2,581 research outputs found

    Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine

    Get PDF
    Atrial fibrillation (AF) is a serious heart arrhythmia leading to a significant increase of the risk for occurrence of ischemic stroke. Clinically, the AF episode is recognized in an electrocardiogram. However, detection of asymptomatic AF, which requires a long-term monitoring, is more efficient when based on irregularity of beat-to-beat intervals estimated by the heart rate (HR) features. Automated classification of heartbeats into AF and non-AF by means of the Lagrangian Support Vector Machine has been proposed. The classifier input vector consisted of sixteen features, including four coefficients very sensitive to beat-to-beat heart changes, taken from the fetal heart rate analysis in perinatal medicine. Effectiveness of the proposed classifier has been verified on the MIT-BIH Atrial Fibrillation Database. Designing of the LSVM classifier using very large number of feature vectors requires extreme computational efforts. Therefore, an original approach has been proposed to determine a training set of the smallest possible size that still would guarantee a high quality of AF detection. It enables to obtain satisfactory results using only 1.39% of all heartbeats as the training data. Post-processing stage based on aggregation of classified heartbeats into AF episodes has been applied to provide more reliable information on patient risk. Results obtained during the testing phase showed the sensitivity of 98.94%, positive predictive value of 98.39%, and classification accuracy of 98.86%.Web of Science203art. no. 76

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Classification of De novo post-operative and persistent atrial fibrillation using multi-channel ECG recordings

    Get PDF
    Atrial fibrillation (AF) is the most sustained arrhythmia in the heart and also the most common complication developed after cardiac surgery. Due to its progressive nature, timely detection of AF is important. Currently, physicians use a surface electrocardiogram (ECG) for AF diagnosis. However, when the patient develops AF, its various development stages are not distinguishable for cardiologists based on visual inspection of the surface ECG signals. Therefore, severity detection of AF could start from differentiating between short-lasting AF and long-lasting AF. Here, de novo post-operative AF (POAF) is a good model for short-lasting AF while long-lasting AF can be represented by persistent AF. Therefore, we address in this paper a binary severity detection of AF for two specific types of AF. We focus on the differentiation of these two types as de novo POAF is the first time that a patient develops AF. Hence, comparing its development to a more severe stage of AF (e.g., persistent AF) could be beneficial in unveiling the electrical changes in the atrium. To the best of our knowledge, this is the first paper that aims to differentiate these different AF stages. We propose a method that consists of three sets of discriminative features based on fundamentally different aspects of the multi-channel ECG data, namely based on the analysis of RR intervals, a greyscale image representation of the vectorcardiogram, and the frequency domain representation of the ECG. Due to the nature of AF, these features are able to capture both morphological and rhythmic changes in the ECGs. Our classification system consists of a random forest classifier, after a feature selection stage using the ReliefF method. The detection efficiency is tested on 151 patients using 5-fold cross-validation. We achieved 89.07% accuracy in the classification of de novo POAF and persistent AF. The results show that the features are discriminative to reveal the severity of AF. Moreover, inspection of the most important features sheds light on the different characteristics of de novo post-operative and persistent AF.</p

    Time series kernel similarities for predicting Paroxysmal Atrial Fibrillation from ECGs

    Get PDF
    We tackle the problem of classifying Electrocardiography (ECG) signals with the aim of predicting the onset of Paroxysmal Atrial Fibrillation (PAF). Atrial fibrillation is the most common type of arrhythmia, but in many cases PAF episodes are asymptomatic. Therefore, in order to help diagnosing PAF, it is important to design procedures for detecting and, more importantly, predicting PAF episodes. We propose a method for predicting PAF events whose first step consists of a feature extraction procedure that represents each ECG as a multi-variate time series. Successively, we design a classification framework based on kernel similarities for multi-variate time series, capable of handling missing data. We consider different approaches to perform classification in the original space of the multi-variate time series and in an embedding space, defined by the kernel similarity measure. We achieve a classification accuracy comparable with state of the art methods, with the additional advantage of detecting the PAF onset up to 15 minutes in advance

    ECG based Prediction Model for Cardiac-Related Diseases using Machine Learning Techniques

    Get PDF
    This dissertation presents research on the construction of predictive models for health conditions through the application of Artificial Intelligence methods. The work is thus focused on the prediction, in the short and long term, of Atrial Fibrillation conditions through the analysis of Electrocardiography exams, with the use of several techniques to reduce noise and interference, as well as their representation through spectrograms and their application in Artificial Intelligence models, specifically Deep Learning. The training and testing processes of the models made use of a publicly available database. In its two approaches, predictive algorithms were obtained with an accuracy of 96.73% for a short horizon prediction and 96.52% for long Atrial Fibrillation prediction horizon. The main objectives of this dissertation are thus the study of works already carried out in the area during the last decade, to present a new methodology of prediction of the presented condition, as well as to present and discuss its results, including suggestions for improvement for future development.Esta dissertação descreve a construção de modelos preditivos de condições de saúde através de aplicação de métodos de Inteligência Artificial. O trabalho é assim focado na predição, a curto e longo prazo, de condições de Fibrilhação Auricular através da análise de exames de Eletrocardiografia, com a utilização de diversas técnicas de redução de ruído e de interferência, bem como a sua representação através de espectrogramas e sua aplicação em modelos de Inteligência Artificial, concretamente de Aprendizagem Profunda (Deep Learning na língua inglesa). Os processos de treino e teste dos modelos obtidos recorreram a uma base de dados publicamente disponível. Nas suas duas abordagens, foram obtidos algoritmos preditivos com uma precisão de 96.73% para uma predição de curto horizonte e 96.52% para longo horizonte de predição de Fibrilhação Auricular. Os objetivos principais da presente dissertação são assim o estudo de trabalhos já realizados na área durante a última década, apresentar uma nova metodologia de predição da condição apresentada, bem como apresentar e discutir os seus resultados, incluindo sugestões de melhoria para futuro desenvolvimento

