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Abstract
We describe a network-based data-leak detection (DLD)
technique, the main feature of which is that the detection
does not require the data owner to reveal the content of the
sensitive data. Instead, only a small amount of specialized
digests are needed. Our technique – referred to as the fuzzy
fingerprint – can be used to detect accidental data leaks due
to human errors or application flaws. The privacy-preserving
feature of our algorithms minimizes the exposure of sensi-
tive data and enables the data owner to safely delegate the
detection to others. We describe how cloud providers can of-
fer their customers data-leak detection as an add-on service
with strong privacy guarantees.

We perform extensive experimental evaluation on the pri-
vacy, efficiency, accuracy and noise tolerance of our tech-
niques. Our evaluation results under various data-leak sce-
narios and setups show that our method can support accu-
rate detection with very small number of false alarms, even
when the presentation of the data has been transformed. It
also indicates that the detection accuracy does not degrade
when partial digests are used. We further provide a quantifi-
able method to measure the privacy guarantee offered by our
fuzzy fingerprint framework.

Keywords privacy-preserving, data leak, detection, finger-
print, network security, algorithm

1. Introduction
Typical approaches to preventing data leak are under two
categories – host-based solutions and network-based solu-
tions. Host-based approaches may include i) encrypting data
when not used [5], ii) detecting stealthy malware with anti-
virus scanning or monitoring the host [21, 34, 39], and iii)
enforcing policies to restrict the transfer of sensitive data.
These approaches are complementary and can be deployed
simultaneously. For example, the host-based solution de-
scribed in storage capsule [5] prevents attackers from steal-
ing data in the memory, which requires encryption and data-
transfer rules, as well as complex operations to take host-
wide snapshots. Most of the host-based solutions require the
use of virtualization [21] or special hardware [34] to ensure
the system integrity of the detector.

We present a novel network-based data-leak detection
(DLD) solution that is both efficient and privacy-preserving.
In comparison to host-based approaches, network-based
data-leak detection focuses on analyzing the (unencrypted)
content of outbound network packets for sensitive informa-
tion. For example, a naive solution requires to inspect every
packet for the occurrence of any of the sensitive data defined
in the database. Such solutions generate alerts if the sensi-
tive data is found in the outgoing traffic. However, this naive
solution requires to store sensitive data in plaintext at the
network interface, which is highly undesirable.

Another motivation for our privacy-preserving DLD work
is cloud computing, which provides a natural platform for
conducting data-leak detection by cloud providers as an add-
on service. In cloud computing environments, an organiza-
tion (data owner) may have already outsourced its services
to a cloud provider, such as the email service for its own em-
ployees. The cloud provider may offer additional services
such as inspecting email traffic for inadvertent data leak and
serves as a DLD provider. This add-on DLD service requires
minimal changes to the cloud provider’s infrastructure and
makes the cloud service more attractive.

However, privacy is a major roadblock for realizing out-
sourced data-leak detection. Conventional solutions require
the data owner to reveal its sensitive data to the DLD
provider. However, the DLD provider is always modeled as
an honest-but-curious (aka semi-honest) adversary who is
trusted to perform the inspection, but may attempt to learn
about the data. Existing work on cryptography-based multi-
party computation is not efficient enough for practical data
leak inspection in this setting.

We design, implement, and evaluate a new privacy-
preserving data-leak detection system that enables the data
owner to safely deploy locally, or to delegate the traffic-
inspection task to DLD providers without exposing the sen-
sitive data. In our model, the data owner computes a spe-
cial set of digests or fingerprints from the sensitive data, and
then discloses only a small amount of digest information to
the DLD provider. These fingerprints have important prop-
erties, which prevent the provider from gaining knowledge
of the sensitive data, while enable accurate comparison and
detection. The DLD provider performs deep-packet inspec-
tion to identify whether these fingerprint patterns exist in the
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outbound traffic of the organization or not, according to a
quantitative metric. We perform extensive experiments with
real-world datasets in various data-leak scenarios to confirm
the accuracy and efficiency of our proposed solutions.

Our technical contributions are summarized as follows.

1. We describe a novel fuzzy fingerprint method for detect-
ing inadvertent data leak in network traffic. Its main fea-
ture is that the detection can be performed based on spe-
cial digests without the sensitive data in plaintext, which
minimizes the exposure of sensitive data during the de-
tection. This strong privacy guarantee yields a power-
ful application of our fuzzy fingerprint method in the
cloud computing environment, where the cloud provider
can perform data-leak detection as an add-on service to
its clients. We describe the quantitative privacy model,
algorithms, and analysis in fuzzy fingerprint. The pri-
vacy model is useful beyond the specific fuzzy finger-
print problem studied. The detection is based on the fast
set-intersection operation between the set of fingerprints
generated from the payload of intercepted traffic (done
by the DLD provider) and the set of fingerprints gener-
ated from the sensitive data (done by the data owner).
We describe a realization of fuzzy fingerprint alternative
to the above set-intersection approach, referred to by us
as the fingerprint filter. Fingerprint filter uses a modified
Bloom filter for membership testing, which we imple-
ment and evaluate for its performance in terms of running
time. We further discuss the effect of collisions in Bloom
filter on the privacy in our context of data-leak detection.

2. We implement our detection system and perform exten-
sive experimental evaluation on 2.6 GB Enron dataset,
Internet surfing traffic of 20 users, and also 5 simulated
real-world data-leak scenarios to measure the privacy
guarantee, detection rate, and efficiency of our proposed
technique. Our results indicate high accuracy performed
by our underlying scheme with very low false positive
rate. It also shows that the detection accuracy does not
degrade when partial sensitive-data digests are used. In
addition, these partial fingerprints fairly represent the full
set of data without any bias.

