent. The latter is verified to

36

the greatest extent possible by assessing the operational functionality of the device with

respect to details unique to the uploaded firmware. If the modification can not be verified,

more testing is performed by modifying alternate, more readily identifiable locations in

the firmware. If the device fails to accept the testing modification, an iterative process is

performed to determine the reason for the failure and, if possible, return to the testing phase

when another solution is met.

While working with embedded devices and committing modifications to such low-

level operational code, there exists a possibility that the device may become unstable and

act unpredictably. In the event that a modified version of firmware is uploaded to the

device that provokes such unpredictable behavior, the device may become locked into an

unusable state. This is referred to as “bricking” the device. If a device becomes bricked,

there may be no easy way to recover it. For example, the code on the device that controls

firmware uploads may never be reachable in a bricked state, making it impossible to update

to a known good version. To recover from such a state, a hardware debugger is used as

discussed in Section 2.4.4. For this reason, during initial testing it is important to limit the

extent to which modifications are performed and, if feasible, be prepared for testing with

multiple physical copies of the target device.

3.5.2 Demonstration.

Given a tested and validated solution implemented to take advantage of design

weaknesses in the derived firmware update validation method, a demonstration of

counterfeit firmware is presented. The demonstration is intended to verify the weaknesses

inherent in common controllers as well as validate the threats they pose. The demonstration

first creates a valid firmware image containing customized functionality. Relevant functions

in the firmware are sought by searching through the recovered symbol names. Once

relevant sections of code are identified, modifications are made to achieve the desired

e↵ect. As described by Peck and Peterson [44], care should be taken to minimize the

37

collateral damage caused by the modifications in order to improve the chance that the

modified firmware still functions as expected. After the modifications are performed, the

implemented solution is applied to the counterfeit firmware image, resulting in a valid

custom image as shown in testing. The demonstration proceeds to upload the counterfeit

firmware to the test environment device. This process is again accomplished through the

use of the vendor-supplied firmware update software in the same manner as any legitimate

firmware update. If the device enters a faulted state, then the counterfeit firmware failed.

Otherwise, if the counterfeit firmware is confirmed as running on the device and performing

its altered function correctly, then the firmware is successfully counterfeited, achieving the

goals of the demonstration.

3.6 Summary

In an e↵ort to advance detection and analysis research in the area of secure PLC

firmware, this research intends to determine the feasibility of a counterfeit firmware attack

on a common PLC. It is proposed that such an attack is possible due to insecurely designed

firmware update validation methods. A compilation of relevant practices and procedures is

described for deriving the firmware update validation method and considerations regarding

its advantages and limitations are discussed. Following this, the derived method is

confirmed and analyzed while a demonstration of any design weaknesses is provided,

allowing for counterfeit firmware to be uploaded and executed on the test device.

38

IV. Reversing Process, Testing, and Demonstration

This chapter describes in detail the process followed to reverse engineer the firmware

update validation method of the Allen-Bradley ControlLogix L61. After acquiring and

completely disassembling the device firmware, techniques to derive the firmware update

validation method are explored and assessed. Any weaknesses in the derived method are

taken advantage of and verified through a demonstrated counterfeiting of firmware on the

test system.

4.1 Reversing Process

4.1.1 Firmware Acquisition.

Firmware samples are first sought directly from the manufacturer. A search of

the vendor website reveals numerous ControlLogix L61 OS firmware update packages

available for download from Rockwell Automation. The firmware revision number (FRN)s

available range from the newest, FRN 20.013, to what is presumably the oldest o�cially

supported version for the targeted L61 Series B device, FRN 12.042. For completeness, all

19 available versions are procured.

Once the firmware updates are downloaded, the firmware binary images are extracted

from the update package. In the case of ControlLogix updates, the downloaded

packages are zip-compressed files containing a Windows installer (.msi extension) for

the ControlFlash utility as well as a text file named CONTENTS.TXT. Using the FRN

19.011 update package as an example, opening the CONTENTS.TXT file in a text editor

reveals a list of “script filenames” for each CPU module model number supported by this

update. In this case, only one script file is mentioned: PN-86270.nvs. Next, the 7-Zip file

compression utility is used to view the contents of the ControlFLASH.msi installer file.

Located inside are several cabinet files (.cab extension). A search is performed over each

39

.cab file for the “PN-86270.nvs” filename listed in CONTENTS.TXT. This file is found

inside the NVS.CAB file. This archive contains a series of subdirectories that, in the lowest

directory, contains three files: PN-86270.nvs, PN-86270.RES, and PN-86272.bin. Since

PN-86272.bin is the largest of the three and the .bin extension implies a binary file, it is a

candidate for the firmware image.

It is noted that not all of the downloaded firmware updates follow the structure pattern

outlined here. Several older FRN updates contain an executable setup file and an unfamiliar

virtual disk-like archive. Since this only applies to 4 of the oldest updates from the total 19

available, they are excluded from the reversing process in order to focus on the newer and

more immediately accessible firmware images.

4.1.2 Binary File Analysis.

4.1.2.1 Manual Inspection.

After obtaining multiple OS firmware images, a visual inspection is performed

manually on a sample image. This case continues to use FRN 19.011. Note, however,

that the purpose of this step is to identify general format characteristics of the firmware

common to the test device. Therefore, any available version is su�cient for this step based

on its inherent format required by the device. The manual inspection begins by examining

the files contained in NVS.CAB. Since PN-86272.bin is the candidate firmware image,

the other two files are first examined to ascertain their relevance. Opening the .nvs file

in a text editor reveals a configuration script for the update (see Appendix B.1). Relevant

information contained in this file includes: version number, number of updates, a list of

eligible devices, starting location for the update, firmware file size, and firmware filename.

This configuration file accurately identifies the firmware binary file as PN-86272.bin and

confirms its size. Opening PN-86270.RES in the HxD binary file editor as illustrated in

Figure 4.1 presents 4 bytes of data, which are later determined to represent ControlFlash

restrictions on the firmware binary (see Section 4.3.2).

40

Figure 4.1: Contents of PN-86270.RES in HxD.

The firmware image file PN-86272.bin, seen in Figure 4.2, is next examined using

HxD. The first goal is to assess the general structure of the binary file by identifying

any encrypted or compressed section. If such sections exist, additional work involving

decryption or decompression is performed before continuing the reversing process.

Observations made with the sample image indicate that there exist no immediately visible

compressed or encrypted sections. This is determined by a marked lack of randomness in

the bytes of the image as shown in Figure 4.2. Furthermore, several American Standard

Code for Information Interchange (ASCII) strings are readily visible in the binary file.

Therefore, the general structure of the image is indicative of raw binary code and data.

An inspection beginning with the first bytes in the file reveals possible header information.

Specifically, the first 7 to 8 32-bit words of the image are of interest due to the existence of

the string “xV4” and the relatively high density of 0s, especially in the 7th word, which is

entirely 0.

4.1.2.2 Binary Comparison.

Having determined a possible header and discovered that the firmware binary is

likely not compressed or encrypted, binary comparisons are performed on the firmware

files. Using the Visual Binary Di↵ (VBinDi↵) binary file di↵erence utility, two firmware

images are loaded at a time while VBinDi↵ highlights any di↵erences that are present. In

order to identify dynamic sections of the firmware, two similar firmware images are first

sought. Consecutive firmware versions are expected to have many similarities, so working

backwards from the most recent FRN available, every two consecutive version pairs are

compared for similarities. Considering that the size of the firmware images ranges from

41

Figure 4.2: Beginning of FRN19.011 binary in HxD.

roughly 2MB to 3MB, it is not feasible to identify and compare each and every di↵erence.

Instead, firmware image similarity is evaluated based on the quantity of di↵erences visible

at the beginning and end of the the files as well as the magnitude of di↵erence in file

lengths. To accurately compare the end of the files, the last bytes in the files are aligned

in VBinDi↵ to correct for variations in length. Not only does such evaluation simplify the

comparison process, but the beginning and ends of the firmware images are most likely to

contain information relevant to the entire image as opposed to random code instructions

contained in the middle. Examples of this are commonly witnessed in many data structure

implementations as headers and footers including the portable executable (PE) file format,

Ethernet frames, and VxWorks-based firmware images [26, 37, 44]. The two most similar

firmware versions discovered following this method of comparison are FRN 16.081 and

42

FRN 16.057. Note that these two versions are the only two firmware versions available

with the same length. Furthermore, the number of byte-di↵erences between the two totals

only 14 throughout their entire files.

Figure 4.3: VBinDi↵ of the beginning of FRN20.013 and FRN13.071.

A comparison is also performed on two dissimilar versions to determine what static

fields are present. Optimal dissimilarity is defined as the greatest possible number of

byte-di↵erences between two valid firmware images of given lengths. Given two such

dissimilar images, bytes that remain unchanged between them represent static data that

is likely constant across most firmware versions. For this comparison, however, optimal

dissimilarity is not mandatory. To simplify comparison, the process considers that the

newest and oldest available firmware versions are dissimilar to a degree su�cient in

identifying static fields. For the given test environment, these versions are FRN 20.013

43

and FRN 13.071, respectively. Loading these two files into VBinDi↵ shows that much of

the expected header is the same (see Figure 4.3). These static fields include the entire 3rd,

4th, and 7th words, with only one byte di↵ering in each of the 5th and 6th words. An

examination of the end of these two files first length aligns the last bytes in each file. This

comparison reveals no significant similarities.

As a result of comparing the various firmware images, noticeable patterns arise. For

example, the 3rd, 4th, and 7th words of the header remain constant. In addition, the second

word is identified as containing the firmware version number of each image: the first byte

represents the major revision number, the second is the minor revision number, and the

third is the subrevision number found in the accompanying .nvs file. However, none of

the header values directly relate to the file’s length. Through review of the dynamic fields

revealed by FRN 16.081 and FRN 16.057, the last 8 bytes of every firmware image are

found to always di↵er in an apparently random fashion (see Figure C.2). This is strong

evidence that these trailing 8 bytes represent a validation value.

4.1.2.3 Embedded File and Filesystem Analysis.

Following manual and comparative analysis, the target firmware is now analyzed for

embedded files or filesystems. This is accomplished by searching the firmware binary

for byte signatures matching file or filesystem types of interest. Based on previous

work discussed in Section 2.4, such types commonly encountered in similar applications

include zlib, gzip, or Lempel-Ziv-Markov chain algorithm (LZMA) compressed files and

compressed ROM file system (cramfs), SquashFS, Journalling Flash File System version

2 (JFFS2), or Yet Another Flash File System (YAFFS) filesystems, which commonly

incorporate the former compression schemes. Previous works by Santamarta and Peck

utilize an automated tool to perform this type of analysis called Deezee [44, 52]. However,

Deezee only searches specifically for zlib-compressed sections, so this research employs

the BinWalk binary analysis tool capable of detecting all of the above [23]. From this point

44

forward, FRN 16.081 is the firmware image targeted by this e↵ort. This selection is made

based on its similarity to another version (FRN 16.057) as well as the fact that, at over 1MB

smaller than the newest firmware, there is significantly less data to analyze. The decision is

made based on the assumption that this size advantage comes with no significant variation

regarding implementation of the validation method or other firmware features critical to

operation.

As a command line tool, Binwalk requires a firmware binary file as an argument for

execution. Given the sample firmware image, Binwalk is instructed to search for the above

signatures. The result of this analysis reveals 6 gzip file candidates and approximately 170

zlib file candidates. Binwalk identifies the gzip file candidates as 3 icon files and 3 .eds

files (see Figure 4.4). The .eds extension signifies a configuration file used by Rockwell

devices to identify themselves to control software such as RSLinx or RSLogix. Binwalk

does not identify corresponding filenames for the zlib results; therefore, they are analyzed

using a custom script and an open-source zlib compression utility (see Appendix E.1 and

Reference [2], respectively). The script extracts all zlib containers identified by Binwalk

from the firmware image and attempts to decompress them, returning only those that

successfully decompress. This method determines that only 4 out of the approximately

170 original hits are valid zlib containers. A manual inspection of these remaining 4 yields

no significant information. None of the resulting files are greater than 8 bytes in length.

With no filesystems identified, these results indicate that, except for the identified gzip files,

the firmware image is raw binary code and data.

4.1.3 Firmware Disassembly.

4.1.3.1 Processor Determination and Disassembly.

Before loading the firmware image into IDA to automate disassembly, the target

processor type is determined. Using Skochinsky’s presentation [53], the firmware binary

as viewed in HxD is compared to di↵erent target processor code samples. This comparison

45

Figure 4.4: List of gzip file candidates identified by Binwalk.

of instruction signatures indicates that the firmware targets an ARM processor. As an

alternative to this method, a physical examination of the hardware also confirms that the

target processor is an ARM (see Appendix D).

IDA provides two di↵erent ARM targets: one based on little-endian byte ordering and

the other based on big-endian. The little-endian target processor is initially selected, as

indicated by the Skochinsky code samples. This results in the automatic disassembly of

several functions in the binary, indicating the correct determination of the target processor.

For comparison, the big-endian target is also attempted, but IDA fails to disassemble any

code, confirming that the target is little-endian. Figure 4.5 illustrates the initial status

of the binary image disassembly in IDA, where blue represents successfully identified

and disassembled functions, red represents unknown disassembly code, gray represents

identified data sections, and brown represents unexplored sections of the image.

Figure 4.5: Initial IDA disassembly status.

46

4.1.3.2 Rebuilding Functions.

IDA is not able to completely disassemble the firmware binary and a significant

portion of the binary image remains unexplored by the automated tool. Therefore, the IDA

script file provided by Santamarta [51] manually instructs IDA to explore the remaining

functions. In order to apply this script to the firmware, it is modified for use on the ARM

architecture by searching for the appropriate ARM function prologues (see Appendix F.1).

