
DoWitcher: Effective Worm Detection and
Containment in the Internet Core

S. Ranjan1, S. Shah1, A. Nucci1, M. Munafò2, R. Cruz3, S. Muthukrishnan4

1 – Narus Inc, Mountain View, CA, USA
2 – Politecnico di Torino, Turin, Italy

3 – Univ California San Diego, CA, USA
4 – Rutgers Univ, NJ, USA

Abstract—Enterprise networks are increasingly offloading the
responsibility for worm detection and containment to the carrier
networks. However, current approaches to the zero-day worm
detection problem such as those based on content similarity of
packet payloads are not scalable to the carrier link speeds (OC-
48 and up-wards). In this paper, we introduce a new system,
namely DoWitcher, which in contrast to previous approaches
is scalable as well as able to detect the stealthiest worms
that employ low-propagation rates or polymorphisms to evade
detection. DoWitcher uses an incremental approach toward worm
detection: First, it examines the layer-4 traffic features to discern
the presence of a worm anomaly; Next, it determines a flow-
filter mask that can be applied to isolate the suspect worm
flows and; Finally, it enables full-packet capture of only those
flows that match the mask, which are then processed by a
Longest Common Subsequence algorithm to extract the worm
content signature. Via a proof-of-concept implementation on a
commercially available network analyzer processing raw packets
from an OC-48 link, we demonstrate the capability of DoWitcher
to detect low-rate worms and extract signatures for even the
polymorphic worms.

I. INTRODUCTION

Recent years have seen a sharp increase in Internet worms
causing damage to millions of systems worldwide. Worms are
automated programs that exploit vulnerabilities in computers
connected to the network in order to gain control over them.
Once they have successfully infected a system, they continue
to search for new victims and can spread through the network
on their own. Each new epidemic has demonstrated a greater
speed and virulence over its predecessor. While the Code
Red worm took over fourteen hours to infect its vulnerable
population in 2001, the Slammer worm, released some 18
months later, did the same in under 10 minutes [1]. The Code
Red worm is thought to have infected roughly 360,000 hosts,
while by some estimates, the Nimda worm compromised over
two million.

However, the next generation of worms can be expected to
spread much slower than its predecessors as well as employ
polymorphic techniques by either obfuscating or encrypting
the worm payload. With this increasing sophistication in
worms, enterprise networks can no longer rely on signature-
based solutions such as Intrusion Detection or Prevention
Systems (IDS/IDS) to promptly detect a new worm incidence,
popularly referred to as “zero-day worms”. Moreover, the
traffic volume of a zero-day worm purposely designed to
be low-rate would be “below-the-radar” of volume anomaly

detection techniques.
These sophisticated zero-day worms can not be promptly

detected via techniques deployed at an enterprise network
which has a limited visibility in to only the traffic entering
or leaving its network perimeter. Infact, carrier networks are
in a unique position to promptly detect as well as perform
forensics on such worm attacks. This is due to the fact that
carrier networks are afforded a natural correlation since they
see traffic from their customers via the edge-links as well as
from other carriers via the peering links, leading to a total
network view. As a consequence, we envision that in the
near future, enterprises would shift their security burden to
carriers where the deployment of a comprehensive security
shield would be much more efficient and proactive.

However, most existing worm detection algorithms have
not been designed with the unique performance requirements
of a carrier network in mind. While they have shown good
performance in detecting worms at the speeds of enterprise
networks e.g., 100 Mbps to 1 Gbps, they are not scalable to
the high data rate links which characterize the carrier networks
such as OC-48, OC-192 and up-wards. The past methods that
have been proposed to identify new worms can be divided into
two major categories.

The first class is based on content fingerprinting using
the layer-7 traffic information [2]–[4]. The primary intuition
underlying this class is that an ongoing worm propagation
should manifest itself in the presence of higher than expected
byte-level similarity among network packets: the similarity
arises because of the unchanging portions of the worm packet
payload, something expected to be present even in polymor-
phic or obfuscated worms (albeit spread out over the length
of the packet or across several packets belonging to the flow).