2. Model and Requirements
There are several practical types of DLD deployment as
shown below. Because of our digest-based detection method,
sensitive data is not required to be disclosed in all three types
of deployments. In what follows, we focus our description
on the third distributed environments, which can be applied
to the other two deployment scenarios.

1. To be deployed by an individual on a home network inter-
face, or to be deployed by a company that provides net-
work security services for home networks. The outsourc-
ing home network security was also pointed out in [15].

2. To be deployed locally by an organization at the gateway
router of its local area network.

3. To be deployed by a service provider that detects data
leaks for an organization.

There are two technical challenges associated with
network-based DLD detection. First, the DLD provider
gains knowledge about the sensitive data when the traffic
contains a leak. The challenge is how to restrict the degree
of information that can be learned by the DLD provider in
case of data leaks – the DLD provider has the access to
the plaintext packet payload. The second challenge is how
to make the detection noise-tolerant, for example, the inter-
cepted packet payload may contain unrelated bytes or the
sensitive data is truncated. We present our solutions to these
challenges in Section 3 – we strategically randomize the de-
tection for improving the privacy, and select local features
to achieve the noise-tolerance. Next, we first give our pri-
vacy model specifying the adversary’s capabilities and our
assumptions. Then, we present our DLD framework includ-
ing its key components and requirements.

2.1 Threat Model, Privacy Model, and Goal
Sensitive data may be leaked for several reasons. We aim to
detect the inadvertent data leak in our threat model.

• Case I Inadvertent data leakage: The sensitive data is ac-
cidentally leaked in the outbound traffic by a legitimate
user. This paper focuses on detecting this type of acci-
dental data leaks over the network. Inadvertent data leaks
may happen in different ways, e.g., due to human errors
such as forgetting to use encryption, carelessly forward-
ing an internal email and attachments to outsiders, or due
to application flaws (such as described in [22]).

• Case II Malicious data leakage: A rogue insider or mali-
cious and stealthy software may steal sensitive personal
or organizational data from a host. Because the malicious
adversary can use strong encryption or steganography to
disable content-based traffic inspection, thus this type of
leaks are out of the scope of our network-based solution.
Host-based defenses (such as detecting the infection on-
set [42]) need to be deployed instead.

• Case III Legitimate and intended data transfer: The sen-
sitive data is sent by a legitimate user intended for legit-
imate purposes. In this paper, we assume that legitimate
data transfers use data encryption such as SSL, which al-
lows one to distinguish it from the inadvertent data leak.
Therefore, in what follows we assume that plaintext sen-
sitive data appearing in network traffic is only due to in-
advertent data leaks.

There are two players in our model: the organization (i.e.,
data owner) and the data-leak detection (DLD) provider.

• Organization owns the sensitive data and authorizes the
DLD provider to inspect the network traffic from the or-



ganizational networks for anomalies, namely inadvertent
data leak. However, the organization does not want to di-
rectly reveal the sensitive data to the provider.

• DLD provider inspects the network traffic for potential
data leaks. The inspection can be performed offline with-
out causing any real-time delay in routing the packets.
However, the provider may attempt to gain knowledge
about the sensitive data. We model the DLD provider as a
honest-but-curious adversary (aka semi-honest), who fol-
lows our protocols to carry out the operations, but may
attempt to gain knowledge about the sensitive data.

The privacy goal in our fuzzy fingerprint mechanism is
to prevent the DLD provider from inferring the exact knowl-
edge of the sensitive data; the DLD provider is given the
fingerprints of sensitive data and the content of network traf-
fic which may or may not contain data leak. In our model,
we aim to hide the sensitive values among other nonsensi-
tive values, so that the DLD provider is unable to pinpoint
sensitive data among them even under data-leak scenarios.
We define our privacy goal as follows, following the K-
anonymity privacy definition in the relational databases [32?
]. K-anonymity has also been used in protecting routing pri-
vacy [38].

Our privacy goal is defined as follows. The DLD provider
is given digests of sensitive data from the data owner and
the content of network traffic to be examined. The DLD
provider should not find out the exact value of a piece of
sensitive data with more than 1

K probability, where K is an
integer representing the number of all possible sensitive-data
candidates that can be inferred by the DLD provider.

We describe a novel fuzzy fingerprinting mechanism in
the next section to improve the data protection against semi-
honest DLD provider, by utilizing simple and effective ran-
domization technique in fingerprint generation. The privacy
guarantee is much higher than 1

K when there is no leak in
traffic, because the adversary’s inference can only be done
through brute-force guesses.

2.2 Overview and Requirements for
Privacy-Preserving DLD

A DLD provider performs the data-leak analysis on trans-
formed and randomized inputs, and the transformation
mechanism provides adequate privacy protection for the data
owner. The key idea for fast and noise-tolerant comparison
is the design and use of a set of local features that are repre-
sentative of local data patterns. Local features preserve data
patterns even when modifications (insertion, deletion, and
substitution) are made to parts of the data.

The workflow in a network-based data-leak detection
framework is as follows: DATA PRE-PROCESSING by the
data owner, TRAFFIC PRE-PROCESSING AND DETECTION
by the DLD provider, and ANALYSIS by the data owner. Data
pre-processing is where the data owner takes the sensitive
dataset and computes the corresponding set of digests. Traf-

fic pre-processing and detection is where the DLD provider
gathers network packets and inspects the content for data
leaks. Analysis is where the data owner efficiently examines
the alerts generated by the DLD provider, identifies and in-
vestigates the true leak instances and ignore false positives.