Identified functions from the code IDA natively disassembles are examined to determine

their prologue signature. All such functions automatically identified by IDA begin with a

store multiple with full descending stack address mode (STMFD) instruction that pushes

current register values to the stack. The exact registers pushed to the stack vary, but the

two most significant bytes of the instruction remain constant: 0xE9 0x2D. A review of

the ARM Procedure Call Standard specified in the ARM Software Development Toolkit

Reference Guide confirms that this instruction is a standard prologue for ARM functions

[4]. Furthermore, a review of the ARM instruction encoding standard confirms that for

this particular instruction, the most significant two bytes are always 0xE9 0x2D [6]. With

Santamarta’s IDA script modified to target this signature and corrected for endianness, the

script is applied to the loaded firmware binary. As a result, the IDA status visualization

bar confirms that a significantly greater majority of the binary is explored with functions

identified (see Figure 4.6).

Figure 4.6: IDA status after function identification.

4.1.3.3 Determining Base Address.

Determining the base address is the next step followed in the process. The “load

immediate” technique is used initially given that there exist immediate address references

47

in the disassembly. A search of all load register (LDR) instructions referencing immediate

values determines that the majority of such references consist of addresses in the range

of 0x10000 to 0x30000. The assumption that these addresses reference locations in the

firmware implies a base address of 0. However, the firmware is currently loaded at a base

of 0 and no immediate addresses reference the beginning of functions or strings. Therefore,

they do not reference sections of the firmware. Based on the volume of such references,

the address range is significant, but the significance is unknown.

After the complete search of immediate values present in LDR instructions, other

common address bases are identified including (in descending order of approximate

commonness): 0x08000000, 0x00C00000, 0x0B000000, 0x00E00000, and 0x60000000.

Recall that the starting location referenced in the .nvs file accompanying the firmware is

0x0B160000. Given that this location is titled as “starting location” and falls within the

range of several immediate values in the general 0x0B000000 base, it is incorporated

as the true base address. In IDA, the firmware is rebased at the new address. No

significant changes in the disassembled code are immediately visible. However, many

instructions in the given firmware use relative addresses independent of the base address,

so significant changes are not expected. For the same reason, even proceeding with an

incorrect base address does not technically hamper the reversing process. The majority

of instructions utilize relative addressing, so function interactions and operations remain

consistent regardless of the base address. However, knowledge of the true base address

is still critical in understanding the firmware as a whole. While many of the function

references remain correct, working with an incorrect base address may lead to inaccurate

interpretations of segments referenced by immediate addresses.

4.1.3.4 Inspecting Strings.

In order to gain as much information as possible from the firmware image, an

inspection of all ASCII strings contained in the image is performed. IDA provides a

48

subview to list all strings in the loaded binary. Alternatively, the UNIX strings command

provides equivalent functionality, only without the support of IDA disassembly. A manual

inspection of the list reveals several Extensible Markup Language (XML) strings. A review

of o�cial documentation from Rockwell Automation determines that these strings are

related to the use of CompactFlash memory cards as storage for project files [50].

Also discovered is a set of strings indicative of ARM compiler versions used to build

the firmware (see Figure 4.7). These strings indicate both that Rockwell uses standard

ARM development tools as well as the time period of original firmware development. For

comparison, a search of the newest firmware, FRN 20.013, for strings containing “ARM”

produces one result for “ARM ADS1.2 [Build 848].” This indicates that development tool

information is simplified in newer revisions, but remains present.

Figure 4.7: ARM compiler version string.

Another string in the firmware refers to a multiple-precision math library (see

Figure 4.8). A similar string in the associated .nvs file, refers to this library by the name

BigDigits (see Appendix B.1). Since o�cial documentation for BigDigits specifically

describes its use in cryptographic applications, the inclusion of this string indicates possible

cryptographic functionality present in the firmware [18]. This exact string remains present

in FRN 20.013.

Figure 4.8: BigDigits library copyright string.

49

Furthermore, a string containing an apparently random combination of hexadecimal

characters (i.e., 0-9 and a-f) is also present in the firmware. This string is 128 characters

(bytes) long, or 1024 bits, a common key length used for Rivest, Shamir, Adleman (RSA)

encryption schemes. In fact, 1024 bits is the suggested key length used for RSA in

corporate or medium-security environments during the time frame of the release of the

ControlLogix L61. However, the NIST no longer recommends the use of 1024-bit RSA

keys through 2013 and expressly prohibits its usage thereafter [8]. If this string does

represent an RSA key, it is possible the BigDigits library is included in the firmware to

implement the encryption scheme. Whether or not this is related to the firmware update

validation method is unknown at this point in the process. Of significance, this exact string

is still present in FRN 20.013.

Considering that one goal of string inspection is to identify symbol strings in concert

with discovering symbol tables, the existence of apparent source filename strings in the

firmware is significant. For example, one such string reads “..\\..\\Source\\acmain.c.” In

addition, strings representing apparent data structures are also present. These strings exist

in blocks organized with a structure name followed by attributes (see Figure 4.9). The exact

format of these data structures remains unknown.

Figure 4.9: OUTPUT COMPENSATION data structure strings.

4.1.3.5 Rebuilding Symbols.

To rebuild symbols in the firmware, there are two basic requirements: symbol names

and a way to associate those names with the functions they belong to. As determined

50

by the string inspection, there exist a number of source code filenames in the firmware. A

further inspection of these strings, however, reveals that they are not located in one common

section of the binary. Instead of being located in a symbol table, the source filenames are

distributed throughout the firmware image. While this discovery hampers the reversing

e↵orts, the fact that file names are available is significant.

During disassembly, IDA automatically creates cross references between string

addresses and the addresses of any instructions that reference them. Using these cross

references, instructions referring to several of the source filename strings are investigated

and compared. This reveals that all of the strings are used in the same manner: they are

passed in as parameters to a common function. An example is shown in Figure 4.10.

Figure 4.10: Example symbol string usage.

A brief exploration of this common function reveals a series of calls that apparently

never return. The observed behavior closely resembles the exception or assertion

functionality mentioned by Skochinsky [53]. For this reason, the function is manually

renamed “exception call” in IDA. While this information does not provide a direct

mapping of names to functions as a symbol table does, it is possible to infer the source

filename of any function making an exception call. However, when multiple functions

making exception calls are contained in the same source file, the filename arguments passed

to exception call are identical. Thus, there is not a one-to-one mapping of names to

functions, but a one-to-many mapping. As a consequence of the same issue, the names

available are less descriptive and specific than individual function names provided by a

symbol table.

51

Since the source filename strings are distributed throughout the firmware, the process

of naming their related functions is less straightforward, but still automatable with a script

(see Appendix F.2). Every function referencing each filename string is identified using

the IDA cross reference database. The script then renames the functions according to the

referenced filename. Duplicates are commonly encountered in this process and handled by

adding generic numerical su�xes to each function name.

4.1.4 Derivation of Firmware Update Validation Method.

4.1.4.1 Disassembly Analysis.

Reverse engineering the validation method from disassembled code begins by

considering the general functionality of validation algorithms in order to determine relevant

patterns and structures in the disassembled code. For instance, the validation algorithm is

known to inherently perform a computation over the contents of the firmware; therefore,

the code calculating the validation likely contains a loop performing an operation over a

range of memory addresses. Furthermore, the specific operations performed in that loop

are implied by the type of algorithm used for validation.

As Section 2.4.5 discusses, two common types of algorithms used for validation

methods are the modular summation and CRC algorithms. While numerous other

algorithms exist that a validation method may implement, the possible configurations are

countably infinite. Therefore in the interest of pragmatism, the two candidates above are

considered the primary candidates due to their popularity in related applications. A modular

summation algorithm adds each n bit word of the target data together to create a checksum

value. For such an algorithm, the main validation loop should contain an addition operation

executed over each word in the image. A CRC, however, should implement a more

complicated set of operations that includes the use of an XOR instruction. While the use

of an XOR instruction is not guaranteed depending on the exact coded implementation, it

52

remains a computationally inexpensive instruction and a common method of implementing

the CRC calculation [46].

Given these considerations, the list of firmware functions is searched for names

relevant to any checksum algorithm possibly used for validation. Once an apparently

relevant function is identified, the surrounding disassembly is examined for operational

flow indicative of such an algorithm. One example of a function discovered in this

manner is identified by the “cmCS.c” source filename. Since the “CS” abbreviation in

the file name may indicate “checksum,” the function is explored. However, an analysis

of the disassembly reveals no operational flows indicative of a checksum calculation, so

the function is deemed not significant. Several other strings are discovered following

this process including the binary file extension “.bin,” a set of functions referencing the

“Encryption.c” source filename, a large set of “up” functions including source filenames

“upexec.c” and “upprog.c,” and the “ReUpLockForUpdate.c” function set. Again, these

functions are examined based on possible relevance of their names, but while general

information regarding their operation is gained, no specific information regarding the

firmware update validation method method is discovered.

During this process, the first word in the firmware image is discovered to contain a

branch instruction. IDA is instructed to treat this location as the beginning of a function,

revealing initialization code at the branch target location. This initialization code is

followed and analyzed for over one thousand instructions, however, no code related to

the functionality of the validation method is discovered. Considering that a CRC, if

present, likely uses an exclusive or instruction (represented as “EOR” in ARM assembly),

another tactic attempted is a direct search of the disassembly for all EOR instructions.

At 263 occurrences, the number of results returned by this search is too numerous to

exhaustively analyze, but several of the results containing loop structures are explored.

However, no code relevant to the validation method is discovered. Since the validation

53

method remains to be located among the disassembled functions of the OS firmware, other

available approaches are explored.

4.1.4.2 Black Box Testing.

For black box testing, incremental alterations of firmware are tested on the device to

gain information regarding its operation. Since the true firmware update validation method

is present on the device, the success of a particular tactic can only reliably be determined

by modifying the firmware, uploading it to the device, and assessing the result. Anytime

modifications are made at such a low level, there exists a significant risk of bricking

the device. Although it may be possible to recover the device with hardware debugging

methods, such ability is not guaranteed. This hazard presents a challenge to reversing

e↵orts by restricting the modifications that can be safely attempted while minimizing the

risk of harm to the device. If multiple physical sample devices exist for such testing, the

threat posed is less severe, but prohibitively expensive; damage is ideally avoided.

To begin black box e↵orts, two pieces of information are required: the location of the

checksum value in the firmware and the range of data the validation method covers. It is

not guaranteed that the validation method strictly covers the range of the first byte of the

binary image to the last. As determined in Section 4.1.2.2, the candidate location of the

checksum value is the last 8 bytes of the image. To determine the range of bytes covered by

the validation method, various bytes of the firmware image are modified such that a series

of modified firmware uploads indicates whether the modified bytes are validated.

Boundary Checking. Ideally, the suspected validation boundaries are tested system-

atically by changing and testing each and every byte in the image. However, one caveat to

this strategy is the risk of bricking the device. Certain bytes that are ideally tested through-

out the image are critical to the proper operation of the firmware. Section 4.1.4.1 shows

that the first 4 bytes of the firmware image represent a branch instruction to the OS initial-

ization code. If the first byte of the firmware is modified and it passes validation, the OS

54

should theoretically fail to initialize properly. To avoid this behavior potentially bricking

the device, boundary checking modifications skip such critical bytes. Instead, the nearest

non-critical bytes are targeted under the assumption that any adjacent critical bytes are in-

cluded in the validation range. In this case, the first non-critical byte of the firmware is the

5th, or the first byte of the version number in the header. Starting at the 5th byte, modifica-

tions are made incrementally to each byte in the firmware. Initially, the first version byte is

incremented by 1 and the modified firmware is uploaded to the device with ControlFlash.

This results in a failed validation after the image is uploaded; therefore, the version number

byte is included in the validation.

Since the process of boundary checking requires the firmware to be updated at every

test point, it is not feasible to check every non-critical byte in the firmware. Not only

must the criticality of every byte be determined manually, but the firmware upload process

is slow. For each update, the binary is pushed to the device in a process that takes several

minutes. If the upload is successful, the device proceeds to restart itself. Even if the process

is automated using a custom flash program, the time required to write images to the device

alone takes a prohibitive amount of time to allow a thorough check of every non-critical

byte. For this reason, this process continues by checking only the likely boundaries. These

include the beginning and end of the header and the beginning and end of the main code

section, excluding the 8 byte checksum value. In addition, several arbitrarily chosen non-

critical bytes in the middle of the firmware are also selected and tested. The results for all

such checks are the same: all modifications are detected by the validation method resulting

in a failed update. This evidence strongly suggests that the validation method in use is

dependent on every byte of the firmware image.

Common Checksum Algorithms. Given this evidence, a number of common

checksum algorithms are applied to the firmware image. The binary file used in these tests

is the FRN 16.081 image with the last 8 bytes removed in order to exclude the checksum

55

value from the calculations. HxD features the ability to calculate many common hashes

over a file. The following available algorithms are applied to the test file: checksum-8

(checksum here refers to a modular summation), checksum-16, checksum-32, checksum-

64, CRC-32, CRC-64, SHA-1, SHA-256, SHA-384, SHA-512, message digest (MD)-2,

MD-4, and MD-5. The results of these calculations are compared to the actual checksum

value of the firmware. Comparisons are made based on any observable similarities between

the HxD calculated values and the true checksum value. Considering that most of the

algorithms applied produce results of di↵ering lengths from the 64-bit firmware checksum

value, any apparent similarities are potentially significant. In this case, however, no

similarities are observed.

