23 research outputs found

    Detection of Inferior Myocardial Infarction using Shallow Convolutional Neural Networks

    Full text link
    Myocardial Infarction is one of the leading causes of death worldwide. This paper presents a Convolutional Neural Network (CNN) architecture which takes raw Electrocardiography (ECG) signal from lead II, III and AVF and differentiates between inferior myocardial infarction (IMI) and healthy signals. The performance of the model is evaluated on IMI and healthy signals obtained from Physikalisch-Technische Bundesanstalt (PTB) database. A subject-oriented approach is taken to comprehend the generalization capability of the model and compared with the current state of the art. In a subject-oriented approach, the network is tested on one patient and trained on rest of the patients. Our model achieved a superior metrics scores (accuracy= 84.54%, sensitivity= 85.33% and specificity= 84.09%) when compared to the benchmark. We also analyzed the discriminating strength of the features extracted by the convolutional layers by means of geometric separability index and euclidean distance and compared it with the benchmark model

    Wavelet Transform and Convolutional Neural Network Based Techniques in Combating Sudden Cardiac Death

    Get PDF
    Sudden cardiac death (SCD) is a global threat that demands our attention and research. Statistics show that 50% of cardiac deaths are sudden cardiac death. Therefore, early cardiac arrhythmia detection may lead to timely and proper treatment, saving lives. We proposed a less complex, fast, and more efficient algorithm that quickly and accurately detects heart abnormalities. Firstly, we carefully examined 23 ECG signals of the patients who died from SCD to detect their arrhythmias. Then, we trained a deep learning model to auto-detect and distinguish the most lethal arrhythmias in SCD: Ventricular Tachycardia (VT) and Ventricular Fibrillation (VF), from Normal Sinus Rhythm (NSR). Our work combined two techniques: Wavelet Transform (WT) and pre-trained Convolutional Neural Network (CNN). WT was used to convert an ECG signal into scalogram and CNN for features extraction and arrhythmias classification. When examined in the MIT-BIH Normal Sinus Rhythm, MIT-BIH Malignant Ventricular Ectopy, and Creighton University Ventricular Tachyarrhythmia databases, the proposed methodology obtained an accuracy of 98.7% and an F-score of 0.9867, despite being less expensive and simple to execute

    Hybrid Ensemble Stacking Techniques for Coronary Artery Disease Prediction using Machine Learning Algorithms

    Get PDF
    Throughout history, humanity has been plagued by several outbreaks that have claimed numerous lives. Since coronary artery disease is among the most fatal illnesses that humanity has faced in the modern era, it has been recognized in our time. It links several Coronary Artery Disease (CAD) risk factors to the critical requirement for precise, reliable, and workable methods for early identification and management. In light of this, we suggest a technique called Hybrid Ensemble Stacking that combines Naive Bayes (NB), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Ada Boosting for the prediction of CAD illnesses. To combine the forecasts of the basis models, a meta-logistic regression model is utilized. According to a quantitative study, the ensemble model and brute force feature selection method together produce a classification accuracy for heart disease of up to 92.66%. The suggested stacking model has demonstrated its effectiveness and outperforms current methods in the categorization of cardiac disorders. Several classification issues have been solved successfully using ensemble techniques. The suggested method was constructed using the Sani dataset, which contains 303 nearly completed records. Using Min-Max Normalization, the data are pre-processed to making it suitable for a Machine Learning (ML) model. SMOTE and SelectKBest technique were applied to   increases the accuracy and efficiency of a model. Using the metrics such as accuracy, precision, recall, F1, ROC and log-loss, the outcomes produced by the suggested model had the greatest performance

    Hybrid Ensemble Stacking Techniques for Coronary Artery Disease Prediction Using Machine Learning Algorithms

    Get PDF
    Throughout history, humanity has been plagued by several outbreaks that have claimed numerous lives. Since coronary artery disease is among the most fatal illnesses that humanity has faced in the modern era, it has been recognized in our time. It links several Coronary Artery Disease (CAD) risk factors to the critical requirement for precise, reliable, and workable methods for early identification and management. In light of this, we suggest a technique called Hybrid Ensemble Stacking that combines Naive Bayes (NB), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Ada Boosting for the prediction of CAD illnesses. To combine the forecasts of the basis models, a meta-logistic regression model is utilized. According to a quantitative study, the ensemble model and brute force feature selection method together produce a classification accuracy for heart disease of up to 92.66%. The suggested stacking model has demonstrated its effectiveness and outperforms current methods in the categorization of cardiac disorders. Several classification issues have been solved successfully using ensemble techniques. The suggested method was constructed using the Sani dataset, which contains 303 nearly completed records. Using Min-Max Normalization, the data are pre-processed to making it suitable for a Machine Learning (ML) model. SMOTE and SelectKBest technique were applied to   increases the accuracy and efficiency of a model. Using the metrics such as accuracy, precision, recall, F1, ROC and log-loss, the outcomes produced by the suggested model had the greatest performance

    Performance improvement of decision trees for diagnosis of coronary artery disease using multi filtering approach