The key component in privacy-aware data-leak detection
is the digest mechanism used. There are several require-
ments for such a digest algorithm: one-wayness, noise tol-
erance, and subset independence as explained below.

• Onewayness: Given a digest, it is computational hard
to obtain the corresponding pre-image. The onewayness
property partially provides the privacy protection for the
data being analyzed (more discussion in Section 4).

• Noise tolerance: Similar inputs yield similar digests. For
data-leak detection, the ability to tolerate certain degree
of data transformation in traffic is particularly important.
We use a sliding window to divide the original data into
sets of shingles (i.e., pieces of data in q-grams), which
can effectively localize the digest computation. Localiza-
tion means the breakdown of the original data into pieces
that are independent of each other. Fingerprints of shin-
gles are then be computed.

• Subset independence: The partial digests (selected by the
data owner to reveal to the DLD provider) are uniformly
distributed across the entire dataset; any part of the origi-
nal data is equally likely to appear in the partial digest set
Sd. The requirement of subset independence is to ensure
the fairness of sampling, and is especially useful if only
partial digests are selected by the data owner and revealed
to the DLD provider.

Next, we introduce shingle and Rabin fingerprint, based
on which our data-leak detection framework is built, and
explain how they satisfy the above requirements.

3. Details of Fuzzy Fingerprint Method
We describe the technical details of our fuzzy fingerprint
mechanism for privacy-preserving data-leak detection, by
first introducing shingle and Rabin fingerprint, and then pre-
senting our randomization method for detection.

3.1 Shingle and Fingerprint
Noise tolerance is realized by us through the use of shingles.
Shingles refer to the fixed size sequence of contiguous char-
acters (i.e., q-gram). For example, for string abcdefgh the
3-gram shingle set consists of six elements {abc, bcd, cde,
def, efg, fgh}. A sliding window is used in shingling a doc-
ument, which can be viewed as taking local snapshots. The
use of shingles for finding duplicate web documents was first
appeared in [6, 8]. Shingling operation effectively breaks a
dataset into multiple independent local pieces.

However, the use of shingles alone does not satisfy the
onewayness requirement. One needs to transform each shin-
gle element into its digest or fingerprint which uniquely rep-



resents the data. For this purpose, we use the Rabin fin-
gerprint algorithm [29] which produces short and hard-to-
reverse digests through the fast polynomial modulus oper-
ation. Rabin fingerprint has proven min-wise independence
property.

Rabin fingerprints are computed as polynomial modulus
operations, and can be implemented with fast XOR, shift,
and table look-up operations. The shingle-and-fingerprint
process is defined as follows. For a binary string c1c2 . . . cl
of length l and an irreducible polynomial p(x), we compute
the fingerprint f1 for the first k-bit shingle as follows.

f1 = c1x
k−1 + c2x

k−2 + . . .+ ck−1x+ ck mod p(x)

We use a sliding window to generate shingles of k-bit long.
For an input of size l, we repeat this computation to produce
l − k + 1 shingles and their corresponding fingerprints.

In our scheme, the data owner reveals a subset of
sensitive-data’s fingerprints to the DLD provider for use in
the detection by first sorting the fingerprints. The number
of fingerprints to be selected is specified by the data owner.
Rabin fingerprint is a special case of general linear permu-
tation, which was proved to be min-wise independent [3, 9].
The property states that each input element is equally likely
to become the minimum in the permuted set. This property
ensures that the fingerprinting process gives an uniform and
fair representation of the original data set, satisfying our sub-
set independence requirement described in Section 2. We ex-
perimentally validate this property in the appendix, and we
also analyze the privacy guarantees offered by our scheme in
Section 4.

3.2 Detection With Fuzzy Fingerprints
A straightforward detection method is for the DLD provider
to raise an alert if any of the sensitive fingerprints matches
the fingerprints generated from the traffic. However, this
exact-match approach has a privacy issue. In case of a data
leak detected, there is a match between two fingerprints –
one from the sensitive data and one from the network traffic.
Then, the DLD provider learns the corresponding shingle,
as it knows the content of the packet. Therefore, the central
challenge is to prevent the DLD provider from learning the
sensitive values even in data-leak scenarios, while allowing
the provider to carry out the traffic inspection.

We propose a randomization technique to address this
problem. The main idea is to relax the comparison crite-
ria by strategically introducing matching instances on the
DLD provider’s side without increasing false alarms for
the data owner. Specifically, i) the data owner perturbs
the sensitive-data fingerprints before disclosing them to the
DLD provider, and ii) the DLD provider detects leaking by
a range-based comparison instead of the exact match. The
range used in the comparison is pre-defined by the data
owner and correlates to the perturbation procedure. We de-
fine the fuzzy length and fuzzy set as follows.

DEFINITION 3.1. Given a fingerprint f , fuzzy length d is
the number of the least significant bits in f that may be
perturbed by the data owner, and d is less than the degree
of the polynomial used to generate the fingerprint.

DEFINITION 3.2. Given a fuzzy length d, and a collection
of fingerprints, the fuzzy set Sf,d of a fingerprint f is the
number of distinct fingerprints in the collection whose values
differ from f by at most 2d − 1.

The size of the fuzzy set |Sf,d| is upper bounded by 2d, but
the actual size may be much smaller due to the sparsity of
the fingerprint space and the (limited) size of the collection.

Next, we describe the operations in fuzzy fingerprinting
using the above definitions. For simplicity, the description
is based on one sensitive fingerprint, which can be easily
generalized to multiple fingerprints.