Since the target processor for the firmware operates in little-endian mode, a second

attempt is made to repeat this procedure after converting the test file to big-endian byte

ordering. Afterwards, the same algorithms above are again applied to the new big-endian

version of the test image. However, this makes no apparent di↵erence in the comparison of

similarities with the original firmware checksum value. An investigation is next initiated

specifically on the two common candidate algorithms: the modular summation and the

CRC. In a modular summation implementation, the checksum value is directly dependent

on the value of each n-bit word before it, so a di↵erence of 1 in any given word translates

directly to a di↵erence of 1 in the calculated checksum value. This characteristic enables a

method of determining whether a modular summation algorithm is in use or not.

The target of the di↵erence-of-1 modification is the first non-critical byte in firmware

that occurs in the least significant position of a word. With a standard modular summation

algorithm, a di↵erence of 1 in such a byte results is a di↵erence of 1 in the corresponding

least significant byte of the checksum value. Since endianness and word size of the

checksum value are unknown, two target bytes are chosen to be modified: the first byte

and last byte of a 64-bit aligned word. The first byte addresses the little-endian 32 and

56

64-bit possibilities while the last byte addresses the big-endian 32 and 64-bit possibilities.

One at a time, these values are modified by an increment of 1. For each of these two cases,

4 di↵erent bytes in the checksum value are tested: the first and last bytes of each 32-bit

word. Again, this covers the possibilities that the true checksum value is either 32-bit

or 64-bit and big or little-endian. Additionally, in the case that the true checksum value

is only 32-bits, this checks both possible word positions for the 32-bit value. For each of

these possibilities, the checksum value byte is also incremented by 1. Figure 4.11 illustrates

the 8 total test cases present, 2 firmware modification cases for each of 4 checksum value

modification cases. Each of these test cases is uploaded to the device using ControlFlash.

All 8 firmware test cases fail validation; therefore, it is concluded that the checksum method

is not a simple modular summation.

Original test values:

Original checksum values:

Test Cases:

Figure 4.11: Modular summation test cases with changes highlighted.

57

Brute Forcing CRC. As Section 2.4.5 describes, a CRC is based on a number of

customizable parameters including bit width, polynomial value, initial checksum value,

final XOR value, and endianness. Gregory Cook provides a command line tool for

calculating and determining CRCs with arbitrary parameters [15]. This tool, called CRC

RevEng or RevEng, is applied to determine if a CRC algorithm configuration is used for

validation. RevEng includes a database of common CRC models. In total, there are 64

di↵erent default CRC configurations including nine 32-bit models and three 64-bit models.

The search functionality in RevEng checks all known models of the specified width against

multiple specified sample files. If a match is not found in one of the default models, a

brute force search is initiated through all possible model configurations. Sample input files

are required to be in the format of message data followed immediately by the checksum

value of the specified width. With minimum knowledge of the true model’s parameters, the

model width and and at least three input samples are specified such that at least two of the

samples are identical in length and at least two di↵er in length.

To test the ControlLogix L61 firmware for a CRC algorithm, seven unique test cases

are established. All cases are based on the same three firmware samples: FRN 16.081,

FRN 16.057, and FRN 16.022. These satisfy the minimum sample criteria since FRN

16.081 and FRN 16.057 are the same length while FRN 16.022 di↵ers in length. The

first case supposes a 64-bit width and little-endian byte ordering. The exact manner in

which RevEng or the device validation method handle little-endian byte ordering for 64-bit

width models is unknown, but hypothetically RevEng may operate based on 64-bit little

endian words while the device checksum operates on two 32-bit little endian words, or vice

versa. For the former case, the files are left unmodified since their format already follows

the data-plus-checksum format required. However, to ensure the data is treated properly

for the latter, new firmware sample files are created where each two–32-bit word pair in

the original samples are swapped. This ensures that at least one of the two variations is

58

processed by RevEng in the same manner as the device checksum. The next test case,

64-bit width big-endian, also uses the unmodified firmware files since big-endian does not

change the e↵ective word ordering.

The remaining test cases all assume a 32-bit width. Since the checksum value at the

end of the image is 64-bits, these cases assume only one of the two 32-bit words is a

CRC value; the other must represent something else. As such, there are two possibilities

for which 32-bit word represents the CRC value and for each of those, two possibilities for

endianness. The three sample firmware image files are appropriately modified by removing

the first 32-bit word of the checksum value for the first case and the second 32-bit word

for the second case. Endianness has no e↵ect on the sample files themselves for the 32-

bit width, only when executing RevEng must it be specified. These four combinations in

addition to the three above constitute the seven cases tested (see Figure 4.12).

reveng -w 64 -l -s -f PN-66834.bin PN-66830.bin PN-70325.bin

reveng -w 64 -l -s -f PN-66834_word_swapped.bin PN-66830_word_swapped.bin PN-70325_word_swapped.bin

reveng -w 64 -s -f PN-66834.bin PN-66830.bin PN-70325.bin

reveng -w 32 -l -s -f PN-66834_first.bin PN-66830_first.bin PN-70325_first.bin

reveng -w 32 -s -f PN-66834_first.bin PN-66830_first.bin PN-70325_first.bin

reveng -w 32 -l -s -f PN-66834_second.bin PN-66830_second.bin PN-70325_second.bin

reveng -w 32 -s -f PN-66834_second.bin PN-66830_second.bin PN-70325_second.bin

Figure 4.12: Terminal commands for RevEng search cases.

Since the default models are checked first, RevEng returns the matching model almost

immediately if a match is found. However, none of the test cases match any default

model, so RevEng continues to run through its brute force test. RevEng does not include

functionality to check the search progress, so after 24 hours of constant runtime, the

processes are terminated with no results. Since RevEng is open source, the source code is

modified to include progress indication by printing the current attempted polynomial value

upon entering the Control+Z key combination. RevEng tests polynomials incrementally,

59

so this value provides a direct indication of the program’s progress. RevEng is run again on

one of the test cases to obtain a rough approximation of the rate of search progression.

The search is run for 15 minutes on an Intel Core i7 processor running at 2.3 GHz.

The Control+Z key combination is pressed at 5, 10, and 15 minutes. Averaging the

returned polynomial values over the given time intervals results in a linear progression

of approximately 10,000 polynomials checked per minute. At this rate, a search for a 64-

bit polynomial with 264 combinations, would take approximately 3.5 billion years. A 32-bit

polynomial search with 232 combinations is shorter, but would still take approximately 10

months. These time requirements alone are impractical before taking into consideration

the additional calculations required to determine initial checksum and final XOR values.

Although RevEng is currently not parallelized, even a highly parallelized version running

on more advanced hardware would take a significant amount of time. Depending on time

and cost constraints, a 32-bit parallelized search may be possible, but a 64-bit search is not.

4.1.4.3 Hardware Debugging.

In this section, the alternative of hardware debugging is explored. The underlying

operation of the device hardware and firmware is first considered. General information

about how the device handles firmware is gained from the attempted firmware updates

through this process. Initially, the device is received from the manufacturer loaded with

only a base firmware (FRN 1.010). This base firmware provides basic functionality to

allow for the device to be updated with a true OS firmware, allowing proper operation [49].

When updating with ControlFlash, the device enters a special state while firmware is

pushed to it. Upon receipt of the entire firmware image, the device immediately validates

it. If the image passes validation, the device automatically resets itself and boots into the

new OS. However, if the image fails validation, the device enters an error, or faulted, state

where it requires a physical reset by cycling the power. When the device restarts, it reverts

back to the base firmware (FRN 1.010). This same behavior is observed whether updating

60

from the base firmware to an OS version or from one OS version to another. Even if an

OS is already installed, a bad update reverts the device to the base firmware. This implies

that flashing a new OS image overwrites the previous OS before validation is attempted.

Since the determination on whether to boot into the OS or the base firmware is made on a

hard reset, there must exist loader code on the device with the ability to determine which

image to execute. This may be accomplished either via checking a “valid” flag stored in

non-volatile memory or a direct validation of the OS image on each startup.

The existence of such a loader with the ability to validate firmware on its own

provides another possible target to reverse engineer the validation method. Furthermore,

it is possible that in order to update the firmware, the OS running in memory makes the

equivalent of a system call to the loader or base firmware to perform the actual validation.

Indeed, the loader or base firmware may completely handle the firmware update process.

The validation method used on the OS may not even be present in the OS firmware image.

Regardless, either the loader or base firmware contain the validation method, otherwise an

OS firmware update is not possible in the first place. Since the underlying binary of these

code segments is not openly available through updates like the OS, hardware debugging

techniques are used to access them directly on the device.

Locating JTAG Ports. Since JTAG is the common standard for hardware debugging

interfaces, the device is physically examined for possible JTAG TAPs. After physically

disassembling the device to access the circuit board, unknown and unused connectors are

targeted first for investigation. For the ControlLogix L61, there are no unused connectors

present on the board, so the search moves on to empty solder pads and test points. A

number of unused solder pads are present, but in order to identify them as JTAG TAPs,

their corresponding signals must be verified. Since the device is ARM-based, a search is

conducted for standard ARM JTAG pinouts. Two common ARM JTAG configurations

61

available are 20-pin and 14-pin layouts. One apparent empty connector pad on the

controller board also has 14 pins, so it is a prime candidate for a JTAG interface.

An initial visual inspection finds no signs that any of the solder pads of the candidate

connector trace to any non-IC components other than a resistor. A multimeter is now

used to test the pinout signals of the candidate. Ground and power signals are the most

straightforward to identify, so the pins are tested against ground and power while their

layout is compared to the 14-pin ARM JTAG reference pinout. All 8 combined power and

ground pins correspond between the reference pinout and the candidate connector pads,

providing initial evidence that the empty connector is for JTAG. The other candidate pins

should also be confirmed using Breeuwsma’s process [10], but in practice this is di�cult.

When the controller is fully assembled for operation as required by the remainder of

Breeuwsma’s method, the candidate TAPs are inaccessible to manual probing. To access

them, lead wires must be soldered directly to the candidate points.

Further manual analysis is performed first in an attempt to more easily confirm

the candidate pads as TAPs. Reliably tracing pins on a multi-layer circuit board is

challenging without expensive equipment or tedious point-testing and luck. However, a

visual inspection of the candidate pads determines that the pad coinciding with the system

reset pin (nSRST) of the 14-pin ARM JTAG reference pinout is connected to a pull-up

resistor. Since nSRST is active low, this is an appropriate configuration. Unless the nSRST

pin is grounded, the pull-up resistor pulls the nSRST signal high by default; thus, the system

is defaulted to not reset. This evidence further supports that the pinout is a 14-pin ARM

JTAG connector and implies that an attempted connection to the device through JTAG is

safe for the hardware. To connect physically, a connector is fabricated and soldered to the

candidate TAP connector pads. Through this physical link, an attempt is made to connect

to the device using the hardware debugger. The primary purpose of this is to verify that the

TAP signal pins are correctly identified.

62

Debugger Configuration. The ARM RealView ICE device together with the ARM

Development Studio 5 (DS-5) software are used to debug the controller. Using the soldered

connector, the ControlLogix L61 is connected to the ICE hardware. Initial configuration is

required with DS-5 regarding the specifics of the target processor. The ControlLogix L61

uses a custom ARM processor with exceeding rare documentation. However, the provided

RealView ICE configuration utility is able to automatically detect the target core of an

attached ARM processor. In this case, the automatic configuration identifies the core as an

ARM7TDMI. The successful detection of the processor core confirms that the connector

in use is a JTAG interface to the device and the TAPs have been correctly identified.

After initial configuration, the DS-5 target database is updated to include the new target

configuration. This is accomplished with a command line utility provided by DS-5. After

updating the database, DS-5 is configured to connect with the target device by creating a

new debugger instance and setting the target type as the controller’s newly added entry to

the configuration database.

With the debugger configured, the first attempts are made to connect to the target.

The connections succeed, but the device cannot be stopped for debugging. When a stop

command is given, the controller enters a faulted state and becomes unresponsive, requiring

a manual restart. An attempt to connect immediately after a manual reset determines that

execution on the controller can only be stopped before the OS finishes booting. This means

the debug connection must be made as soon as the device is powered on before the OS has

time to boot. The cause of this anomaly remains unconfirmed, but a possible explanation

is that halting the processor while the OS is running triggers a fail-safe response from a

watchdog timer. While the processor is halted, the watchdog timer is not properly fed, so

a fault is triggered when the timer expires in an attempt to prevent unsafe operation of the

system.

63

Memory Image Acquisition and Analysis. Once connected to the debugger and

halted, execution on the device is stopped in its pre-boot state. At this point, the debugger

is used to perform a memory dump on the device. Lacking any information of the proper

mapping of device memory, as much of the 32-bit address space is dumped as the debugger

can access. A manual analysis of the acquired memory dump in HxD reveals that much of

the dumped address space repeats itself. After accounting for duplicated memory, several

sections of binary code are identified by searching for common ARM instruction patterns.

The OS firmware is found among these code segments in two distinct locations: one starting

at the address 0x0B1A0000 and again at address 0x00D00000. Another large code segment

is found at address 0x0B020000. The beginning of this segment contains a header of the

same format as the OS firmware. Inspection of the version number field reveals that this

segment is FRN 1.010, the base firmware.

In addition to these firmware images, two other short and unfamiliar code segments are

found: one at address 0x0A000000 and another at address 0x80000000. The two unknown

code segments are extracted from the dump and the same reversing process described in

Sections 4.1.2 and 4.1.3 is applied to them. This produces disassembled code in IDA for

functional analysis. Analysis of the 0x0A000000 segment reveals multiple source filename

strings akin to the OS firmware. Among the strings are the names “ExecLoader.s” and

“hw setup.s.” Reverse engineering of the function referencing “ExecLoader.s” in IDA

confirms that, based on its functionality, this particular segment is the executive loader.