In contrast to, the second class [5]–[7] consists of techniques
which identify network anomalies by examining the layer-4
traffic distribution across a few features. The primary intuition
underlying these approaches is that a worm manifestation
breaks the statistical characteristics of Internet traffic; worm
traffic is more uniform or structured than normal traffic in
some respects and more random in others. Approaches such
as [7] and [6] propose techniques based on Principle Com-
ponent Analysis (PCA) and Residual State Analysis (RSA)
respectively, to establish complex relationships between the
traffic features using which flows are classified as either
legitimate or malicious. However, we contend that these ap-

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2541

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11391186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

proaches, while robust, are primarily offline and hence not
effective for worm containment at the high data rate links
atypical of the Internet core.

In this paper, we bridge the gap between the two classes
by proposing a novel worm anomaly detection system, called
DoWitcher, that brings together the characteristics of being
deployable for real-time high data rate links and the effi-
ciency and reliability of content fingerprinting techniques. The
scalability achieved by DoWitcher is based on its two-tiered
functional architecture, where initially anomaly detection is
performed using only the layer-4 information from the packets
and on determining the presence of an anomaly, the layer-7
payloads of only the anomalous flows are compared to extract
the worm signature. Dowitcher’s statistical anomaly detection
is based on the observation that during a worm outbreak at
least two of the traffic features exhibit diverging behaviors.
Further, signature extraction is achieved by comparing the
payloads of only the flows that match a layer-4 filter mask
via a Longest Common Subsequence (LCS) algorithm.

II. DOWITCHER SYSTEM ARCHITECTURE

DoWitcher is a highly scalable system able to collect raw
packets from network links and router interfaces, locally
extract key traffic features and then process all meta-data in
one single central location, critical for generating a real-time
network-wide view of traffic activity. The system is composed
of two modules: Local and Global analyzers.

The DoWitcher Local Analyzer (DLA), shown in Fig-
ure 1(a), represents the interface with network elements that
collects raw packets through a Network Tap, e.g., passive wire
tap to collect packets off the wire or port mirroring to collect
packets directly from router interfaces. The packets are then
processed by the Flow Reconstruction module that buffers
packets, reorders the out-of-sequence packets and state-fully
reconstructs the flows in real-time. A flow is defined by all
the packets identified by the layer-4 five-tuple, in between and
including the SYN and FIN packets (in case of TCP) or, until
there is no packet arrival within a specified timeout. The flows
are then processed by the Classifier module that extracts key
features from each flow.

At the end of a time window, DLAs deployed across the
network forward this information to the DoWitcher Global
Analyzer (DGA), shown in Figure 1(b). The DGA is in
charge of several functions: (i) extracting the histograms of
the key flow features, and summarizing their properties by
computing their entropies (Histogram Extraction Module); (ii)
grouping all entropies together in one single efficient metric,
(PMER Computation); (iii) profiling the metric over time and
generating alerts when an instantaneous deviation from the
historical trend of the current metric is observed (Baseline and
Alerting Module); (iv) composing a policy rule that captures
the worm activity from a traffic flow perspective (Flow Filter
Mask Generation). The policy is then forwarded down to all
DLAs. A typical policy would request capturing raw packets
from a few infected end hosts, using a specific destination or
source port and a fixed or range of flow sizes. As soon as
the policy is received, each local analyzer starts full packet

Fig. 1. Logical Architecture of DoWitcher: local and global analyzers.

capture of packets belonging to flows matching the policy
rule. After the flows are state-fully reconstructed, the Flow
Payload Extraction module strips out the packet headers and
stores only their payloads, generating what is defined as the
flow payload content. Finally, this information is forwarded to
the the DGA that extracts the worm signature by comparing
the payload contents.

III. ALGORITHM

In this section, we describe in great details the major
functionalities of our system, by emphasizing the Classifier
(DLA module) as well as all the blocks that comprise the
DGA described in Figure 1.

A. Classifier and Histogram Extraction Module

Due to its inherent goal to spread widely and quickly,
an effective worm might not affect the traffic volume yet
while severely disrupting the normal structure of Internet
traffic due its intrinsic characteristics to be more uniform
or structured than normal traffic in some respects and more
random in others. Usually, a small number of hosts try to find
other hosts to infect by attempting to connect to them in a
purely random fashion, scanning for a specific vulnerability.
Moreover, Internet worm payloads tend to be small in size in
order to spread as fast as possible. A large worm size would
prolong infection time and consume bandwidth that could be
used for infecting other targets.