1. FUZZIFY: This operation is run by the data owner. Given
the fingerprint f of a shingle v and a fuzzy length d, the
data owner flips an unbiased coin d times to generate the
new least significant d bits in f . The rest of the bits in
f are unchanged. The resulting fuzzy fingerprint f∗ is
released to the DLD provider for use in the detection.

2. DETECTION: This operation is run by the DLD provider.
Given a fuzzy fingerprint f∗ of some sensitive data and
a fingerprint f ′ from the traffic, and a fuzzy length d, the
DLD provider outputs 1 (indicating possible data leak) if
values of f∗ and f ′ differ by at most 2d − 1, and 0 oth-
erwise. Because the fuzzy set of f∗ includes the original
fingerprint f , thus the true data leak can be detection (i.e.,
true positive). Yet, due to the increased detection range,
multiple values in the fuzzy set may trigger alerts. Be-
cause the fuzzy set is large for the given network flow, the
DLD provider has a low probability of pinpointing the
sensitive data, which can be bounded. We provide deep
analysis in later sections on fuzzy fingerprints including
empirical results on the size of fuzzy set with real-world
datasets.
The range-based detection operation can be generalized
to the membership testing with Bloom filter (through us-
ing fewer hash functions to increase collision probabili-
ties), which we describe next and evaluate in Section 5.
For all the data-leak matching instances (candidates)
detected during the range-based detection, the DLD
provider outputs the set of {(x1, f1), . . . , (xi, fi), . . .)}
pairs to the data owner, where x is the shingle appearing
in the traffic, and f is its Rabin fingerprint.

3. DEFUZZIFY: This operation is run by the data owner.
Given the data-leak instance candidates represented by
a set of tuples {(x1, f1), (x2, f2), . . .}, the data owner
searches to see if the sensitive data’s fingerprint f exists.
If there exists a fi = f and xi = v, then there is a
true data leak, otherwise the submitted candidates can be
safely ignored by the data owner.



The advantage of the above method is that the additional
matching instances introduced by fuzzy fingerprints protect
the sensitive data from the DLD provider; yet they do not
cause additional false alarms for the data owner, as it can
quickly distinguish true and false leak instances. Given the
digest f of a piece of sensitive data, a large collection D
of traffic fingerprints, and a positive integer K � |D|,
the data owner can choose a fuzzy length d such that there
are at least K − 1 other distinct digests in the fuzzy set
of f , assuming that the shingles corresponding to these K
digests are equally likely to be candidates for sensitive data
and to appear in network traffic. A tight fuzzy length (i.e.,
the smallest d value satisfying the privacy requirement) is
important for the efficiency of the DEFUZZIFY operation.
Due to the dynamic nature of network traffic, d needs to
be estimated accordingly. We provide quantitative analysis
in later sections on fuzzy fingerprints including empirical
results on the sizes of fuzzy sets.

A naive alternative to the fuzzy fingerprint mechanism is
to use a shorter polynomial modulus to compute Rabin fin-
gerprints (e.g., 16-bit instead of 32-bit). However, one issue
of this naive approach is that true positive and false positives
yield the same fingerprint value due to collision, which pre-
vents the data owner from telling true positives apart from
false positives. In addition, our fuzzy fingerprint approach is
more flexible from the deployment perspective, as the data
owner can adjust and fine-tune the privacy and accuracy in
the detection without recomputing the fingerprints. In con-
trast, the precision is fixed in the naive shorter polynomial
approach unless fingerprints are recomputed.

3.3 Extensions: Fingerprint Filter and Bit Mask
Fingerprint Filter Bloom filter [7, 14] is a well-known data
structure for performing set-membership test, and has the
advantage of space saving. It applies multiple hash functions
to each of the set elements and stores the resulting values in
a bit vector; to test whether a value v belongs to the set, the
filter checks each corresponding bit mapped with each hash
function. A mismatched indicates that v does not belong to
the set, otherwise, v may be a set member with a probability
based on the number of hash functions and their properties.

Bloom filter in combination with Rabin fingerprints is re-
ferred to by us as the fingerprint filter. For our fingerprint fil-
ter, we replace the original hash function (e.g., SHA-1) with
Rabin fingerprint. Our detection techniques described in this
work is order oblivious, i.e., the order of fingerprints is not
considered. Our network-based technique is complementary
to any host-based data-leak detection solutions.

Bit mask We can also generalize the FUZZIFY operation
with a bit mask, which specifies any arbitrarily chosen d
bits for comparison. The d bits used by the data owner in
FUZZIFY can be any arbitrary bits in the original fingerprint
(as opposed to the least significant bits), as long as:

• The DLD provider and the data owner agree on the bit
mask used.

• The Hamming distance between a binary fingerprint and
its fuzzy version is bounded by d.

The DETECTION operation needs to be generalized ac-
cordingly. Instead of identifying matching fingerprints in the
specific range of a fuzzy fingerprint, the DLD provider cre-
ates a bit vector of unperturbed bits and sets the perturbed bit
positions to be Don’t Care bits. Any fingerprint that matches
this special bit vector is recorded by the DLD provider and
reported to the data owner. Specifically, we formalize this
generalized detection mechanism based on the following
Hamming distance measure H(f, g) between fingerprints f
and g in their binary representations. The detection records
fingerprints from the traffic whose Hamming distances to
this special bit vector are 0.