    Get PDF
    The heart is one of the strongest muscular organs in the human body. Every year, this disease can kill many people in the world. Coronary artery disease (CAD) is named as the most common type of heart disease. Four well-known decision trees (DTs) are applied on the Z-Alizadeh Sani CAD dataset, which consists of J48, BF tree, REP tree, and NB tree. A multi filtering approach, named MFA, was used to modify the weight of attributes to improve the performance of DTs in this study. The model was applied on three main coronary arteries including the Left Anterior Descending (LAD), Left Circumflex (LCX), and Right Coronary Artery (RCA). The obtained results show that data balancing has a valuable impact on the performance of DTs. The comparison results show that this study provides the best results applied on the Z-Alizadeh Sani dataset compared to previous studies. The proposed MFA could improve the performance of the classic DTs algorithms significantly, with the highest accuracies obtained by NB tree for LAD, LCX, and RCA are 94.90%, 92.97% and 93.43%, respectively

    Literature Review on Big Data Analytics Methods

    Get PDF
    Companies and industries are faced with a huge amount of raw data, which have information and knowledge in their hidden layer. Also, the format, size, variety, and velocity of generated data bring complexity for industries to apply them in an efficient and effective way. So, complexity in data analysis and interpretation incline organizations to deploy advanced tools and techniques to overcome the difficulties of managing raw data. Big data analytics is the advanced method that has the capability for managing data. It deploys machine learning techniques and deep learning methods to benefit from gathered data. In this research, the methods of both ML and DL have been discussed, and an ML/DL deployment model for IOT data has been proposed

    A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection

    Get PDF
    Brain tumor (BT) is one of the brain abnormalities which arises due to various reasons. The unrecognized and untreated BT will increase the morbidity and mortality rates. The clinical level assessment of BT is normally performed using the bio-imaging technique, and MRI-assisted brain screening is one of the universal techniques. The proposed work aims to develop a deep learning architecture (DLA) to support the automated detection of BT using two-dimensional MRI slices. This work proposes the following DLAs to detect the BT: (i) implementing the pre-trained DLAs, such as AlexNet, VGG16, VGG19, ResNet50 and ResNet101 with the deep-features-based SoftMax classifier; (ii) pre-trained DLAs with deep-features-based classification using decision tree (DT), k nearest neighbor (KNN), SVM-linear and SVM-RBF; and (iii) a customized VGG19 network with serially-fused deep-features and handcrafted-features to improve the BT detection accuracy. The experimental investigation was separately executed using Flair, T2 and T1C modality MRI slices, and a ten-fold cross validation was implemented to substantiate the performance of proposed DLA. The results of this work confirm that the VGG19 with SVM-RBF helped to attain better classification accuracy with Flair (>99%), T2 (>98%), T1C (>97%) and clinical images (>98%)

    Comprehensive electrocardiographic diagnosis based on deep learning

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF). Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful for early diagnosis of CAD. For the latter especially, the ECG perturbations can be subtle and potentially misclassified on manual interpretation and/or when analyzed by traditional algorithms found in ECG instrumentation. For automated diagnostic systems (ADS), deep learning techniques are favored over conventional machine learning techniques, due to the automatic feature extraction and selection processes involved. This paper highlights various deep learning algorithms exploited for the classification of ECG signals into CAD, MI, and CHF conditions. The Convolutional Neural Network (CNN), followed by combined CNN and Long Short-Term Memory (LSTM) models, appear to be the most useful architectures for classification. A 16-layer LSTM model was developed in our study and validated using 10-fold cross validation. A classification accuracy of 98.5% was achieved. Our proposed model has the potential to be a useful diagnostic tool in hospitals for the classification of abnormal ECG signals

    Electrocardiogram-based deep learning algorithm for the screening of obstructive coronary artery disease

    Get PDF
    Background Information on electrocardiogram (ECG) has not been quantified in obstructive coronary artery disease (ObCAD), despite the deep learning (DL) algorithm being proposed as an effective diagnostic tool for acute myocardial infarction (AMI). Therefore, this study adopted a DL algorithm to suggest the screening of ObCAD from ECG. Methods ECG voltage-time traces within a week from coronary angiography (CAG) were extracted for the patients who received CAG for suspected CAD in a single tertiary hospital from 2008 to 2020. After separating the AMI group, those were classified into ObCAD and non-ObCAD groups based on the CAG results. A DL-based model adopting ResNet was built to extract information from ECG data in the patients with ObCAD relative to those with non-ObCAD, and compared the performance with AMI. Moreover, subgroup analysis was conducted using ECG patterns of computer-assisted ECG interpretation. Results The DL model demonstrated modest performance in suggesting the probability of ObCAD but excellent performance in detecting AMI. The AUC of the ObCAD model adopting 1D ResNet was 0.693 and 0.923 in detecting AMI. The accuracy, sensitivity, specificity, and F1 score of the DL model for screening ObCAD were 0.638, 0.639, 0.636, and 0.634, respectively, while the figures were up to 0.885, 0.769, 0.921, and 0.758 for detecting AMI, respectively. Subgroup analysis showed that the difference between normal and abnormal/borderline ECG groups was not notable. Conclusions ECG-based DL model showed fair performance for assessing ObCAD and it may serve as an adjunct to the pre-test probability in patients with suspected ObCAD during the initial evaluation. With further refinement and evaluation, ECG coupled with the DL algorithm may provide potential front-line screening support in the resource-intensive diagnostic pathways.The current study was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (2019M3E5D1A0206962012), the NRF funded by MIST (NRF-2022R1F1A1071574), (2022H1D8A3037396), INHA UNIVERSITY Research Grant, and Institute of Information & communications Technology Planning & Evaluation (IITP) funded by MSIT (RS-2022-00155915, Artificial Intelligence Convergence Innovation Human Resources Development (Inha University)). The funders had no role in study design, data collection, analysis, decision to publish, or manuscript preparation
    corecore