Thus, DoWitcher extracts the following flow traffic features
whose histograms we will show to be affected during the
spread of the worm: (i) source ip-address, (ii) source port,
(iii) destination ip-address, (iv) destination port and (v) flow-
size. For example, a shift in the source ip-address histogram
will be expected whenever the number of flows generated
by the infected hosts grows to be a significant part of the
total observed flows; the source ip-addresses of the scanning
hosts will be seen in many flows and the distribution of
the source IP address will become more skewed around the
few infected hosts. A similar thing happens on the source
port and destination port histograms. If any attacker scans

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2542

for a specific vulnerability, these scans often have to go to
a specific target destination port. The source ports of these
connections are usually selected in some weakly random
fashion from a range of possible source ports. Example of
these behaviors are visible in worms seen in the past, like the
Sapphire (destination-port 1434), CodeRed (destination-port
80), Welchia (destination-port 135) and many others. A few
worms, like the Witty, behave unexpectedly, by using a fixed
source port and variable destination port. Similar consideration
holds for the flow-size histogram. If a specific flow size
becomes a significant component of the overall traffic, the
distribution of the flow size will become more skewed around
the flow size used by the worm. On the other hand, the
destination ip-address histogram can be expected to become
more flat due to the inherent random scanning activity of the
destination hosts.

A typical carrier link can consist of hundreds of thousands
of distinct ip-addresses at any given time. Hence, it may be
prohibitive to construct histograms over distinct ip-addresses.
DoWitcher’s histogram extraction is designed with the goal of
providing memory savings by aggregating flows over clusters
of ip-addresses. Clusters might be defined either statically, as
predefined blocks of IP addresses i.e., subnets (/16, /24) or,
dynamically, as groups of hosts behaving similarly over time
in terms of traffic.

B. PMER Computation Module

In order to track changes in the shape of the featured
histogram, we introduce the concept of Entropy that measures
how random a data-set is; the more random it is, the more
entropy it contains. In the following, we mathematically intro-
duce the concept of entropy. Let’s assume we are monitoring
a generic key feature X over time for a specific cluster A and
let MX(x) be its frequency distribution i.e., number of times
we see an element x ∈ X . From the frequency distribution
MX

i (x) = {xi} in time window i, we can derive the empirical
probability distributions PX

i (x) as: PX
i (x) = {pX

i |pX
i =

xi

mX }, where mX =
∑

xi is the overall number of flows that
contributed to the distribution during time window i.

From this probability distribution PX
i we calculate the

information entropy HX
i as: HX

i = −∑
p∈P X

i
p log2 p, where

by convention 0 log2 0 = 0. As known, entropy will be an
indication of the uniformity of the distributions: low entropy
indicates high probability in few elements (concentrated usage
of the same port, high traffic from the same source), while
high entropy indicates a more uniform usage (random scan
of destination IP, variable source port). Since we are using
log2(·) in our definition, each HX

i will assume values in a
range between 0 and �log2(NX)�, NX being the maximum
number of distinct values X can assume in the time window.
In order to have a metric HX

i independent of the number of
distinct values, we normalize the Entropy by the size of its
support, i.e., �log2(NX)�. This normalized Entropy is also
known in literature as Relative Uncertainty (RU) and in the
paper we refer to this metric as HX .

1) Single Global Metric: DoWitcher is based on the hy-
pothesis that during a worm outbreak, the Relative Uncertain-

ties of at least two of the five features will diverge [5]. In
order to capture this dynamics, we propose in this paper a
novel metric, namely Pair-Wise Marginal Entropy Ratio, that
exhibits a stable behavior under normal conditions, while a
sharp increase even during a low volume worm or scan activity.