H(f, g) =

 1 fi 6= gi
0 fi = gi
0 fi or gi is a don’t-care bit

4. Analysis and Discussion
Storing digests as opposed to the original data on DLD
providers defends the data confidentiality against not only
curious providers, but also security breaches to their servers
caused by outside attackers. We analyze the security and pri-
vacy guarantees provided by our data-leak protection sys-
tem, as well as discuss the sources of possible false negatives
– data leak cases being overlooked, and false positives – le-
gitimate traffic misclassified as data leak in the detection.
We point out the limitations associated with the proposed
network-based DLD approaches.

Privacy Analysis Our privacy goal is to prevent the DLD
provider from inferring the exact knowledge of the sensi-
tive data. The fingerprint-based privacy relies on the one-
wayness of the fingerprint computation. It is difficult to guess
the original shingles with only the knowledge of fingerprints.

We quantify the probability for the DLD provider to infer
the sensitive shingles. Suppose there are matches between
sensitive fingerprints and traffic fingerprints. Given a fuzzy
length, there are multiple (e.g., K) fingerprints (including
the sensitive data’s fingerprint) that may trigger alerts at the
DLD provider; thus, the DLD provider is unable to pinpoint
which alerts are true data leaks. Therefore, even if sensitive
data appeared on the traffic due to inadvertent data leak, the
DLD provider has no more than 1

K probability of inferring
the sensitive data, assuming that the shingles associated with
the fuzzy set are equally likely to be sensitive data and
appear in the network traffic. The size of fuzzy set K is
upper bounded by 2d, where d is the fuzzy length. For a
large shingle set of size 2m−d ≤ n ≤ 2m, the expected
value of K = n

2m × 2d, assuming that the fingerprints of
shingles are uniformly distributed. This privacy guarantee
protects the sensitive data in the worst-case scenario.



If there is no match between sensitive and traffic fin-
gerprints, then the adversarial DLD provider needs to brute
force to reverse the Rabin fingerprinting computation to ob-
tain the input shingle. The time needed depends on the size
of shingle space. This brute-force attack is difficult for a
polynomial-time adversary and thus the success probability
is not included in Theorem 4.1. We summarize the above
privacy analysis in the following theorem.

THEOREM 4.1. A polynomial-time adversary has no
greater than 2m−d

n probability of correctly inferring a
sensitive shingle, where m is the length of the fingerprint in
bits, d is the fuzzy length, and n ∈ [2m−d, 2m] is the size of
the set of traffic fingerprints, assuming that the fingerprints
of shingles are uniformly distributed and are equally likely
to be sensitive and appear in the traffic.

Alert Rate We qualify the rate of alerts expected in the
traffic given the following values: the total number of sen-
sitive fingerprints M , the expected size K of a fuzzy set of
fuzzy length d, the percentage α of sensitive fingerprints re-
vealed to the DLD provider (the set of partial sensitive fin-
gerprints selected denoted by Sd), and the expected rate β of
the leak in terms of the percentage of sensitive fingerprints
in Sd that may appear in the network traffic. Based on Theo-
rem 4.1, K = n

2m−d . Let n be the size of traffic fingerprints,
the expected alert rate R can be expressed in Equation 1.
It is used to derive threshold in the detection; the detection
threshold should be lower than the expected rate of alerts.

R =
αβMK

n
=
αβM

2m−d
(1)

Collisions Collisions may be due to where the legiti-
mate traffic happens to contain the partial sensitive-data fin-
gerprints by coincidence. The collision may increase with
shorter shingles, or smaller numbers of partial fingerprints,
and may decrease if additional features such as the order
of fingerprints are used for detection. A previous large-
scale information-retrieval study empirically demonstrated
the low rate of this type of collisions in Rabin fingerprint [8],
which is a desirable property suggesting low unwanted false
alarms in our DLD setting. Collisions due to two distinct
shingles generating the same fingerprint are proved to be
low [6] and are omitted.

Dynamic data For protecting dynamically-changing data
such as source code or documents under constant develop-
ment or keystroke data, the digests need to be continuously
updated for detection, which may not be efficient or practi-
cal. We raise the issue of how to efficiently detect dynamic
data with a network-based approach as an open problem to
investigate by the community.

Our proposed method is suitable for detecting sensitive
data units such as code words, social security numbers,
credit card numbers, or a large sensitive database where any

consecutive segments leaked. Selecting a subset of the sen-
sitive fingerprints (i.e., partial fingerprints) to disclose may
result in false negatives – the leaked data may evade the de-
tection because it is not covered by the partial fingerprints.
This issue illustrates the tradeoff between detection accuracy
and privacy guarantee. Our experiments evaluate continuous
data segments being leaked.

Prior knowledge of sensitive data Theorem 4.1 assumes
the uniform likelihood of being sensitive for all fingerprints
in a fuzzy set. However, the adversary may be able to differ-
entiate corresponding shingles based on the auxiliary infor-
mation regarding the sensitive data (e.g., the format or space
of the data). For example, a strong password may look differ-
ent from a regular English word. Although this observation
is true, such a differentiation analysis is difficult because of
the diversity of traffic, since the serialized binary data (e.g.,
image or video) may appear as random as strong passwords.

Data modification False negatives (i.e., failure to detect
data leak) may also occur due to the data being modified
by the leaking application (such as insertion, deletion, and
substitution). The new shingles/fingerprints may not resem-
ble the original ones, and cannot be detected. As a result,
a packet may evade the detection. In our experiments, we
evaluate the impact of several types of data transformation.

5. Implementation and Evaluation
We implement our fuzzy fingerprint framework in Python
(version 2.7), including packet collection, shingling, Rabin
fingerprinting and fingerprint filter.

