1,850 research outputs found

    DoWitcher: Effective Worm Detection and Containment in the Internet Core

    Get PDF
    Enterprise networks are increasingly offloading the responsibility for worm detection and containment to the carrier networks. However, current approaches to the zero-day worm detection problem such as those based on content similarity of packet payloads are not scalable to the carrier link speeds (OC-48 and up-wards). In this paper, we introduce a new system, namely DoWitcher, which in contrast to previous approaches is scalable as well as able to detect the stealthiest worms that employ low-propagation rates or polymorphisms to evade detection. DoWitcher uses an incremental approach toward worm detection: First, it examines the layer-4 traffic features to discern the presence of a worm anomaly; Next, it determines a flow-filter mask that can be applied to isolate the suspect worm flows and; Finally, it enables full-packet capture of only those flows that match the mask, which are then processed by a longest common subsequence algorithm to extract the worm content signature. Via a proof-of-concept implementation on a commercially available network analyzer processing raw packets from an OC-48 link, we demonstrate the capability of DoWitcher to detect low-rate worms and extract signatures for even the polymorphic worm

    Hyp3rArmor: reducing web application exposure to automated attacks

    Full text link
    Web applications (webapps) are subjected constantly to automated, opportunistic attacks from autonomous robots (bots) engaged in reconnaissance to discover victims that may be vulnerable to specific exploits. This is a typical behavior found in botnet recruitment, worm propagation, largescale fingerprinting and vulnerability scanners. Most anti-bot techniques are deployed at the application layer, thus leaving the network stack of the webapp’s server exposed. In this paper we present a mechanism called Hyp3rArmor, that addresses this vulnerability by minimizing the webapp’s attack surface exposed to automated opportunistic attackers, for JavaScriptenabled web browser clients. Our solution uses port knocking to eliminate the webapp’s visible network footprint. Clients of the webapp are directed to a visible static web server to obtain JavaScript that authenticates the client to the webapp server (using port knocking) before making any requests to the webapp. Our implementation of Hyp3rArmor, which is compatible with all webapp architectures, has been deployed and used to defend single and multi-page websites on the Internet for 114 days. During this time period the static web server observed 964 attempted attacks that were deflected from the webapp, which was only accessed by authenticated clients. Our evaluation shows that in most cases client-side overheads were negligible and that server-side overheads were minimal. Hyp3rArmor is ideal for critical systems and legacy applications that must be accessible on the Internet. Additionally Hyp3rArmor is composable with other security tools, adding an additional layer to a defense in depth approach.This work has been supported by the National Science Foundation (NSF) awards #1430145, #1414119, and #1012798

    Data Leak Detection As a Service: Challenges and Solutions

    Get PDF
    We describe a network-based data-leak detection (DLD) technique, the main feature of which is that the detection does not require the data owner to reveal the content of the sensitive data. Instead, only a small amount of specialized digests are needed. Our technique – referred to as the fuzzy fingerprint – can be used to detect accidental data leaks due to human errors or application flaws. The privacy-preserving feature of our algorithms minimizes the exposure of sensitive data and enables the data owner to safely delegate the detection to others.We describe how cloud providers can offer their customers data-leak detection as an add-on service with strong privacy guarantees. We perform extensive experimental evaluation on the privacy, efficiency, accuracy and noise tolerance of our techniques. Our evaluation results under various data-leak scenarios and setups show that our method can support accurate detection with very small number of false alarms, even when the presentation of the data has been transformed. It also indicates that the detection accuracy does not degrade when partial digests are used. We further provide a quantifiable method to measure the privacy guarantee offered by our fuzzy fingerprint framework

    SmartPot: Creating a 1st Generation Smartphone Honeypot

    Get PDF
    This paper discusses an experimental method for creating a 1st generation smart-phone honey-pot with the intention of discovering automated worms. A Honeyd low-interaction virtual honey-pot is conceived as a possible method of discovering automated smart-phone worms by emulating the operating system Windows Mobile 5 and Windows Mobile 6, along with the available TCP/UDP ports of each operating system. This is an experimental method as there are currently no known malicious smart-phone worms. Honeyd emulates devices by mimicking the devices operating system fingerprint which is created by the unique responses each operating system sends to a discrete series of TCP and UDP packets sent by the network scanner Nmap. Honeyd uses the Nmap fingerprint database for how it should emulate these responses each operating system. A significant obstacle was discovered during the implementation of the Honeyd smartphone honey-pot, as the format of fingerprints (2nd generation) utilised by Nmap are now different to the previous format (1st generation) which is utilised by Honeyd. Honeyd cannot make use of the new Nmap format of the smart-phone operating systems and thus a honeypot for smart-phones cannot be created. Future work forecasts the creation of a technique to convert the new Nmap format to one which can be utilised by Honeyd