First, let F denote the set of features (in this case, |F | = 5),
and let (X,Y) denote a pair of features in F such that

X,Y ∈ F,X �= Y . Further, let RXY
i = HX

i

HY
i

represent

the instantaneous ratio between the two marginal RUs HX

and HY and avg(RXY
i) = 1/NS

∑i−1
k=i−NS

HX
k

HY
k

represent the

average value of RXY over the last NS time-windows.
Definition 1: Pair-Wise Marginal Entropy Ratio (PMER) is

defined as the maximum over all feature-pairs (X,Y) of the
ratio between the marginal RUs (HX and HY) and its average
computed using the last NS time-windows. Then, PMER can
be computed as: Ri = max(X,Y) | RXY

i

avg(RXY
i)

− 1|.
At each point in time i, the metric captures the shift in

the slope between the instantaneous value of RXY and its
averaged value avg(RXY) for all feature-pairs. Thus, PMER
monitors the maximum divergence from normal behavior
across all possible feature-pairs. Note that the PMER metric
is space- and memory-efficient since it uses only marginal
histograms for its computation. However, since PMER does
not have information about joint-distributions, to accurately
identify the worm flows, we need an additional mechanism, a
flow filter-mask.

C. Baselining and Alerting Module

Our anomaly detection consists broadly of two phases:
offline baselining and; on-line detection. First, we perform an
offline characterization of traffic from system logs, assuming
that the traffic consists of legitimate flows solely i.e., it is
uninfluenced by any worms propagating through the network.
Next, in an on-line phase, we compare the ongoing traffic’s
statistics with the legitimate profiles obtained previously. We
thus define the anomaly detection problem in generic terms,
and propose a new method, namely forecasting which uses
a weighted average of traffic statistic in the past few ob-
servations, using which it forecasts the statistic for the next
time interval and flags the traffic as suspicious if it deviates
significantly from the historical trend. In the following we
mathematically introduce the forecasting profiling algorithm
for the PMER metric:

1) Define an averaging set Ri with |Ri| = W containing
the last W > NS Rj samples considered being in
profile. During baselining all the Rj are considered in
profile and included in Ri. Ri is valid only for i ≥ W ,
so we need to collect data for at least W time windows
before being able to run the algorithm.

2) Maintain a running average of Ri over Ri as: Ri =
1
W

∑
Rn∈Ri

Rn. During baselining, since all the last
W Ri samples are in Ri, this becomes: Ri =
1
W

∑i
n=i−W+1 Rn.

3) Define control coefficients α̂max
i and let α̂max

i =
α̂max

i = 1 for 0 < i < W .

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2543

4) For W < i ≤ Tw, Tw being the length of the
baselining period: if Ri > α̂max

i−1 Ri−1 then α̂max
i =

Ri

Ri−1
else α̂max

i = α̂max
i−1 .

At the end of the baselining period, α̂max
Tw

will contain
the largest measured excursion between one sample and the
average R value in the near past. We freeze this value, defining
αmax = α̂max

Tw
.

After the baselining period, we will report an anomaly
whenever Ri > αmaxRi−1. If no anomaly is revealed, the
sample Ri is added to Ri, dropping the oldest value in the
set, otherwise the sample is discarded, Ri does not change
and the average is not updated. The set for the calculation of
the running average R is therefore detached from the samples
coming from the measurements and it will contain only good
measures.

D. Flow-Filter Mask Generation Module

As soon as an alert is raised, DoWitcher analyzes the cause
of the deviation and identifies which features were involved in
the anomaly i.e., sudden change in their marginal RUs. At this
point, the algorithm focuses on the features for which it notices
a decrease in their marginal RU values between the previous
and the current time-window i.e., features whose histograms
become suddenly concentrated around specific elements. The
elements contributing the most to the decrease of the RU are
identified using the concept of relative entropy, defined in
the following. Let’s assume that at a specific point in time
i we detect an anomaly from one of the monitored cluster,
according to the forecasting approach. We remind the reader
that this condition is an alert if and only if two of the five
marginal RUs deviate in the opposite direction. Let’s assume
X be one of the key features that exhibits a decrease in its
RU value from time-window i − 1 to i, i.e. HX

i < HX
i−1. At

this point we need to identify the set LXi
= {xi ∈ MX

i (x)}
that are contributing the most to the decrease. The cardinality
of the set LXi

is defined as an input of the algorithm and
it is represented by |LXi

|. Given the empirical probability
distributions PX

i (x) and PX
i−1(x), we compute the relative

entropy REx
i for each of the elements {xi ∈ MX

i (x)} as
following:

REx
i = (pX

i /�log2(N
X
i)�)log2

pX
i /�log2(NX

i)�
pX

i−1/�log2(NX
i−1)�

. (1)