Our implementation of Rabin fingerprint is based on
cyclic redundancy code (CRC). We use the same padding
scheme mentioned in [28] to handle small inputs, and map
our shingle into a sparse fingerprint space. In all experi-
ments, the shingles are in 8-byte, and the fingerprints are in
32 bit (33 bit irreducible polynomials in Rabin fingerprint).

We set up a virtual network environment with several
virtual machines in Oracle VirtualBox, simulating a scenario
where the sensitive data is leaked from a local network to
the Internet. Valid users’ hosts (Windows 7) are put into the
local network, which connects to the Internet via a gateway
(Linux). The gateway dumps the network traffic and gives it
to a DLD server (Linux). Using the pre-extracted sensitive-
data fingerprints defined by the users in the local network,
the DLD server performs off-line data leak detection. We
also set up some servers (FTP, HTTP, etc.) and a hacker’s
host on the Internet side to which a valid user can connect.

The DLD server detects the sensitive data within each
packet on basis of a stateless filtering system. We define the
sensitivity of a packet as

Spacket =
|FD

sens ∩ Fpacket|
min(|FA

sens|, |Fpacket|)
× |F

A
sens|
|FD

sens|

Fpacket is the set of all fingerprints extracted in a packet.
FA
sens is the set of all sensitive fingerprints, and FD

sens is the



set of sensitive fingerprints used in the detection. The users
in the local network (data owner) compute FA

sens and reveal
FD
sens (FD

sens ⊆ FA
sens) to the DLD server (DLD provider).

The DLD server computes Spacket (Spacket ∈ [0, 1]) and
compares it to a threshold Sthres ∈ (0, 1). Packets with
Spacket ≥ Sthres are marked sensitive and trigger alerts.

In this section, the goal of our evaluation is to answer the
following questions:

1. Can our solution accurately detect sensitive data-leak in
the traffic with low false positives (false alarms) and high
true positives (real leaks)?

2. Does using partial sensitive-data fingerprints reduce the
detection accuracy in our system?

3. What is the performance advantage of our fingerprint
filter over traditional Bloom filter equipped with SHA-1?

4. How to choose a proper fuzzy length and make a balance
between the privacy need and the number of alerts?

5. Can we experimentally validate the min-wise indepen-
dence property of Rabin’s fingerprint?

The questions are experimentally addressed in our fol-
lowing sections with the last one answered in the appendix.

5.1 Shingling and Fingerprinting Accuracy Evaluation
We design a group of experiments to evaluate how well our
underlying shingling and fingerprinting strategy works in
data-leak detection. We generate 20,000 personal financial
records as the sensitive data, which contain person name,
social security number, credit card number, credit card ex-
piration date, and credit card CVV (samples in Table 1), and
store them in a text file.

To evaluate the accuracy of our strategy, we perform three
separate experiments using the same sensitive dataset:

Exp.1 A user leaks the entire set of sensitive data via FTP
by uploading it to a FTP server on the Internet.

Exp.2 The outbound HTTP traffic of Internet-surfing by 20
users are captured (30 minutes per user), and given to
the DLD server to analyze. No sensitive data should be
detected, since it is not provided to the users.

Exp.3 The Enron dataset (collected and prepared by the
CALO Project: 2.6 GB data, 150 users’ 517424 emails)
as a virtual network traffic is given to the DLD server
to analyze. Each virtual network packet created is based
on an email in the dataset. No sensitive data should be
detected, neither.

All sensitive fingerprints (FD
sens = FA

sens) are used in the
detection, and the results are shown in Table 2.

The first experiment is designed to infer the true positive
rate. We manually check each packet and find out that the
DLD server detects all 651 real sensitive packets (all of
them have sensitivity values greater than 0.9). The sensitivity

Name SSN Credit Card Exp Date CVV

Kally 197908573 5247328478604466 02/2012 066

Vince 174257302 5948967605207190 12/2013 048

Faydra 301788837 2208159421142290 02/2013 792

Alisha 499197573 8481168228544639 03/2012 000

Yoshiko 993195251 9425620913759297 11/2012 655

Table 1. Samples of the sensitive data enties: social security
numbers and credit card information

Dataset Exp.1 Exp.2 Exp.3
Spacket Mean 0.952564 0.000005 0.001849
Spacket STD 0.004011 0.000133 0.002178

Table 2. Mean and standard deviations of the sensitivity per
packet in three separate experiments. For Exp.1, the higher
sensitivity, the better; for the other two (negative control),
the lower sensitivity, the better.

value is less than one, because the layered headers (IP, TCP,
HTTP, etc.) in a packet are not sensitive.

The next two experiments are designed to estimate the
false positive rate. In these two experiments, none of the
packets has a sensitivity value greater than 0.05, and the
average sensitivity is very low as shown in Table 2.

This group of experiments draws a strong conclusion
that our algorithm performs well with high true positives
and low false alarms in data-leak detection on plaintext.
A threshold of sensitivity can be easily set to distinguish
sensitive packets from normal ones. Analysis of our system
using partial fingerprints is discussed in Section 5.2.

5.2 Data-leak Detection With Partial Fingerprints
The advantages of using partial fingerprints are good privacy
control and efficient processing. We evaluate this situation
where only a (small) portion of sensitive data’s fingerprints
are revealed to the DLD server for detection. We are partic-
ularly interested in measuring the percentage of partial fin-
gerprints that can be detected in the traffic, assuming that
fingerprints are equally likely to be leaked (Given the sub-
set independence property, sensitive-data’s fingerprints are
equally likely to be selected for detection). We emulate sev-
eral real-world scenarios where data leaks are caused by hu-
man users or software applications.