    Sharing Computer Network Logs for Security and Privacy: A Motivation for New Methodologies of Anonymization

    Full text link
    Logs are one of the most fundamental resources to any security professional. It is widely recognized by the government and industry that it is both beneficial and desirable to share logs for the purpose of security research. However, the sharing is not happening or not to the degree or magnitude that is desired. Organizations are reluctant to share logs because of the risk of exposing sensitive information to potential attackers. We believe this reluctance remains high because current anonymization techniques are weak and one-size-fits-all--or better put, one size tries to fit all. We must develop standards and make anonymization available at varying levels, striking a balance between privacy and utility. Organizations have different needs and trust other organizations to different degrees. They must be able to map multiple anonymization levels with defined risks to the trust levels they share with (would-be) receivers. It is not until there are industry standards for multiple levels of anonymization that we will be able to move forward and achieve the goal of widespread sharing of logs for security researchers.Comment: 17 pages, 1 figur

    Collaborative internet worm containment

    Get PDF
    Large-scale worm outbrakes that leads to distributed denial-of-dervice attacks pose a major threat to internet infrastructure security. To prevent computers from such attacks deployment of fast, scalable security overlay networks based on distributed hash tables to facilitate high-speed intrusion detection and alert-information exchange are proposed. An effective system for worm detection and cyberspace defence must have robustness, cooperation among multiple sites, responsiveness to unexpected worms and efficiency and scalability. Deployment of collaborative WormShield monitors on just 1 percent of the vulnerable edge networks can detect worm signatures roughly 10 times faster than with independent monitors.published_or_final_versio

    Towards automated distributed containment of zero-day network worms

    Get PDF
    Worms are a serious potential threat to computer network security. The high potential speed of propagation of worms and their ability to self-replicate make them highly infectious. Zero-day worms represent a particularly challenging class of such malware, with the cost of a single worm outbreak estimated to be as high as US$2.6 Billion. In this paper, we present a distributed automated worm detection and containment scheme that is based on the correlation of Domain Name System (DNS) queries and the destination IP address of outgoing TCP SYN and UDP datagrams leaving the network boundary. The proposed countermeasure scheme also utilizes cooperation between different communicating scheme members using a custom protocol, which we term Friends. The absence of a DNS lookup action prior to an outgoing TCP SYN or UDP datagram to a new destination IP addresses is used as a behavioral signature for a rate limiting mechanism while the Friends protocol spreads reports of the event to potentially vulnerable uninfected peer networks within the scheme. To our knowledge, this is the first implementation of such a scheme. We conducted empirical experiments across six class C networks by using a Slammer-like pseudo-worm to evaluate the performance of the proposed scheme. The results show a significant reduction in the worm infection, when the countermeasure scheme is invoked

    Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2

    Get PDF
    The antiglycemic drug metformin, widely prescribed as first-line treatment of type II diabetes mellitus, has lifespan-extending properties. Precisely how this is achieved remains unclear. Via a quantitative proteomics approach using the model organism Caenorhabditis elegans, we gained molecular understanding of the physiological changes elicited by metformin exposure, including changes in branched-chain amino acid catabolism and cuticle maintenance. We show that metformin extends lifespan through the process of mitohormesis and propose a signaling cascade in which metformin-induced production of reactive oxygen species increases overall life expectancy. We further address an important issue in aging research, wherein so far, the key molecular link that translates the reactive oxygen species signal into a prolongevity cue remained elusive. We show that this beneficial signal of the mitohormetic pathway is propagated by the peroxiredoxin PRDX-2. Because of its evolutionary conservation, peroxiredoxin signaling might underlie a general principle of prolongevity signaling
    • 

    corecore