After performing hardware initialization, ExecLoader follows a process to validate and

load the firmware into memory before handing over execution.

In this process, illustrated in Figure 4.13, ExecLoader begins by determining what, if

any, firmware is present. To accomplish this, ExecLoader first verifies the existence of base

firmware. The base address of the base firmware is hard-coded as 0x0B020000. Using this

base address, ExecLoader compares the 3rd and 4th words of the presumed base firmware

64

Figure 4.13: Flow chart of ExecLoader.s.

65

header. If these two values are bitwise inverses of each other, ExecLoader accepts that

a base firmware is present. If no base firmware is detected, execution on the device is

terminated in an infinite loop. However, if the presence of base firmware is confirmed,

ExecLoader continues by determining if OS firmware is present. Given the OS firmware

base address, ExecLoader performs the same check above on the 3rd and 4th words of the

presumed OS firmware header. Again, if these two values are bitwise inverses, ExecLoader

accepts that an OS firmware is present.

ExecLoader now validates the firmware. If an OS firmware is present, the validation

is performed on it; otherwise, ExecLoader defaults to validating the base firmware. The

algorithm used for validation is a variation of a modular summation. In the event an OS

firmware is present but does not pass validation, ExecLoader proceeds to validate the base

firmware. If no firmware passes validation, execution is terminated in an infinite loop.

After successful validation of the appropriate firmware, ExecLoader loads the firmware

from flash memory to RAM. To determine the address in RAM where the firmware is

loaded, ExecLoader references the 5th word of the firmware header. The firmware is copied

to this address. Afterwards, execution jumps from ExecLoader to the base address of the

loaded firmware. At this point in the process, a candidate for the firmware update validation

method is known.

4.2 Firmware Update Validation Method Analysis

4.2.1 Verification of Correctness.

The validation method checksum algorithm derived by the reversing process is now

tested for correctness. The validation algorithm is recreated in C as a command line

program called ab cksum. This program is able to validate existing firmware images

and is applied to all available firmware versions. Each of the 15 firmware versions from

FRN 20.013 to FRN 13.071 is passed to the ab cksum program. The program applies the

derived validation algorithm to the firmware binary files. All 15 firmware versions tested

66

in this manner successfully pass the ab cksum validation, confirming correctness of the

algorithm.

4.2.2 Design Analysis.

Given the success of initial testing, the design of the derived validation algorithm

is analyzed for weaknesses that allow for counterfeit firmware to pass validation. The

design of the modular summation algorithm implemented by the firmware update validation

method is based on the notion that in order to be considered a valid image, the modular

summation of its contents must equal a given value. This design has several inherent

security weaknesses from the perspective of integrity and authenticity. By design, a

modular summation algorithm is meant only to validate data integrity, not authenticity.

Furthermore, the integrity of the data is only protected against accidental alteration, and

this is not completely guaranteed. Therefore, taking advantage of a modular summation

algorithm to violate data integrity and authenticity is trivial. In the specific implementation

of the ControlLogix L61, the key requirement to pass validation is to match the constant

value used by the algorithm for comparison. As long as the modular summation of the

firmware results in this constant value, the firmware is considered valid by the controller.

A solution taking advantage of this weakness is implemented in ab cksum. The goal

of the solution is to ensure that the modular summation algorithm, when applied to a given

firmware image, results in the correct constant validation value by modifying only the

checksum value field in the firmware. This is accomplished by applying the algorithm

to the firmware image, but excluding the checksum value field from the calculation. The

resulting value is then subtracted from the constant validation value, and the result is placed

in the checksum value field.

The validation design weakness is tested on the ControlLogix L61 controller using

FRN 16.081 as the baseline image. To minimize the risk of damaging the test device, the

first attempted modification does not alter the checksum value field. Instead, a modification

67

resulting in a collision of checksum values is manually generated in the firmware image.

The resulting checksum value is not changed, as validated by ab cksum. To test this

solution, the firmware is uploaded to the controller using ControlFlash. After the upload

is complete, the controller restarts itself, unlike previous invalid updates, but then fails to

boot. Even after a manual reset, the device is completely unresponsive.

4.2.3 Refinement.

With the test device in an inoperable state, JTAG hardware debugging is employed to

recover the device. After connecting to the device through JTAG as previously described,

the debugger reveals that code execution on the device terminates in an infinite loop.

However, the OS firmware is still loaded into memory from flash. The DS-5 debugging

software is used to verify that the firmware loaded into memory is indeed the modified test

version by locating the modified bytes in RAM. This demonstrates the executive loader is

successfully validating the OS image and loading it into memory, but that the OS apparently

fails to correctly initialize.

The location of the error is determined by iteratively setting hardware breakpoints

in the debugger, restarting the system, and observing if the breakpoints are hit or not.

Following this process, the location of the error is reduced to one particular unidentified

function in the OS firmware. Referring to the disassembled firmware in IDA, this function

is examined and determined to contain another checksum algorithm: a CRC. This evidence

establishes that the validation performed by the executive loader is interpreted correctly, but

that a secondary validation in the OS initialization continues to hinder modification.

Iteratively repeating the testing process described above, the ab cksum utility is

revised to include the ability to validate firmware based on the discovered CRC validation

algorithm. The correctness of the updated utility is verified by passing all available

firmware versions to ab cksum. After applying both the modular summation and CRC

68

algorithms to the firmware images, ab cksum reports that they all successfully pass

validation. This confirms the correctness of the revised utility.

A design analysis of the CRC algorithm determines that it su↵ers from the same

security weakness as the modular summation algorithm. Although a CRC is able to more

accurately detect accidental alterations of data than a modular summation, the CRC is not

designed to detect intentional modifications. As long as the CRC calculation implemented

in the ControlLogix L61 results in a constant value, the firmware is considered valid.

This solution is implemented in ab cksum such that, given a firmware image, the utility

performs the derived CRC validation and places the result in the CRC checksum field.

In the current case where the loaded firmware does not pass CRC validation, the

device enters a faulted state. The device is first recovered to a usable state before testing

continues. Since the modified OS firmware currently loaded on the device is able to pass

the ExecLoader validation but fails its own CRC validation, external intervention from

the hardware debugger is required for recovery. After resetting the device and connecting

through JTAG, the debugger is used to divert execution in the executive loader and directly

load the base firmware instead of the OS firmware. This is accomplished by modifying the

processor program counter when execution in ExecLoader reaches the point of detecting

OS firmware, e↵ectively acting as though no OS firmware is present. With the base

firmware temporarily running on the device, a known good OS image is uploaded to the

device in the standard manner, recovering the device to a fully operational state.

To test the refined ab cksum solution, a one-byte modification is made to the test

firmware in a non-critical location. The checksum values are recalculated using ab cksum

to replace the original values. The firmware is uploaded to the device using the standard

ControlFlash method. After the update is complete, the controller restarts and successfully

boots completely into its standard operating state. This is confirmed by the successful

69

communication of the device with RSLinx device configuration software. Thus, the

validation method of the device is successfully bypassed.

4.3 Demonstration

4.3.1 Firmware Modification.

The process for firmware modification begins by reversing the firmware binary to

obtain named functions in the disassembly in exactly the same manner as previously

described. Based on the goal of the modification, the disassembly is searched for any

potentially relevant strings or function names. The following case study demonstrates the

concept. The goal in this case is to counterfeit the firmware version number FRN 16.081

to appear as FRN 20.066.099, a value higher than any currently available version number

from Rockwell.

First, the firmware is searched for any locations that reference the version number.

IDA detects no code references to the version number bytes in the header, but there

must exist a reference to version number in the code since the device reports a version

number to ControlFlash. Since FRN 16.081 only di↵ers from FRN 16.057 by 14 bytes,

the binary files of these two versions are compared. An inspection of the disassembly

surrounding di↵erences in the versions determines that one such di↵erence exists in a

function returning a hard-coded version number. Figure 4.14 highlights 4 ARM instructions

that use immediate values to calculate and store this version number. The immediate

values of these instructions are appropriately modified in HxD to represent the target

version number 20.066.099. The version number bytes in the firmware header are also

appropriately modified (see Figure 4.15), where 0x14 = 20, 0x42 = 66, and 0x63 = 99.

Using the ab cksum validation utility, the correct checksum values are calculated and

updated in the new firmware binary file. The utility then revalidates the binary to confirm

that the checksum values are correctly updated.

70

Figure 4.14: Modification of FRN 16.081 version number in function to 20.066.099.

Figure 4.15: Modification of FRN 16.081 version number in header to 20.066.099.

4.3.2 Device Exploitation.

In order to use ControlFlash to upload the counterfeit firmware, adjustments are made

to the .nvs configuration file. The firmware version number is specified several times in the

configuration file, so these values are modified to reflect the counterfeited version number.

The modified firmware now appears in the ControlFlash firmware catalog list as version

20.66.99. Rockwell is inconsistent with whether subrevision numbers include a leading 0

or not, so 20.66.99 is equivalent to 20.066.099. This demonstration continues to use the

same test environment present throughout this research, which includes the ControlLogix

L61 controller. The device is first updated with the legitimate FRN 20.013 firmware from

Rockwell in order to test the e↵ectiveness of a counterfeit update on the newest major

revision. ControlFlash is then used to update the device with the counterfeit FRN 20.066.

The update successfully completes, the device restarts, and the new 20.66.99 revision

number is reported to ControlFlash indicating a successful update as shown in Figure 4.16.

While ControlFlash is used in this case, a custom utility could also be developed to

perform the same operation. When attempting more complex firmware modifications,

71

Figure 4.16: Successful firmware update to FRN 16.081 with spoofed 20.66.99 version

number.

ControlFlash poses certain complications. In oder to process the catalog of available

updates, ControlFlash references a restriction file (.RES extension) in addition to the

configuration script and firmware image. This .RES file is used to determine if its

associated firmware has any usage restrictions. In addition, the .RES file contains yet

another type of checksum value for the firmware image. This particular algorithm is

exceptionally prone to collisions, so minor modifications are not detected, but extensive

modifications including changes in image length require the value to be recalculated. Since

.RES file processing is handled exclusively by ControlFlash, a custom update utility avoids

this validation. Given the minor modifications demonstrated in the case above, however,

the .RES file value does not require recalculation.

4.4 Discussion

In order to develop an understanding of the requirements for successful firmware

modification, this section discusses the prerequisites, advantages, and limitations of the

various techniques utilized throughout the reversing process. The discussion includes

issues related to time, cost, and complexity requirements of the various techniques as

well as their applicability and any problems encountered while applying the process to

the ControlLogix L61.

72

For the ControlLogxix L61, firmware update packages are readily available from

the vendor through Rockwell Automation’s website. Furthermore, it is straightforward

to access the firmware image inside these update packages. The combination of these

circumstances provide a significant advantage in obtaining a wide range of firmware

samples with little time, cost, or e↵ort. However, the prerequisite to the advantages of

technique is a target device with upgradable firmware where the manufacturer makes such

updates openly available. Without such availability, the acquisition process is complicated

significantly.

The general format of a given firmware image is technically observable by viewing

the image in a binary file editor. However, manual detection of these structural features

is dependent on the particular firmware being analyzed and the personal experience of

the investigator. For example, an encrypted or obfuscated firmware image would impose

significant time limitations on the investigation. Although, if successful this technique may

provide the advantageous identification of potential image header and general structure

information.

Binary comparison of firmware is accurately capable of identifying dynamic and static

fields in the image. The advantage of binary comparison is the critical identification of

a candidate checksum value field as well as addition information regarding the image

header. This comes at no significant time, cost, or complexity requirements. However,

the technique is limited by the availability of multiple firmware sample images, where

its e↵ectiveness and accuracy is directly proportional to the number of samples available.

During investigation of the ControlLogix L61 firmware, initial comparison of the ends of

firmware images corrected for length by aligning the last bytes of the two compared images.

However, additional analysis conducted after the reversing process and demonstration

reveals that this approach is not the necessarily the most e↵ective due to potential variations

in the image trailer length. Data initially identified as unrelated at the ends of FRN20.013

73

and FRN 13.071 is actually nearly identical when o↵set by 8 bytes. This di↵erence is a

result of the fact that FRN 13.071 lacks a CRC checksum value. Additional comparison

with FRN 15.060 reveals that the CRC checksum validation is present, so this functionality

is apparently added after FRN 13.071. Note that no FRN 14 samples are available from

Rockwell.

The signature-based analysis for embedded files and filesystems is limited by the

availability of a raw image that is not encrypted, compressed, or obfuscated. Additionally,

the Binwalk tool used in this case results in a number of false positives that require

additional time to examine. Still, it is a relatively straightforward process to eliminate

them as candidates, which is also aided by automation. Observations from this technique

indicate the accuracy of Binwalk varies depending on the target signature type. While the

gzip results are highly accurate, the zlib results are as equally inaccurate. The information

gained from this step indicates that the firmware contains mostly raw binary code and data,

which is significant. Had more significant files been embedded in the firmware, such as

a compressed symbol table as described by Peck and Peterson [44], the advantage of this

technique would significantly increase.

The significant advantage of processor identification is that it enables automated

disassembly using a tool such as IDA. In this case, the technique of instruction signature

comparison correctly identifies the processor architecture with no significant time or

complexity requirements. However, one limitation is the direct cost incurred by using

the IDA tool since it is a licensed software product. The alternative method of physical

analysis may also be limited by cost requirements since a physical device must be available

and physically disassembled.

The technique of searching for prologue signature provides the critical advantage

of identifying the locations of functions that follow the conventional prologue. These

functions are then available for further analysis. However, not all functions are guaranteed

74

to do so. In the former case, as with the majority of functions in the test environment,

function identification is accomplished with no significant time, cost, or complexity

requirements beyond the cost of IDA. Considering the majority of functions follow the

standard prologue convention, this technique is highly e↵ective in providing a more

complete representation of the firmware.