• In the web-leak scenarios, a user posts sensitive data on
wiki (MediaWiki) and blog(WordPress) pages.

• In the backdoor scenario, a program (Glacier) on the
user’s machine (Windows 7) leaks sensitive data.

• In the email-leak scenario, a malicious Firefox browser
extension FFsniFF records the information in sensitive
web forms, and emails the data to a SMTP server.

• In the keylogging scenario, a keylogger EZRecKb exports
intercepted keystroke values on a user’s machine (Win-
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Figure 1. Performance comparison in terms of (a) the averaged sensitivity and (b) the number of detected sensitive packets.
X-axis, |F

D
sens|
|FA

sens|
, indicates the percentage of sensitive-data fingerprints revealed to the DLD server and used in the detection.

[out] indicates outbound traffic only, while [all] means both outbound and inbound traffic captured and analyzed.

dows 7). The keylogger records every key stroke, replac-
ing the function keys with labels, such as “[left shift]” in
its log. EZRecKb connects to a pre-defined SMTP server
on the Internet and sends its log periodically. In this ex-
periment, the user manually type the text, simulating ty-
pos and corrections, which bring in modifications of the
original sensitive data.

In these experiments, the source file of TCP/IP page on
wikipedia (24KB in text) is used as the sensitive data. Partial
fingerprints are revealed for detection, and the sensitivity
threshold is set Sthres = 0.05. All packets with Spacket ≥
Sthres are marked as sensitive, which trigger alerts and are
counted in computing average sensitivity.

Figure 1 shows the comparison of performance across
various size of partial fingerprints used in the detection, in
terms of the averaged sensitivity per packet in (a) and the
number of detected sensitive packets in (b). These accu-
racy values reflect results computed by the data owner af-
ter the defuzzification. The results show that the use of par-
tial sensitive-data fingerprints does not degrade the detec-
tion rate compared to the use of full sets of sensitive-data
fingerprints. Our rationale for this observation is as follows:
For 8-byte shingle, each shingle gathers 8 bytes information
around it. In other words, 10% of fingerprints cover up to
80% of sensitive data.

In Figure 1 (a), the sensitivities of experiments vary due
to different levels of modification by the leaking programs,
which makes it difficult to detect. WordPress converts space
into “+” when sending the HTTP POST request. Keylogger
inserts function-key as labels into the original text as well
as typing typos and corrections. In Figure 1 (b), [all] results
contain both outbound and inbound traffic and double the

real number of sensitive packets in Blog and Wiki scenarios
due to HTML fetching of the submitted data.

5.3 Runtime Comparison between Bloom Filter and
Fingerprint Filter

Our fingerprint filter implementation is based on the Bloom
filter library in Python (Pybloom). We make a comparison
between the runtime of Bloom filter with SHA-1 and that
of fingerprint filter with Rabin fingerprint. For Bloom filters
and fingerprint filters, we test their performance with 2, 6,
and 10 hash functions. We inspect 100 packets with random
content against 10 pieces sensitive data of various length for
each point drawn in Figure 2 – there are a total of 1,625,600
fingerprints generated from the traffic and 76,160 pieces of
fingerprints from the sensitive data. We show the detection
time per packet in Figure 2. The time used to create the
filters during the sensitive data initialization is similar to the
detection phase. Therefore it is not shown in the paper due
to limited space.

The result indicates that fingerprint filters run faster than
Bloom filters, which is expected as Rabin fingerprint is eas-
ier to compute than SHA-1. The number of hash functions
used in Bloom filters does not significantly impact their run-
time. The Bloom filter with 2 hash functions is the slowest in
Figure 2. We speculate that the slowdown is due to the high
number of collisions, whereas with more hash functions (and
fewer collisions) fingerprints can be ruled out quickly with-
out completing the full bit-vector comparison.

Using fewer hash functions in Bloom filters or fewer
polynomials in the fingerprint filters produces more false
positives at the DLD provider. The (true and false) posi-
tive instances are reported to the data owner who can then
quickly identifies the real data leaks, similar to the DE-
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Figure 2. The overhead of using the filters to detect data-
leak, the runtime is per packet (averaged from 100 packets)
against all 10 pieces of sensitive data, and the X-axis indi-
cates the amount of sensitive information in a packet.

FUZZIFY operations described in Section 3.2. This increased
collision improves the data privacy. For example, Bloom fil-
ter with 10 hashes has a collision (false positive) probability
of 0.10%, 6 hashes 1.56%, and 2 hashes 25%. Our fuzzy fin-
gerprint should not be confused with fuzzy Bloom filter [27].

5.4 Sizes of Fuzzy Sets vs. Fuzzy Length
The size of fuzzy set corresponds to the K value in our defi-
nition of privacy goal. The higher K is, the more difficult it
is for a DLD provider to infer the original sensitive data us-
ing our fuzzy fingerprinting mechanism – the fingerprint of
the sensitive data hides among its neighboring fingerprints.

We evaluate empirically the average size of the fuzzy set
associated with a given fuzzy length with both Brown Cor-
pus (English text) and network traffic (composed of Internet-
surfing traffic of a user). We aim to show the trend of how
fuzzy-set sizes changes with the fuzzy length, which can
be used to select the optimal fuzzy length used in the al-
gorithm. We compute 32-bit fingerprints from the datasets,
sort the fingerprints, and compute the number of neighbors
for each fingerprint. Figure 3 shows the estimated and ob-
served sizes of fuzzy sets for fuzzy lengths in the range of
[14, 27] for 218,652 fingerprints generated from the Brown
Corpus dataset, and 189,878 fingerprints from a network
traffic dataset. The Y-axis reflects on how many neighbors
each fingerprint has, given a range defined by the fuzzy
length. Figure 3 shows that the empirical results observed
are very close with the expected values of the fuzzy set sizes
computed based on Theorem 4.1. This close similarity also
indicates the uniform distribution of the fingerprints.