    Feasibility of atrial fibrillation detection from a novel wearable armband device

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is the world’s most common heart rhythm disorder and even several minutes of AF episodes can contribute to risk for complications, including stroke. However, AF often goes undiagnosed owing to the fact that it can be paroxysmal, brief, and asymptomatic. OBJECTIVE: To facilitate better AF monitoring, we studied the feasibility of AF detection using a continuous electrocardiogram (ECG) signal recorded from a novel wearable armband device. METHODS: In our 2-step algorithm, we first calculate the R-R interval variability–based features to capture randomness that can indicate a segment of data possibly containing AF, and subsequently discriminate normal sinus rhythm from the possible AF episodes. Next, we use density Poincaré plot-derived image domain features along with a support vector machine to separate premature atrial/ventricular contraction episodes from any AF episodes. We trained and validated our model using the ECG data obtained from a subset of the MIMIC-III (Medical Information Mart for Intensive Care III) database containing 30 subjects. RESULTS: When we tested our model using the novel wearable armband ECG dataset containing 12 subjects, the proposed method achieved sensitivity, specificity, accuracy, and F1 score of 99.89%, 99.99%, 99.98%, and 0.9989, respectively. Moreover, when compared with several existing methods with the armband data, our proposed method outperformed the others, which shows its efficacy. CONCLUSION: Our study suggests that the novel wearable armband device and our algorithm can be used as a potential tool for continuous AF monitoring with high accuracy

    Quality Control in ECG-based Atrial Fibrillation Screening

    Get PDF
    This thesis comprises an introductory chapter and four papers related to quality control in ECG-based atrial fibrillation (AF) screening. Atrial fibrillation is a cardiac arrhythmia characterized by an irregular rhythm and constitutes a major risk factor for stroke. Anticoagulation therapy significantly reduces this risk, and therefore, AF screening is motivated. Atrial fibrillation screening is often done using ECGs recorded outside the clinical environment. However, the higher susceptibility of such ECGs to noise and artifacts makes the identification of patients with AF challenging. The present thesis addresses these challenges at different levels in the data analysis chain. Paper I presents a convolutional neural network (CNN)-based approach to identify transient noise and artifacts in the detected beat sequence before AF detection. The results show that by inserting a CNN, prior to the AF detector, the number of false AF detections is reduced by 22.5% without any loss in the sensitivity, suggesting that the number of recordings requiring expert review can be significantly reduced. Paper II investigates the signal quality of a novel wet electrode technology, and how the improved signal quality translates to improved beat detection and AF detection performance. The novel electrode technology is designed for reduction of motion artifacts typically present in Holter ECG recordings. The novel electrode technology shows a better signal quality and detection performance when compared to a commercially available counterpart, especially when the subject becomes more active. Thus, it has the potential to reduce the review burden and costs associated with ambulatory monitoring.Paper III introduces a detector for short-episode supraventricular tachycardia (sSVT) in AF screening recordings, which has been shown to be associated with an increased risk for future AF. Therefore, the identification of subjects with suchepisodes may increase the usefulness of AF screening. The proposed detector is based on the assumption that the beats in an sSVT episode display similar morphology, and that episodes including detections of deviating morphology should be excluded. The results show that the number of false sSVT detections can be significantly reduced (by a factor of 6) using the proposed detector.Paper IV introduces a novel ECG simulation tool, which is capable of producing ECGs with various arrhythmia patterns and with several different types of noise and artifacts. Specifically, the ECG simulator includes models to generate noise observed in ambulatory recordings, and when recording using handheld recording devices. The usefulness of the simulator is illustrated in terms of AF detection performance when the CNN training in Paper I is performed using simulated data. The results show a very similar performance when training with simulated data compared to when training with real data. Thus, the proposed simulator is a valuable tool in the development and training of automated ECG processing algorithms. Together, the four parts, in different ways, contribute to improved algorithmic efficiency in AF screening

    Prediction of postoperative atrial fibrillation using the electrocardiogram: A proof of concept

    Get PDF
    Hospital patients recovering from major cardiac surgery are at high risk of postoperative atrial fibrillation (POAF), an arrhythmia which can be life-threatening. With the development of a tool to predict POAF early enough, the development of the arrhythmia could be potentially prevented using prophylactic treatments, thus reducing risks and hospital costs. To date, no reliable method suitable for autonomous clinical integration has been proposed yet. This thesis presents a study on the prediction of POAF using the electrocardiogram. A novel P-wave quality assessment tool to automatically identify high-quality P-waves was designed, and its clinical utility was assessed. Prediction of paroxysmal atrial fibrillation (AF) was performed by implementing and improving a selection of previously proposed methods. This allowed to perform a systematic comparison of those methods, and to test if their combination improved prediction of AF. Finally, prediction of POAF was tested in a clinically relevant scenario. This included studying the 48 hours preceding POAF, and automatically excluding noise-corrupted P-waves using the quality assessment tool. The P-wave quality assessment tool identified high-quality P-waves with high sensitivity (0.93) and good specificity (0.84). In addition, this tool improved the ability to predict AF, since it improved the precision of P-wave measurements. The best predictors of AF and POAF were measurements of the variability in P-wave time- and morphological features. Paroxysmal AF could be predicted with high specificity (0.93) and good sensitivity (0.82) when several predictors were combined. Furthermore, POAF could be predicted 48 hours before its onset with good sensitivity (0.74) and specificity (0.70). This leaves time for prophylactic treatments to be administered and possibly prevent POAF. Despite being promising, further work is required for these techniques to be useful in the clinical setting
    corecore