The “load immediate” technique is technically capable of determining the correct base

address, but primarily amounts to an educated version of a brute force attack. It does not

incur any direct cost, but requires a significant amount of time to accomplish. The process

of identifying and testing immediate address values is straightforward, but the complexity

of implementation is introduced by the need to repeatedly test various possible solutions.

The success of this step requires disassembled firmware and the existence of multiple

immediate address references inside the scope of the firmware image. The advantage

of success is a proper base address that facilitates reverse engineering of functions by

providing accurate address references. While incremental progress is made using the

“load immediate” technique with the ControlLogix L61, the “starting location” value in

the firmware’s associated .nvs configuration file apparently indicates a base address value.

The use of the starting location value 0x0B160000 as the base address corroborates other

references to memory in the 0x0B000000 range, but the true base address in RAM is

later confirmed as 0x00D00000 (see Section 4.1.4.3). An analysis of all relevant address

references in the firmware must be performed regardless of any implied base address.

The technique of string examination may potentially determine a significant amount

of information regarding details of the firmware implementation. Also of significance

with the ControlLogix L61 is the lack of any copyright strings explicitly identifying the

OS used by the firmware. This eliminates several OS implementations as candidates,

including VxWorks, since they are known to contain copyright strings. As the number

of strings present in the image increase, however, so does the required amount of time

75

to examine them. Execution of this technique is not significantly di�cult, where the

majority of the required e↵ort is spent on researching the significance of discovered strings.

The sample firmware image used for this technique need not necessarily be disassembled

for the inspection, but must inherently contain strings of informational value. Despite

these limitations, the resulting information enables a more detailed understanding of the

firmware, including the identification of function names, although some of the information

is not necessarily relevant to deriving the validation method.

The ability to rebuild symbol names in the firmware is heavily dependent on the

availability of function or source file names in the firmware from the string inspection.

For the ControlLogix L61 firmware, the latter is available, providing successfully renamed

functions. However, a lack of such information severely limits the success of the overall

process. Further limitations of this technique include the ability to determine how the

available name strings relate to functions in the disassembly as well as writing a script

to automate the rebuilding. Despite these limitations, the successful application of this

technique provides the significant advantage of named functions. The availability of

function names enables the investigator to focus reverse engineering e↵orts on specifically

targeted functions.

From a technical perspective, the technique of disassembly analysis is capable of

successfully determining the location and operation of any validation method present in

the firmware. In practice, however, time constraints limit the amount of progress that

can possibly be made. Additionally, while there are no direct cost requirements, the

process of determining candidate functions and reversing their functionality is significantly

complex and dependent on knowledge and experience. The ability of this technique to find

relevant functions in the disassembly is reliant on the e↵ectiveness of the function naming

process. An analysis of all symbol or source filename strings is critical to understanding

the disassembled code. Furthermore, a complete list of names does not guarantee that

76

the investigator can identify relevant names. Multiple searches of the function name list are

suggested to minimize this possibility. For example, initial review of the ControlLogix L61

source filenames failed to identify the name of a function related to the firmware update

validation method. One apparently obscure name is later determined to represent a function

that writes firmware updates to flash memory and performs the modular summation

checksum validation in the OS. This discovery confirms that disassembly analysis of the

OS firmware alone would derive the validation method given enough time and experience.

If successful, the derived validation method enables analysis and testing on the security

of its design. In this particular investigation, time and complexity constraints prevent

this technique from determining the validation method. However, it remains e↵ective as

a general technique to reverse specifically targeted areas of firmware code as demonstrated

in Section 4.1.4.3.

The presented technique of boundary checking is technically capable of determining

the range of data included in the validation method. Time and complexity requirements

incurred by critical bytes limit the ability to comprehensively check every firmware byte. In

addition, unknown variables, such as the fact that the ControlLogix L61 algorithms operate

over memory beyond the image, complicate matters. This case specifically makes boundary

checking, already complicated by concerns of damaging the device, ine↵ective without

such knowledge. The technique to check for common classes of firmware update validation

method algorithms can potentially determine if any of the specifically tested algorithms

are in use, but is complicated by variations on the basic cases tested. The detection of

modular summation class algorithms should have tested inverse relationships using the

di↵erence of 1 technique. For example, the inclusion of cases to check for changes by

-1 would correctly detect that a summation algorithm is in use for the ControlLogix L61

validation; however, this would still result in bricking the device given the additional

CRC validation. Regardless, determining whether the true firmware update validation

77

method is a class of the tested cases or not provides advantageous insight either way.

Without the limitations of cost and time, a brute force technique is technically capable of

determining the validation method given a known class. However, with no guarantee that

the firmware update validation method implements a CRC, the additional complexity of

having an unknown class of firmware update validation method creates a countably infinite

number of possibilities, making a brute force attack futile. Furthermore, the brute force

test demonstrates that the time requirement alone precludes this approach from being truly

e↵ective. Overall, the black box approach is e↵ective at boundary checking and testing

common validation methods, but beyond these common configurations, black box testing

can not e↵ectively derive the true validation method.

The significant advantage provided by hardware debugging tools reinforces the

requirement of obtaining a test device. In addition to hardware debugging, a physical

reference device is required for testing modifications and allows for physical examination

of the device circuit board. Immediate cost requirements include the expenses of the

physical device under examination as well as any tools needed to aid in identification

of the ports. Time and complexity requirements for the ControlLogix L61 are minimal,

but devices may implement JTAG di↵erently, if at all, introducing a wide variance.

Locating JTAG test ports is only possible if the device hardware is designed with such

support. With the ControlLogix L61, JTAG TAPs are successfully identified, enabling

further hardware debugging. For configuration and memory acquisition, cost requirements

include the hardware and software required for debugging with JTAG, which is significant.

Time and complexity requirements for acquiring and analyzing memory images are also

significant. Although the memory acquisition is straightforward, the analysis and reverse

engineering of the acquired image is more time consuming and complex. Once connected

to the device, the image acquisition and analysis technique takes advantage of hardware

debugging capabilities and applies previously discussed reversing techniques on the newly

78

acquired memory. An additional concern of hardware debugging determined with the

ControlLogix L61 is the existence of watchdog timers that may be e↵ected by halting

the OS. Watchdog timers may e↵ectively limit the abilities of a debugger. Overall, the use

of hardware debugging tools facilitates the derivation of both checksum algorithms for the

ControlLogix L61 and also provides access to otherwise inaccessible information such as

the initialization and executive loading processes. While the use of hardware debugging

is not strictly required to derive the ControlLogix L61 firmware update validation method,

it remains an e↵ective technique for doing so. In addition, the availability of hardware

debugging tools is critical in recovering a bricked test device.

4.5 Summary

This section demonstrates the feasibility of a counterfeit firmware attack on a common

PLC. This is accomplished by following a general process based on various reverse

engineering techniques to derive the firmware update validation method. After confirming

the correctness of the derived method, its design is analyzed for design weaknesses

enabling the intentional modification and counterfeiting of the firmware. The applied

reversing process is e↵ective in deriving the validation method in this case. While the

technique of disassembly analysis is limited by the complexity of the firmware binary,

and the e↵ectiveness of black box analysis is limited to detecting common validation

methods, hardware debugging provides a significant advantage in the reversing process.

The successful demonstration provides a realistic example of a counterfeit firmware update

by exploiting a weakness in the design of the firmware update validation method.

79

V. Conclusions and Future Work

5.1 Conclusions

Industrial control systems are responsible for the management and automation of

an ever increasing number of processes in national critical infrastructure. Embedded

computing devices called PLCs o↵er immediate access to physical process elements in

these applications and are critical in ensuring their proper operation. In the escalation

of attacks on these devices, tools and techniques exhibit growing sophistication with an

emphasis on subverting the system at incrementally lower levels. Hardware components

of the devices representing the lowest level remain uniquely inaccessible to attackers

without physical compromise at either the production or operational stages. Meanwhile,

e↵orts focused on user programming at the highest level fail to adequately avert isolated

detection, relying primarily on assistance from an insider threat or additional supervisory

malware. The intermediate firmware level provides a compromise between accessibility,

functionality, and autonomy while simultaneously exploiting the current deficiencies in

detection methods.

This thesis determines the feasibility of firmware modification attacks on PLCs

through the investigation and assessment of a common PLC to counterfeit firmware

updates. A review of related works in the field of embedded devices reverse engineering

provides various techniques that are integrated into a general reversing process to derive

the firmware update validation method of PLCs. This process consists of four steps:

(i) firmware acquisition, (ii) binary analysis of firmware, (iii) firmware disassembly, and

(iv) derivation of the firmware update validation method. Step (iv) is presented as three

approaches: (a) disassembly analysis, (b) black box analysis, and (c) hardware debugging

analysis.

80

The reversing process is applied to a test environment, consisting of an Allen-

Bradley ControlLogix L61. In this environment, the process is able to successfully

derive the firmware update validation method. Firmware acquisition, binary analysis, and

disassembly reveal general firmware information and prepare the firmware for step (iv).

Disassembly analysis is a technique capable of deriving the firmware update validation

method, but limited in e↵ectiveness by the availability of descriptive disassembly, time

available, and experience of the attacker. Black box analysis is potentially e↵ective in

reducing the search space of candidate algorithm classes, but a full brute force attack is

not feasible. This technique is limited by time and the complexity of the firmware update

validation method in use. Hardware debugging analysis provides the advantages of direct

access to the device and augmenting disassembly analysis for successful derivation of the

firmware update validation method of the test device. This approach is limited by the

availability of hardware debugging support on the device and costs incurred by the special

equipment required.

After deriving the firmware update validation method, the candidate algorithm is tested

for correctness against available sample firmware images. The algorithm is then analyzed

for design weaknesses that allow for intentionally modified firmware to pass validation.

Such a weakness identified in the ControlLogix firmware is exploited and demonstrated

with an example of counterfeit firmware. After spoofing the version number, an old

firmware version is uploaded to the test system and successfully validated, reporting a

new version number. This research confirms that firmware update validation methods in

common use su↵er from design weaknesses that facilitate firmware modification attack.

Thus, this thesis verifies the feasibility of attacks targeting PLCs through the use of

counterfeit firmware updates.

81

5.2 Significance

Unlike programming flaws such as a bu↵er overflow vulnerability that might allow

for arbitrary code injection, the firmware update process is not manipulated or abused to

achieve the same result. While a bu↵er overflow attack exploits a patchable vulnerability,

firmware validation is a design level feature. The underlying software on the device

intentionally inaccessible by the user, the executive loader, uses a modular summation

algorithm to validate the firmware image. This design is intended to prevent the execution

of corrupt firmware in the event of accidental modification. However, given the ability

to upload firmware to the device, there exists no protection against intentional firmware

modification.

This research demonstrates an example of a minor modification with a significant

impact if used with malicious intent. By spoofing the version number, an older firmware

version can be counterfeited to appear as a new version. Given known vulnerabilities in

previous firmware versions, an attacker may exploit an old vulnerability in the firmware.

As far as the operator and the control software for the device are aware, the version number

reported by the PLC indicates that the new and secure firmware is correctly installed.

This research successfully verifies the feasibility of counterfeit firmware attacks on a

common PLC. Considerations of the reversing process also provide necessary insight into

the requirements and limitations of successfully counterfeiting firmware. This knowledge

enables the development of defensive and forensic analysis techniques for firmware

modification attacks. As a direct result of this research, realistic counterfeit firmware can be

developed to assist researchers in detection and analysis techniques. Overall, this research

demonstrates that, although the process and requirements to counterfeit firmware are not

trivial and there exist limitations dependent on the device and the examiner, the threat posed

to ICS security is credible and requires further attention.

82

5.3 Future Work

5.3.1 Direct Extensions.

As an extension to this work, the reversing process described may be considered

as a basis for the vulnerability analysis of other PLC validation methods. Although

the ControlLogix L61 used in the test environment is common, there remain numerous

alternative controllers present in ICS applications. In order to develop an accurate

awareness of general ICS vulnerabilities to this specific threat, further assessments should

be applied to as many common PLCs as possible. It may also be possible to automate

portions of the process to aid in this assessment. Indeed, the process described here

may aide in the development of an automated assessment tool. In addition, the scope

of the assessment should also be expanded to include external factors not considered

in this work, such as the vulnerability of PLCs to remote counterfeit firmware updates.

Such a vulnerability, if feasibly exploitable, presents an expanded attack surface for

firmware attacks. Beyond the process itself, additional applications include the creation

of counterfeit firmware samples. Through the process and information provided by this

research, various samples of counterfeit firmware may be created to facilitate analysis and

testing of realistic samples for the purposes of detection and forensic capabilities.

5.3.2 Preventative Measures.

E↵ective mitigation strategies for the threat of firmware attacks are reliant upon device

manufacturers to follow secure design practices. The most apparent requirement for a

secure firmware update method is a secure validation algorithm. A validation method able

to detect intentional changes is a significant step towards more secure controllers. One such

process is conceptualized in the form of digital signatures. By digitally signing legitimate

firmware images, the vendor provides a means to validate that the firmware is authentic and

unaltered. Digital signatures use asymmetric cryptography to create a digest, or signature,

of the message (i.e., the firmware) using a private key held securely by the manufacturer

83

[34]. In this scheme, a controller presented with a firmware update uses the corresponding

public key to validate that the signature is generated by the manufacturer’s private key.