Then we sort the {xi} according to their relative entropy
value REx

i and we select store in the set LXi
the elements

contributing the most to REx
i . The cardinality of LXi

depends
on the amount of information required for further analysis.
Note that, for features that do not exhibit a drop at time i, we
define LXi

= ∅.
By applying the above procedure to all key features at time

i, we generate a set of flow-filter masks Mi = {mi}, where a
filter mask mi is obtained by an intersection of the elements
of each feature’s set of top elements, L or, mi =

⋂
X∈F LXi

.
Thus, for instance, if a source prefix 10.10.10.0/24 is detected
to originate a Slammer worm, then the filter mask could
look as follows: “source ip-address=10.10.10.0/24, destina-
tion ip-address=*, source port=*, destination port=1434, flow

size=404” which when matched would return all Slammer
worm flows originating from the infected prefix.

E. Fingerprinting

After extracting the payloads of the flows that match the
flow-filter mask, the payloads of two flows are compared to
obtain the worm fingerprint.

The fingerprint extraction algorithm compares the payloads
to extract the complex signatures associated with the ob-
fuscating strategies employed by polymorphic worms. These
worms have the characteristics to change their signatures
during their propagation into the network, by introducing wild-
cards or completely random characters, or by encrypting the
payload while hiding the decryption key somewhere around
the payload. However, even the polymorphic worms have
an invariant across different flows. We pose this problem as
determining the longest common subsequence between two
strings. A string s is said to be a subsequence of string S,
if s can be obtained by deleting 0 or more characters from
string S. Thus, a string s is a longest common subsequence
of strings S and T , if s is a common subsequence of S and
T and there is no other common subsequence of S and T of
greater length. For example, if two packet payloads contain
the following strings houseboat and computer, the longest
common subsequence that LCS reports is out. In contrast, an
algorithm that looks for the common substring, will not report
any commonality between the two packet payloads.

We use a simple dynamic programming approach toward
solving the LCS problem, that has polynomial complexity
O(nm), where n and m represent the length of the two strings
A and B in tokens. A token is a contiguous set of characters
i.e., a substring which is by default set to one character. For
each of the m starting points of A, the algorithm checks for
the longest common subsequence of tokens starting at each of
the n starting points of B.

IV. TESTBED IMPLEMENTATION AND RESULTS

In this section, we present details of our testbed imple-
mentation and results that justify the efficiency and efficacy
of DoWitcher in detecting low-rate as well as polymorphic
worms. In our experiments, we use network traces obtained
from one of the largest Tier-1 carrier networks in South
America.

To validate the efficacy of DoWitcher, we use a testbed
consisting of two machines, connected via an OC-48 link
(2.4 Gbps). Each machine has two Intel(R) Xeon(TM) CPU
3.40GHz processors and 4 Gbytes memory available to a
process running on the Linux kernel 2.4.21. We replay traces
by using tcpreplay from one machine while the other one is
configured to sniff packets off-the-wire and runs our packet an-
alyzer, flow reconstruction, anomaly detection and full packet
capture modules.

Next, we present results which highlight the efficacy of
DoWitcher in detecting even the low propagation rate worms,
which are un-detectable via volume metrics of total bandwidth,
total packets or number of new flows. In this experiment, we
use a 20 minute network trace from a large South American
carrier network and use a time window of 30 seconds for

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2544

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
el

at
iv

e
U

nc
er

ta
in

ty

Percentage of worm flows in total flows

src network address (/24)
dst ip
src port
dst port
flow size

(a) Change in RU

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40

F
ea

tu
re

 v
al

ue

Time slot

Worm

New flows (*100)
Packets (*1000)
Bandwidth (MB)

(b) Volume metrics

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40
 0

 1

F
ea

tu
re

 v
al

ue

Time slot

Training Period

src network address (/24)
dst ip-address
src port
dst port
flowsize
Alerts

(c) Behavior metric (PMER)

Fig. 2. Subfigure (a) shows the changes in RU on introduction of worm flows. Subfigure (b) shows that the worm doesn’t introduce any change in total
traffic volume while (c) shows its detection via PMER metric.

calculation of the histograms and the PMER metric. The
baselining period Tw of the PMER metric lasts until window
number 24, while the PMER is calculated by using the
following values for the sliding windows: W = 5 and NS = 5.