In order for any type of secure validation method to be e↵ective, another requirement

is that the manufacturer implement the method external to the OS firmware. The current

implementation of the CRC algorithm in the ControlLogix emphasizes this point. Since

the CRC algorithm is solely contained in the OS firmware, it is ine↵ective from a security

perspective. Passing the modular summation validation present in the executive loader is

su�cient to load and execute the firmware. Direct alteration of the firmware binary enables

the removal of any validation functionality present in the OS.

In addition to implementing a secure validation method, alternative options should be

considered for controlling access to the firmware. This may be implemented, for example,

by requiring a valid serial number to access firmware update packages on vendor websites.

This limits firmware access to those who possess a controller or have access to a valid serial

number. Another approach is to obfuscate or encrypt firmware images. Although obscurity

alone is not a sound solution to design security and such tactics create overhead in the

executive loader, they may still inhibit attackers’ ability to reverse engineer the firmware or

implement meaningful modifications.

While the strategies proposed thus far have the potential to defend against firmware

counterfeiting from a software perspective, hardware debugging tools provide low level

access to the device enabling the manipulation of this software. Using a standard interface

like JTAG, an attacker may obtain access to the executive loader and observe the details of

any validation or obfuscation algorithms. Permanently disabling or locking out hardware

debugging support for the controller after production should be considered.

Due to complexities arising from a redesign of the validation method, in addition to

possible resistance by industry customers, adoption rates of direct design solutions may be

low. For this reason, alternative solutions should also be explored in an e↵ort to provide

84

mitigation with comprehensive protection. Possible solutions include external validation

tools capable of detecting counterfeit firmware. Such solutions may be implemented

as either standalone or network level protection in a control system. As part of a

comprehensive security plan, such detection and defense mechanisms may be integrated

into an existing intrusion detection system (IDS) or intrusion prevention system (IPS). By

monitoring network activity, such defensive measures may detect and possibly prevent

unauthorized firmware updates to devices. Further research in these areas may provide

solutions with adequate protection that are deployable in current environments.

5.3.3 Detection and Forensic Analysis.

The research and development of preemptive detection, firmware acquisition, and

forensic analysis techniques for cases of counterfeit firmware is crucial to provide adequate

protection for exposed critical infrastructure control systems. Detection methods are

required to identify modified firmware in operational systems where cost and production

considerations take priority over secure configurations, possibly leaving devices vulnerable

to attack. Firmware acquisition techniques allow for both detection and analysis based on

a complete or partial firmware image obtained directly from the device. Forensic analysis

techniques applied to the acquired image facilitate assessment of its operational status and

possible indicators of attack.

5.3.3.1 Indirect Methods.

Indirect methods like black-box testing and side-channel analysis may be used to infer

the internal characteristics of a PLC for the purposes of detection and forensic analysis.

Black-box testing involves systematic manipulation of device inputs while measuring

outputs to infer information regarding the logic operating on the device. This may

potentially enable the detection of malicious logic on the device with little to no knowledge

of the underlying software. Black-box techniques can also be applied to a known clean

device in order to create a fingerprint for future comparisons. Common metrics applied to

85

black-box testing include the system’s conformance to specifications, error recovery ability,

defined security responses, performance, and configurability [31].

The goal of side-channel analysis is to infer information about the system based

on measurements of external factors referred to as the side channels. By measuring a

side channel, it may be possible to infer operational conditions inside the system. Some

possible side channels worth considering include power [30], timing [29], temperature,

and electromagnetic emanations [3]. Black-box and side-channel analysis may potentially

facilitate detection of firmware deviations while minimizing direct impacts to the device.

5.3.3.2 Direct Methods.

Direct detection and analysis techniques fall into two categories: software-based and

hardware-based. Software backdoors in a system may provide an attacker control over the

system by taking advantage of access mechanisms intended to provide low-level access to

system developers. Such features left over from development or improperly secured may

allow read access to firmware memory. Recent research presenting hard coded passwords

left in the device firmware by developers are an example [9, 51, 60]. In addition to built

in functionality, the exploitation of a vulnerability on the device may also allow access

to the firmware in memory. As demonstrated on the iPhone [22], an exploit that gains

execution control of the device may allow the injection of instructions to output the contents

of memory containing firmware. Software-based methods are potentially advantageous

since a firmware image may be obtained remotely without physical access to the device.

It may even be possible to obtain the image from a live system to minimize or avoid any

operational interruptions. Potential disadvantages of these methods include their inherent

interaction with the device, which may adversely a↵ect forensic fidelity or completeness.

Hardware-based methods rely largely on the techniques presented in this research. A

hardware debugging interface to the target device through a standard such as JTAG allows

for direct memory reads to dump the firmware. Since JTAG is an optional standard, not

86

every device necessarily supports it. In the worst case, there may be no hardware debugging

standard implemented at all. However, the processes described here may be used to obtain

a firmware image if hardware debugging is supported. Barring the success of an image

capture using JTAG, an alternative is to perform independent chip analysis. This method

involves physically removing the flash chip containing the firmware from the circuit board

in order to read it directly [11]. These hardware-based methods o↵er the potential benefit

of providing a complete image of the memory while maintaining a high level of forensic

integrity. One potential drawback, however, is their dependency on physical access to the

system. In the case of independent chip analysis, the system must be dismantled, possibly

resulting in permanent destruction.

5.4 Summary

This research demonstrates that counterfeit firmware attacks on a common PLC

are feasible. This vulnerability is a result of insecure design of the firmware update

validation method. The described process provides insight into the advantages and

limitations of particular attack techniques, and the counterfeit firmware provides a realistic

example for use in future research. Other common PLCs should also be assessed for

similar vulnerabilities to firmware modification. Preventative measures such as securely

designed validation methods or external validation mechanisms must be considered and

implemented. Finally, future work must also include the development of detection and

forensic analysis capabilities, possibly based on black box and side channel analysis or the

direct analysis of firmware on the device.

87

Appendix A: ControlLogix Firmware Operation Flowcharts

Figure A.1: Overview of ControlLogix L61 operation.

88

Figure A.2: Flow chart of ExecLoader.s.

89

Appendix B: Contents of Firmware Update Package

B.1 PN-86270.nvs
[Device]

NewRevision = 19.11.16

DialogNewRevision = 19.11.16

NumberUpdates = 1

ConnectionType = UNCONNECTED

NumberIdentities = 87

Vendor Product Product Major Minor Catalog HW Major HW Minor

Id Type Code Revision Revision Revisions Revision Revision

Identity1 = 1, 0x0e, 0x36, 1, 0, 1756-L61, 1, 0

Identity2 = 1, 0x0e, 0x37, 1, 0, 1756-L62, 1, 0

Identity3 = 1, 0x0e, 0x38, 1, 0, 1756-L63, 1, 0

Identity4 = 1, 0x0e, 0x38, 10, 0, 1756-L63, 1, 0

Identity5 = 1, 0x0e, 0x38, 11, 0, 1756-L63, 1, 0

Identity6 = 1, 0x0e, 0x36, 12, 0, 1756-L61, 1, 0

...[lines removed for brevity]...

Identity79 = 1, 0x0e, 0x36, 19, 0, 1756-L61, 1, 0

Identity80 = 1, 0x0e, 0x37, 19, 0, 1756-L62, 1, 0

Identity81 = 1, 0x0e, 0x38, 19, 0, 1756-L63, 1, 0

Identity82 = 1, 0x0e, 0x36, 19, 0, 1756-L61, 2, 0

Identity83 = 1, 0x0e, 0x37, 19, 0, 1756-L62, 2, 0

Identity84 = 1, 0x0e, 0x38, 19, 0, 1756-L63, 2, 0

Identity85 = 1, 0x0e, 0x36, 19, 0, 1756-L61, 3, 0

Identity86 = 1, 0x0e, 0x37, 19, 0, 1756-L62, 3, 0

Identity87 = 1, 0x0e, 0x38, 19, 0, 1756-L63, 3, 0

[Update1]

NVSInstance = 3

MajorRevision = 19

MinorRevision = 11

MaxTimeoutSeconds = 60

StartingLocation = 0xb160000

FileSize = 2546132

DataFileName = PN-86272.bin

UpdateReset = 1

AutoResetOnError = 0

FirstTransferDelay = 0

ErrorInstructions = Manually Reset module

[About Info]

/******************** COPYRIGHT AND LICENCE NOTICE ********************

"Contains BIGDIGITS multiple-precision arithmetic code originally

written by David Ireland, copyright (c) 2001-5 by D.I. Management

Services Pty Limited <www.di-mgt.com.au>, and is used with

permission."

*************** END OF COPYRIGHT AND LICENCE NOTICE ******************/

90

B.2 CONTENTS.TXT

ControlFlash Firmware Upgrade Kit Contents

Created: 09/27/10 08:24:01

Catalog Number Revision Script Filename

1756-L61 19.11.16 C:\FIRMWARE\1756-L6X\V19\19.11\PN-86270.nvs

1756-L62 19.11.16 C:\FIRMWARE\1756-L6X\V19\19.11\PN-86270.nvs

1756-L63 19.11.16 C:\FIRMWARE\1756-L6X\V19\19.11\PN-86270.nvs

B.3 PN-86270.RES

Figure B.1: Contents of PN-86270.RES in HxD.

B.4 PN-86272.bin

Figure B.2: Beginning of FRN19.011 binary in HxD.

91

Appendix C: VBinDi↵ Examples

Figure C.1: VBinDi↵ of FRN16.081 and FRN16.057 beginning.

Figure C.2: VBinDi↵ of FRN16.081 and FRN16.057 end.

92

Figure C.3: VBinDi↵ of FRN20.013 and FRN13.071 beginning.

Figure C.4: Length-corrected VBinDi↵ of FRN20.013 and FRN13.071 end.

93

Appendix D: Physical Component Analysis

Figure D.1: Circuit board of the 1756-L61/B.

94

D.1 Components of Interest

A. Central Processing Unit

Manufacturer: Philips

Part Number: VY22575

Description: This is the main processor of the ControlLogix L61. No o�cial

documentation is available for this chip. It is presumably a custom design based on the

ARM7TDMI, as determined by ARM’s RealView Debugger configuration tool. Further

research suggests the chip may be similar to the ARM740T, a specific configuration of

the ARM7TDMI. This is due to the fact that the ARM740T includes a memory protection

unit (MPU) and initialization code for the ControlLogix L61 references MPU initialization

functions. A comparison of this MPU initialization code with o�cial documentation for

the ARM740T reveals similar, but not identical, operation of the MPU [5]. Little else is

known about this chip.

B. Backplane Communications Processor

Manufacturer: Atmel

Part Number: AT56J05-UQ3T

Description: This is the processor used to handle backplane communication on the

device. No o�cial documentation is available for this chip. It is presumably another

custom chip. The same chip is present on most ControlLogix modules near the backplane

connector. Little is known about its design or functionality.

C. Non-volatile Storage (Flash Memory)

Manufacturer: Intel

Part Number: 640J3F75

Description: This is the flash memory chip used for non-volatile storage on the

device. No o�cial documentation is available for this specific chip. However, a search

of the part number results in several references to flash chips manufactured by Micron

95

Technology with similar part numbers. Intel rolled their flash memory operations into

a joint venture company called Numonyx in 2008. Two years later, Micron Technology

acquired Numonyx [56]. The data sheet found for a Numonyx flash chip by Micron seems

to reference a very similar, if not identical chip [36]. A comparison of flash memory

operations performed by the ControlLogix L61 firmware correctly correspond to operations

found in this datasheet.

D. Standard 14-pin ARM JTAG Connector Pads

Figure D.2: 14-pin ARM JTAG pin configuration as viewed in Figure D.1

E. User Memory

Manufacturer: Cypress

Part Number: CY7C1041CV33

Description: Static RAM (SRAM), 4Mb; This is the user memory available to

the operator for storing projects. Capacity: 4Mb per module, 2MB total. O�cial

documentation is found in Reference [16].

F. Volatile RAM

Manufacturer: Micron Technologies

Part Number: 48LC4M16A2

96

Description: Synchronous Dynamic RAM (SDRAM), 64Mb; This is the volatile

RAM used by the device during runtime. Capacity: 64Mb per module, 24MB total. O�cial

documentation is found in Reference [35].