We inject a varying proportion of synthetic CodeRed worm
traffic in to the trace around time window 35 according
to the following worm propagation model: One ip-address,
belonging to one of the most-widely used subnet is assumed
to be infected. This infected machine then generates z worm
flows (TCP) per window destined to port 80. The infected
host performs a network scan and initiates one TCP flow per
destination ip-address, where the destination ip-addresses are
chosen as follows: 50% of the addresses contacted did not
occur in the last time window while the rest were seen in the
last window. The source port is chosen randomly and each
worm flow consists of a total of 15 packets and a total flow-
size of 4156 bytes, including the TCP handshake and tear-
down packets. In our experiments, we increase the number of
worm flows generated in time window 35 as z = [0-1000] until
the worm is detected via our PMER metric based alerting.
Observe from Figure 2(a), that the RU for source network
address, flow-size and destination-port decrease on increasing
the proportion of worm flows, since the infected host, flow-
size of 4156 and destination port of 80 begin to dominate the
histograms. In contrast, the RU for destination ip-address and
source-port do not exhibit much changes.

The worm becomes detectable via the PMER metric when
there are 200 worm flows per time window as shown in
Figure 2(c). This is indeed a low propagation rate worm, since
it comprises of 1.0% flows, 2.0% packets and 1.1% bytes of
total traffic in that time window, and is indistinguishable from
clean traffic completely due to its low volume as shown in
Figure 2(b).

In another experiment, we changed the payload of one
of the worm flows by spreading the content across mul-
tiple packets and inserting arbitrary no operator or ‘nop’
characters in the worm payload executable. In each of the
cases, our LCS algorithm was able to extract the CodeRed
signature as GET./default.ida? and most importantly
without imposing any significant CPU or memory performance
overheads.

V. CONCLUSIONS

In this paper, we presented DoWitcher, a novel system for
worm detection and containment at the carrier network link
speeds (OC-48, OC-192 and up-wards). DoWitcher provides
the capability of detecting zero-day worm threats by analyzing
the key features of traffic flows, isolating the suspect worm
flows via the generation of a flow filter-mask and extraction of
the worm content signature via a LCS algorithm applied over
the flow payload content of isolated flows. Thus, in contrast
with previous approaches, DoWitcher derives its scalability
by this two-tiered approach where only the layer-4 traffic
features are used for worm detection and the fingerprint ex-
traction is done on only a few suspect flows. Through testbed
experiments, we established the efficacy and efficiency of
DoWitcher in detecting the more sophisticated stealth worms:
low propagation rate worms which utilize as low as 1.1% of
the total network bandwidth and; polymorphic worms which
spread their signature across multiple packets.

REFERENCES

[1] D. Moore, V. Paxon, S. Savage, C. Shannon, S. Staniford, and N.
Weaver “The Spread of the Sapphire/Slammer Worm”, IEEE Security
and Privacy, 1(4) July 2003

[2] S. Singh, C. Estan, G. Varghese, and S. Savage “Automated Worm
Fingerprinting,” Proceedings of the 6th ACM/USENIX Symposium
on Operating System Design and Implementation (OSDI), December
2004

[3] H.-A. Kim and B. Karp, “Autograph: toward automated, distributed
worm signature detection,” Proceedings of the 13th USENIX Sym-
posium, August 2004

[4] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically
Generating Signatures for Polymorphic Worms,”, Proceedings of
IEEE Security and Privacy Symposium, Oakland, CA USA, May
2005

[5] A. Wagner and B. Plattner “Entropy Based Worm and Anomaly De-
tection in Fast IP Networks”, IEEE 14-th International Workshop on
Enabling Technologies: Infrastructures for Collaborative Enterprises
(WET ICE), STCA security workshop June 2005

[6] A. Lakhina, M. Crovella, and C. Diot “Mining Anomalies Using
Traffic Feature Distributions”, ACM Sigcomm August 2005

[7] K. Xu, Z. Zhang and S. Bhattacharyya “Profiling Internet Backbone
Traffic: Behavior Models and Applications”, ACM Sigcomm August
2005

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2545