97

Appendix E: Source Code

E.1 zlib analysis.sh
1 # ! / b i n / bash
2 # z l i b s c r i p t
3

4 i f [! �n ” $1 ”]
5 t h e n
6 echo ” usage : ‘ basename $0 ‘ < f i l e n a m e >”
7 e x i t
8 f i
9

10 mkdir tmp
11 cd tmp
12 b inwa lk �y z l i b . . / $1 ��dd= z l i b : z l i b >/ dev / n u l l
13

14 f o r f i l e i n * . z l i b
15 do
16 i f . . / z p i p e �d < $ f i l e > $ f i l e . b i n 2>/ dev / n u l l
17 t h e n
18 echo ” $ f i l e seems l e g i t ”
19 cp $ f i l e . b i n . . /
20 # e l s e
21 #rm $ f i l e . b i n
22 # echo ” $ f i l e was d e l e t e d ”
23 f i
24 done
25

26 cd . .
27 #rm � r f tmp

98

Appendix F: IDA Scripts

F.1 FindARMFunctions.idc
1 / / FindARMFunctions . i d c
2 /* Based on MakeFuncs . i d c by Ruben San t amar t a , www. reve r semode . com * /
3 /* E d i t e d by Zachry B a s n i g h t � AFIT * /
4 /* Find and make f u n c t i o n s i n C o n t r o l L o g i x 1756�L61 f i r m w a r e * /
5

6 # i n c l u d e < i d c . idc >
7 s t a t i c main () {
8 a u t o ea ;
9 a u t o eaFunc ;

10 a u t o minea ;
11 a u t o p r o l o g ;
12 a u t o i ;
13 a u t o gProArray ;
14

15 minea = MinEA () ;
16 S e t S t a t u s (IDA STATUS WORK) ;
17 Message (” F i x i n g f i r m w a r e . . . \ n ”) ;
18

19 / / c r e a t e a r r a y o f op code s i g n a t u r e s f o r f u n c t i o n s
20 gProArray = C r e a t e A r r a y (” ProGos ”) ;
21 i f (gProArray == �1)
22 gProArray = G e t A r r a y I d (” ProGos ”) ;
23 S e t A r r a y S t r i n g (gProArray , 0 , ” 2D E9”) ; / / ”2D E9” i s t h e on ly one used h e r e
24

25 f o r (i = 0 ; i <1; i++) { / / f o r each op code i n t h e a r r a y
26 ea = minea ;
27 p r o l o g= GetArrayElemen t (AR STR , gProArray , i) ;
28 Message (” Opcodes : [%s] . . . \ n ” , p r o l o g) ;
29

30 w h i l e (1) { / / s e a r c h b i n a r y f o r op code
31 eaFunc = F i n d B i n a r y (ea , SEARCH DOWN, p r o l o g) ; / / f i n d n e x t i n s t a n c e
32 i f (eaFunc == BADADDR)
33 b r e a k ; / / b r e a k i f t h e r e a r e no more
34 eaFunc = eaFunc � 2 ; / / back up t o t h e s t a r t o f t h e l i t t l e �e n d i a n word
35 MakeCode (eaFunc) ; / / d i s a s s e m b l e t h e code h e r e
36 MakeFunct ion (eaFunc , BADADDR) ; / / make t h e code i n t o a f u n c t i o n
37 ea = eaFunc + 4 ; / / move t o t h e n e x t word
38 }
39 Message (”OK\n ”) ;
40 }
41 Message (”Done\n ”) ; S e t S t a t u s (IDA STATUS READY) ;
42 }

F.2 NameL61Functions.idc
1 / / NameL61Functions . i d c
2 / / W r i t t e n by Zachry B a s n i g h t � AFIT
3 / / Loose ly based on code by Ruben San t am ar t a , www. reve r semode . com
4 / / Name f u n c t i o n s i n C o n t r o l L o g i x 1756�L61 f i r m w a r e based on s o u r c e f i l e s t r i n g s
5

6 # i n c l u d e < i d c . idc >
7 s t a t i c main () {
8 a u t o ea ;
9 a u t o eaFunc ;

10 a u t o s t r ;

99

11 a u t o i ;
12 a u t o name ;
13 a u t o l e n ;
14 a u t o end ;
15 a u t o s t a r t ;
16 a u t o ch ;
17 a u t o r e f A d d r ;
18 a u t o funcName ;
19 a u t o s u f f i x ;
20 a u t o NamesArray ;
21 a u t o a r r a y L e n ;
22 a u t o i d x ;
23

24 ea = MinEA () ;
25 S e t S t a t u s (IDA STATUS WORK) ;
26

27 s t r = ” 2E 2E 5C” ; / / ” . . \ ” magic s t r i n g i d e n t i f y i n g t h e s t a r t o f s o u r c e f i l e n a m e s
28 NamesArray = C r e a t e A r r a y (”Names”) ;
29 a r r a y L e n = 0 ;
30

31 w h i l e (1) { / / s e a r c h e n t i r e b i n a r y
32 ea = F i n d B i n a r y (ea , SEARCH DOWN, s t r) ; / / s e a r c h f o r magic s t r i n g
33 i f (ea == BADADDR)
34 b r e a k ; / / b r e a k i f e r r o r o r p a s t t h e end
35 name = Name (ea) ; / / g e t t h e IDA d a t a b a s e name of t h e c u r r e n t l o c a t i o n
36 l e n = 1 ;
37

38 i f (name != ” ”) { / / i f t h e l o c a t i o n i s n o t a l r e a d y named . . .
39 Message (”%s \n ” , name) ;
40

41 / / g e t b i n a r y as a s t r i n g and d e t e r m i n e i t s l e n g t h
42 name = G e t S t r i n g (ea , �1 , ASCSTR C) ;
43 l e n = s t r l e n (name) ;
44 end = l e n ;
45

46 do { / / working backwards , remove t h e f i l e e x t e n s i o n from ”name”
47 end = end �1;
48 ch = s u b s t r (name , end , end+1) ;
49 } w h i l e (ch != ” . ”) ;
50

51 s t a r t = end ;
52 do { / / s t i l l working backwards , f i n d t h e s t a r t o f t h e f i l e n a m e (n o t t h e p a t h)
53 s t a r t = s t a r t �1;
54 ch = s u b s t r (name , s t a r t , s t a r t +1) ;
55 } w h i l e (ch != ” \\ ”) ;
56 s t a r t = s t a r t +1;
57 name = s u b s t r (name , s t a r t , end) ; / / ”name” i s now j u s t t h e f i l e n a m e s a n s e x t e n s i o n
58 Message (”%s \n ” , name) ;
59

60 / / s e a r c h f o r name i n a r r a y o f names a l r e a d y found / used
61 i d x = a r r a y L e n ;
62 s u f f i x = �1;
63 f o r (i =0; i <a r r a y L e n ; i ++) {
64 i f (name == GetArrayElemen t (AR STR , NamesArray , i *2)) {
65 s u f f i x = GetArrayElement (AR LONG, NamesArray , (i *2) +1) ;
66 i d x = i * 2 ;
67 b r e a k ;
68 }
69 }
70

71 / / i f n o t found add i t
72 i f (i d x == a r r a y L e n) {
73 S e t A r r a y S t r i n g (NamesArray , idx , name) ;

100

74 Se tArrayLong (NamesArray , i d x +1 , 0) ;
75 a r r a y L e n = a r r a y L e n +2;
76 }
77

78 r e f A d d r = D f i r s t B (ea) ; / / g e t t h e f i r s t a d d r e s s t h a t r e f e r e n c e s t h e f i l e n a m e s t r i n g
79 / / Message (”%x\n ” , r e f A d d r) ;
80

81 / / f o r e v e r y c r o s s r e f e r e n c e a d d r e s s , name t h a t a d d r e s s a s t h e f i l e n a m e
82 w h i l e (r e f A d d r != BADADDR) {
83 funcName = GetFunct ionName (r e f A d d r) ;
84 i f (funcName != ” ”) { / / i f a d d r e s s i s a named f u n c t i o n . . .
85 i f (s t r s t r (funcName , ” s u b ”) == 0) { / / t h a t s t a r t s w i th ” s u b ” (autonamed) . . .
86 s u f f i x = s u f f i x + 1 ;
87 eaFunc = LocByName (funcName) ; / / rename func and add t h e a p p r o p r i a t e s u f f i x
88 MakeNameEx (eaFunc , s p r i n t f (”%s %d ” , name , s u f f i x) , SN NOCHECK & SN NON AUTO &

SN NOWARN) ;
89 }
90 }
91 r e f A d d r = DnextB (ea , r e f A d d r) ;
92 / / Message (”%x\n ” , r e f A d d r) ;
93 }
94 Se tArrayLong (NamesArray , i d x +1 , s u f f i x) ;
95 }
96 ea = ea+ l e n ; / / i n c r e m e n t p a s t t h e s t r i n g and keep go ing
97 }
98 Message (”Done\n ”) ; S e t S t a t u s (IDA STATUS READY) ;
99 }

101

Appendix G: ARM DS-5 Debugger Scripts

G.1 EasyReset.ds
1 # EasyRese t . ds
2 # W r i t t e n by Zachry B a s n i g h t �� AFIT
3 # T h i s s c r i p t r e s e t s t h e L61 when h a l t e d i n t h e DS�5 debugger .
4

5 # The L61 s t a r t s e x e c u t i o n a t 0 x08000000 on powerup , b u t t h e
6 # DS�5 debugger r e s e t s PC t o 0 , so we need t o l o a d t h e boo t code
7 r e s t o r e 0 x08000000 . b i n b i n a r y 0x0
8 # Where ”0 x08000000 . b i n ” i s a b i n a r y f i l e c o n t a i n i n g t h e
9 # L61 boo t code l o c a t e d a t 0 x08000000 .

10 w a i t
11 h b r ea k �p *0 x00D00000 # s e t ha rdware b r e a k p o i n t a t t h e s t a r t o f t h e OS f i r m w a r e
12 s e t v a r $pc = 0 x00000000 # r e s e t PC t o 0
13 w a i t
14 c o n t i n u e
15

16 # e x e c u t i o n w i l l b r e a k a t t h e s t a r t o f t h e f i rmware , use ” c o n t i n u e ” t o run OS

G.2 FullReset.ds
1 # F u l l R e s e t . ds
2 # W r i t t e n by Zachry B a s n i g h t �� AFIT
3 # T h i s s c r i p t l o a d s a d e s i r e d OS f i r m w a r e i n t o memory , r e s e t s t h e L61 a l l o w i n g ExecLoader
4 # t o i n i t i a l i z e , t h e n jumps d i r e c t l y t o t h e l o a d e d f i r m w a r e . U s e f u l f o r d e b r i c k i n g .
5

6 # l o a d 0 x08000000 boo t code t o 0 , s e e EasyRese t . ds
7 r e s t o r e 0 x08000000 . b i n b i n a r y 0x0
8 w a i t
9

10 # l o a d d e s i r e d f i r m w a r e t o r u n t i m e memory l o c a t i o n
11 r e s t o r e ” . . \ mem dumps\PN�66834 w i t h p a d d i n g . b i n ” b i n a r y 0xD00000
12 w a i t
13 h b r ea k �d �p *0 x0A000098 # s e t ha rdware b r e a k p o i n t a f t e r ExecLoader i n i t i a l i z e s
14 s e t v a r $pc = 0 x00000000 # r e s e t PC t o 0
15 w a i t # w a i t f o r ” s e t v a r ” t o f i n i s h
16 c o n t i n u e # c o n t i n u e e x e c u t i o n a t 0
17 w a i t # w a i t u n t i l e x e c u t i o n b r e a k s a t 0x0A000098
18 s e t v a r $pc = 0x00D00000 # s e t PC t o s t a r t o f l o a d e d f i r m w a r e
19 w a i t
20

21 # e x e c u t i o n w i l l b r e a k a t t h e s t a r t o f t h e f i rmware , use ” c o n t i n u e ” t o run OS

102

Bibliography

[1] “Teenage hacker faces federal charges”. CNN, March 18, 1998. URL http://www.
cnn.com/TECH/computing/9803/18/juvenile.hacker/index.html.

[2] Adler, Mark. “zpipe.c”. zlib.net, December 11, 2005. URL http://www.zlib.net/zpipe.
c.

[3] Agrawal, Dakshi, Bruce Archambeault, Josyula Rao, and Pankaj Rohatgi. “The EM
SideChannel(s)”. Cryptographic Hardware and Embedded Systems-CHES 2002, 29–
45, 2003.

[4] ARM. ARM Software Development Toolkit Reference Guide, 1998.

[5] ARM. ARM740T Datasheet, February 1998. ARM DDI 0008E.

[6] ARM. ARM Architecture Reference Manual, 2005.

[7] Baldwin, Kristen, John F. Miller, Paul R. Popick, and Jonathan Goodnight. “The
United States Department of Defense revitalization of system security engineering
through program protection”. Systems Conference (SysCon), 2012 IEEE Interna-
tional, 1–7. IEEE, 2012.

[8] Barker, Elaine, William Barker, William Burr, William Polk, and Miles Smid.
Recommendation for Key Management - Part 1: General (Revision 3). National
Institute of Standards and Technology, July 2012.

[9] Beresford, Dillon. “Exploiting Siemens Simatic S7 PLCs”. Black Hat USA, 2011.

[10] Breeuwsma, Ing. M. F. “Forensic imaging of embedded systems using JTAG
(boundary-scan)”. Digital Investigation, 3(4):32–42, March 2006.

[11] Breeuwsma, Marcel, Martien de Jongh, Coert Klaver, Ronald van der Knij↵, and
Mark Roelo↵s. “Forensic Data Recovery from Flash Memory”. Small Scale Digital
Device Forensics Journal, 1(1):1–17, June 2007.

[12] Brunner, Martin, Hans Hofinger, Christoph Krauss, Christopher Roblee, Peter Schoo,
and Sascha Todt. Infiltrating Critical Infrastructures with Next-Generation Attacks:
W32.Stuxnet as a Showcase Threat. Fraunhofer-Institute for Secure Information
Technology, Germany, December 2010.

[13] Cai, Ning, Jidong Wang, and Xinghou Yu. “SCADA System Security: Complexity,
History and New Developments”. Industrial Informatics, 2008. INDIN 2008. 6th
IEEE International Conference on, 569–574. IEEE, 2008.

103

http://www.cnn.com/TECH/computing/9803/18/juvenile.hacker/index.html
http://www.cnn.com/TECH/computing/9803/18/juvenile.hacker/index.html
http://www.zlib.net/zpipe.c
http://www.zlib.net/zpipe.c

[14] Chen, Thomas M. and Saeed Abu-Nimeh. “Lessons from Stuxnet”. 44(4):91–93,
April 2011.

[15] Cook, Gregory. “README for CRC RevEng 1.03”. July 12 2012. URL http:
//reveng.sourceforge.net/readme.htm.

[16] Cypress Semiconductor Corporation. CY7C1041CV33, May 28, 2011. 38-05134 Rev.
*N.

[17] Deutsch, P. and Jean-Loup Gailly. ZLIB Compressed Data Format Specification
version 3.3. Network Working Group, Internet Engineering Task Force, 1996. RFC
1950.

[18] DI Management. BigDigits multiple-precision arithmetic source code, January 24,
2012. URL http://www.di-mgt.com.au/bigdigits.html.

[19] Falliere, Nicolas, Liam O Murchu, and Eric Chien. W32.Stuxnet Dossier. Symantec
Corporation, Cupertino, CA, February 2011. Rep. Ver. 1.4.

[20] Fletcher, John G. “An Arithmetic Checksum for Serial Transmissions”. Communica-
tions, IEEE Transactions on, 30(1):247–252, 1982.

[21] Goldberg, Carey. “Federal Charges for Juvenile In a Case of Computer Crime”.
The New York Times, March 19, 1998. URL http://www.nytimes.com/1998/03/19/
us/federal-charges-for-juvenile-in-a-case-of-computer-crime.html.

[22] Halbronn, Cedric and Jean Sigwald. “iPhone Security Model & Vulnerabilities”.
Proceedings of Hack in the Box Sec-Conference. Kuala Lumpur, Malaysia. 2010.

[23] He↵ner, Craig. “Reverse Engineering Firmware: Linksys WAG120N”.
DEV/TTYS0, May 29, 2011. URL http://www.devttys0.com/2011/05/
reverse-engineering-firmware-linksys-wag120n/.

[24] Industrial Control Systems Cyber Emergency Response Team. ICS-CERT Monitor,
December 2012. URL http://ics-cert.us-cert.gov/pdf/ICS-CERT Monthly Monitor
Oct-Dec2012.pdf.

[25] Institute of Electrical and Electronics Engineers. IEEE 1149.1-2001 Standard Test
Access Port and Boundary-Scan Architecture, 2001.

[26] Institute of Electrical and Electronics Engineers. IEEE 802.3-2008 IEEE Standard
for Information technology-Specific requirements - Part 3: Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications, 2008.

[27] International Electrotechnical Commission. IEC 61131-3, 2003.

104

http://reveng.sourceforge.net/readme.htm
http://reveng.sourceforge.net/readme.htm
http://www.di-mgt.com.au/bigdigits.html
http://www.nytimes.com/1998/03/19/us/federal-charges-for-juvenile-in-a-case-of-computer-crime.html
http://www.nytimes.com/1998/03/19/us/federal-charges-for-juvenile-in-a-case-of-computer-crime.html
http://www.devttys0.com/2011/05/reverse-engineering-firmware-linksys-wag120n/
http://www.devttys0.com/2011/05/reverse-engineering-firmware-linksys-wag120n/
http://ics-cert.us-cert.gov/pdf/ICS-CERT_Monthly_Monitor_Oct-Dec2012.pdf
http://ics-cert.us-cert.gov/pdf/ICS-CERT_Monthly_Monitor_Oct-Dec2012.pdf

[28] International Organization for Standardization. ISO 1155:1978 Information process-
ing – Use of longitudinal parity to detect errors in information messages, 1978.

[29] Kocher, Paul. “Timing Attacks on Implementations of Di�e-Hellman, RSA, DSS,
and Other Systems”. Advances in CryptologyCRYPTO96, 104–113. Springer, 1996.

[30] Kocher, Paul, Joshua Ja↵e, and Benjamin Jun. “Di↵erential Power Analysis”.
Advances in CryptologyCRYPTO99, 789–789. Springer, 1999.

[31] Koopman, Philip. “Embedded Software Testing”. Carnegie Mellon University, 2011.
URL http://www.ece.cmu.edu/⇠ece649/lectures/08 testing.pdf.

[32] Maxino, Theresa C. and Philip J. Koopman. “The E↵ectiveness of Checksums
for Embedded Control Networks”. IEEE Transactions on Dependable and Secure
Computing, 6(1), March 2009.

[33] McMinn, Lucille and Jonathan Butts. “A Firmware Verification Tool for Pro-
grammable Logic Controllers”. Critical Infrastructure Protection VI. Springer, 2012.

[34] Menezes, Alfred J., Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC, 1996.

[35] Micron Technology, Inc. 64Mb: x4, x8, x16 SDRAM, 2003. Rev. F.

[36] Micron Technology, Inc. Numonyx Embedded Flash Memory (J3 65 nm) Single Bit
per Cell (SBC), January 2011. 208032-03.

[37] Microsoft. Microsoft Portable Executable and Common Object File Format
Specification, September 21, 2010.

[38] Monti, Eric. “Retsaot is Toaster, Reversed: Quick ’n Dirty Firmware Reversing”.
Chargen, April 29, 2008. URL http://chargen.matasano.com/chargen/2008/4/29/
retsaot-is-toaster-reversed-quick-n-dirty-firmware-reversing.html.

[39] National Communications System Technology & Standards Division, General
Services Administration Information Technology Service. Telecommunications:
Glossary of Telecommunication Terms, April 7, 1996. Federal Standard 1037C.

[40] National Institute of Standards and Technology. Vulnerability Summary for CVE-
2005-1983, March 8, 2011. URL http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2005-1983.

[41] National Institute of Standards and Technology. Secure Hash Standard (SHS), March
2012. FIPS PUB 180-4.

[42] Niland, Marty. “Virus Disrupts Train Signals”. CBS News, August 21, 2003. URL
http://www.cbsnews.com/stories/2003/08/21/tech/main569418.shtml.

105

http://www.ece.cmu.edu/~ece649/lectures/08_testing.pdf
http://chargen.matasano.com/chargen/2008/4/29/retsaot-is-toaster-reversed-quick-n-dirty-firmware-reversing.html
http://chargen.matasano.com/chargen/2008/4/29/retsaot-is-toaster-reversed-quick-n-dirty-firmware-reversing.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2005-1983
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2005-1983
http://www.cbsnews.com/stories/2003/08/21/tech/main569418.shtml

[43] Oshana, Rob. “Introduction to JTAG”. Embedded, October 29, 2002.
URL http://www.embedded.com/electronics-blogs/beginner-s-corner/4024466/
Introduction-to-JTAG.

[44] Peck, Daniel and Dale Peterson. “Leveraging Ethernet Card Vulnerabilities in Field
Devices”. SCADA Security Scientific Symposium (S4), 2009.

[45] Poulsen, Kevin. “Slammer worm crashed Ohio nuke plant network”. Security Focus,
August 19, 2003. URL http://www.securityfocus.com/news/6767.

[46] Ramabadran, Tenkasi V. and Sunil S. Gaitonde. “A Tutorial on CRC Computations”.
Micro, IEEE, 8(4):62–75, 1988.

[47] Roberts, Paul F. “Zotob, PnP Worm Slam 13 DaimlerChrysler Plants”.
eWeek, August 18, 2005. URL http://www.eweek.com/c/a/Security/
Zotob-PnP-Worms-Slam-13-DaimlerChrysler-Plants/.

[48] Roberts, Paul F. “Zotob Worm Targets Windows 2000 Hole”.
eWeek, August 15, 2005. URL http://www.eweek.com/c/a/Security/
Zotob-Worms-Target-Windows-2000-Hole/.

[49] Rockwell Automation. ControlLogix System User Manual, February 2012. 1756-
UM001M-EN-P.

[50] Rockwell Automation. Logix5000 Controllers Nonvolatile Memory Card, Novem-
ber 2012. URL http://literature.rockwellautomation.com/idc/groups/literature/
documents/pm/1756-pm017 -en-p.pdf. 1756-PM017E-EN-P.

[51] Santamarta, Ruben. “Reversing Industrial Firmware for Fun and Backdoors I”.
Reversemode, December 12, 2011. URL http://reversemode.com/index.php?option=
com content&task=view&id=80&Itemid=1.

[52] Santamarta, Ruben. “Project Basecamp: Attacking ControlLogix”. SCADA Security
Scientific Symposium (S4), 2012.

[53] Skochinsky, Igor. “Intro to Embedded Reverse Engineering for PC Reversers”. Recon,
2010.

[54] Slay, Jill and Michael Miller. “Lessons Learned from the Maroochy Water Breach”.
Critical Infrastructure Protection, volume 253, chapter 6, 73–82. Springer, Boston,
2007.

[55] Stou↵er, Keith, Joe Falco, and Karen Scarfone. Guide to Industrial Control Systems
(ICS) Security. National Institute of Standards and Technology, June 2011.

[56] Swanekamp, Kelsey. “Micron Shares Short Out”. Forbes,
February 10, 2010. URL http://www.forbes.com/2010/02/10/
micron-numonyx-intel-markets-equities-acquisition.html.

106

http://www.embedded.com/electronics-blogs/beginner-s-corner/4024466/Introduction-to-JTAG
http://www.embedded.com/electronics-blogs/beginner-s-corner/4024466/Introduction-to-JTAG
http://www.securityfocus.com/news/6767
http://www.eweek.com/c/a/Security/Zotob-PnP-Worms-Slam-13-DaimlerChrysler-Plants/
http://www.eweek.com/c/a/Security/Zotob-PnP-Worms-Slam-13-DaimlerChrysler-Plants/
http://www.eweek.com/c/a/Security/Zotob-Worms-Target-Windows-2000-Hole/
http://www.eweek.com/c/a/Security/Zotob-Worms-Target-Windows-2000-Hole/
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm017_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm017_-en-p.pdf
http://reversemode.com/index.php?option=com_content&task=view&id=80&Itemid=1
http://reversemode.com/index.php?option=com_content&task=view&id=80&Itemid=1
http://www.forbes.com/2010/02/10/micron-numonyx-intel-markets-equities-acquisition.html
http://www.forbes.com/2010/02/10/micron-numonyx-intel-markets-equities-acquisition.html

[57] Tehranipoor, Mohammad, Hassan Salmani, Xuehui Zhang, Xiaoxiao Wang, Ramesh
Karri, Jeyavijayan Rajendran, and Kurt Rosenfeld. “Trustworthy Hardware: Trojan
Detection and Design-for-Trust Challenges”. Computer, 44(7):66–74, July 2011.

[58] Viehböck, Stefan. “Reverse engineering an obfuscated firmware image E02 -
analysis”. Braindump, September 9, 2011. URL http://sviehb.wordpress.com/2011/
09/09/reverse-engineering-an-obfuscated-firmware-image-e02-analysis/.

[59] Wang, Tielei, Tao Wei, Guofei Gu, and Wei Zou. “TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection”. Security and
Privacy (SP), 2010 IEEE Symposium on, 497–512. IEEE, 2010.

[60] Zetter, Kim. “SCADA Systems Hard-Coded Password Circulated Online for Years”.
Wired, July 19, 2010.

107

http://sviehb.wordpress.com/2011/09/09/reverse-engineering-an-obfuscated-firmware-image-e02-analysis/
http://sviehb.wordpress.com/2011/09/09/reverse-engineering-an-obfuscated-firmware-image-e02-analysis/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Je↵erson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2013 Master’s Thesis Oct 2011–Mar 2013

Firmware Counterfeiting and Modification Attacks
on Programmable Logic Controllers

Basnight, Zachry H., First Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-13-M-06

Department of Homeland Security, ICS-CERT
Neil Hershfield
900 N. Stuart St. Apt. 715
Arlington, VA 22203

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
Recent attacks on industrial control systems (ICSs), like the highly publicized Stuxnet malware, have perpetuated a
race to the bottom where lower level attacks have a tactical advantage. Programmable logic controller (PLC) firmware,
which provides a software-driven interface between system inputs and physically manifested outputs, is readily open to
modification at the user level. Current e↵orts to protect against firmware attacks are hindered by a lack of prerequisite
research regarding details of attack development and implementation. In order to obtain a more complete understanding
of the threats posed by PLC firmware counterfeiting and the feasibility of such attacks, this research explores the
vulnerability of common controllers to intentional firmware modifications. After presenting a general analysis process
that takes advantage of various techniques and methodologies applied to similar scenarios, this work derives the firmware
update validation method used for the Allen-Bradley ControlLogix PLC. A proof of concept demonstrates how to alter
a legitimate firmware update and successfully upload it to a ControlLogix L61. Possible mitigation strategies discussed
include digitally signed and encrypted firmware as well as preemptive and post-mortem analysis methods to provide
protection. Results of this e↵ort facilitate future research in PLC firmware security through direct example of firmware
counterfeiting.

15. SUBJECT TERMS
industrial control system, programmable logic controller, firmware, reverse engineering

U U U UU 120
Maj Jonathan Butts (ENG)

(937) 255-3636 x4332 Jonathan.Butts@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-21-2013

	Firmware Counterfeiting and Modification Attacks on Programmable Logic Controllers
	Zachary H. Basnight
	Recommended Citation

	Abstract
	Table of Contents
	List of Figures
	List of Acronyms
	Introduction
	Background
	Motivation
	Research Goals
	Approach
	Impact
	Organization

	Background
	Industrial Control Systems
	Industrial Control System Security
	Programmable Logic Controller Security
	Previous Works on Reversing Firmware
	Summary

	Methodology
	Problem Definition
	Approach and Scope
	Test Environment and Tools
	Reversing Process
	Vulnerability Assessment
	Summary

	Reversing Process, Testing, and Demonstration
	Reversing Process
	Firmware Update Validation Method Analysis
	Demonstration
	Discussion
	Summary

	Conclusions and Future Work
	Conclusions
	Significance
	Future Work
	Summary

	Appendix A: ControlLogix Firmware Operation Flowcharts
	Appendix B: Contents of Firmware Update Package
	PN-86270.nvs
	CONTENTS.TXT
	PN-86270.RES
	PN-86272.bin

	Appendix C: VBinDiff Examples
	Appendix D: Physical Component Analysis
	Components of Interest

	Appendix E: Source Code
	zlib_analysis.sh

	Appendix F: IDA Scripts
	FindARMFunctions.idc
	NameL61Functions.idc

	Appendix G: ARM DS-5 Debugger Scripts
	EasyReset.ds
	FullReset.ds

	Bibliography