The fuzzy set is small when the fuzzy length is small,
which is due to the sparsity nature of Rabin fingerprints. The
data owner may use this type of experiments to determine
the optimal fuzzy length, given an estimated composition of
traffic content. In the datasets evaluated in the experiments,
for fuzzy length of 26 and 27 bits, the K values are above

1,500 and 3,000, respectively. Because the data owner can
defuzzify very quickly, the false positives can be sifted out
by the data owner. We also find that for a fixed fuzzy length
the distribution of fuzzy-set sizes follows a Gaussian dis-
tribution (not shown). K values may be set differently for
different sensitive fingerprints. Other datasets may have dif-
ferent size characteristics. What is important in our experi-
ment is the demonstration of the feasibility of estimating the
fuzzy set sizes, which illustrates how fuzzy fingerprinting
can be used to realize our privacy goal.

0	  
1000	  
2000	  
3000	  
4000	  
5000	  
6000	  
7000	  
8000	  

14	   15	   16	   17	   18	   19	   20	   21	   22	   23	   24	   25	   26	   27	  
Av

g.
	  #
	  o
f	  fi

ng
er
pr
in
ts
	  n
ea
rb
y	  

Fuzzy	  length	  (bits)	  

Brown	  Corpus	   Network	  Traffic	  

Expon.	  (Brown	  Corpus)	   Expon.	  (Network	  Traffic)	  

Observed	  (Brown)	  
Expected	  (Brown)	  

Observed	  (Network	  traffic)	  
Expected	  (Network	  traffic)	  

Av
g.
	  S
ize

	  o
f	  F
uz
zy
	  S
et
	  

Figure 3. The observed and expected sizes of fuzzy sets per
fingerprint (32-bit) in Brown Corpus dataset (in blue) and
network traffic (in red) with different fuzzy lengths.

Summary We develop an accurate privacy preserving
data-leak detection strategy. Table 2 shows the low false pos-
itive and high true positive properties of our strategy.

Our detection rates in terms of the number of sensitive
packets found do not decrease much with the decreasing size
of partial fingerprint sets in Figure 1, even when only 10%
of the sensitive-data fingerprints are used for detection. It is
desirable for both privacy and efficiency considerations to
have the data owner reveal as few fingerprints as possible.

Our experiments evaluate several noisy conditions such
as data insertion – for MediaWiki-based leak scenario, traf-
fic contains extra HTML tags in addition to sensitive data,
data deletion – traffic contains truncated sensitive data (not
shown due to space limit), and data substitution – for the
keylogger and WordPress-based leak scenarios, certain orig-
inal data elements are replaced in the traffic. Our results indi-
cate that the shingle-and-fingerprint method indeed can tol-
erate these three types of noises in the traffic to some de-
gree. Our algorithm works well especially in the case where
consecutive data blocks are preserved (i.e., local data fea-
tures are preserved) as in the MediaWiki-based leak sce-
nario. When the noises spread across the data and destroy
the local features (e.g., replacing every space with another
character), the detection rate decreases as expected. The use
of shorter shingles mitigates the problem, but may increase
false positives. How to improve the noise tolerance property
in those conditions remains an open problem.



From the implementation profiling, we also find out that
the speed of our system is heavily restrained by Python
virtual machine, especially due to the overhead of Python
function calls, though we use C/C++ extension to compute
Rabin’s fingerprint and SHA-1. We plan to rewrite our whole
framework in C/C++ in the future for faster performance.

Encrypted traffic, which cannot be directly in-
spected [37], requires host-based DLD solutions to
complement our network-based method. One approach
is to instrument the kernel so that the inspection can be
performed in the operating system of a host before data
is encrypted. Existing approaches involving data flow and
taint analysis [46] can be integrated.

6. Related Work
There have been several advances in developing privacy-
aware collaborative solutions from both system [11, 25, 33]
and theory perspectives [23, 43]. Specifically, Rabin fin-
gerprint [29] based on shingles was used previously for
identifying similar spam messages in a collaborative set-
ting [25], as well as collaborative worm containment [11],
virus scan [17], Web template detection [2], and fragment
detection [30].

Our work fundamentally differs from the above shingle-
based studies [11, 17] in particular. We consider the new
problem of data-leak detection in a unique outsourced
setting where the DLD provider is not fully trusted.
Such privacy requirement does not exist in the virus-scan
paradigm [17], for the virus signatures are non-sensitive.
In comparison, data-leak detection is more challenging be-
cause of the additional privacy requirement, which limits
the amount of data that can be used during the detection
and the amount of sensitive information gained by the DLD
provider. In the meantime, the provider’s detection accu-
racy cannot be compromised with partial digests based on
the sensitive data. Our fuzzy fingerprint method is new, and
our work describes the first systematic solution to privacy-
preserving data-leak detection with convincing results.

Information leak through outbound web traffic was stud-
ied by Borders and Prakash [4]. Both theirs and our work
detect suspicious data flow on unencrypted network traffic.
Their approach is based on the key observation that network
traffic has high regularities and that information (e.g., header
data) may be repeated. They proposed an elegant solution
that detects any substantial increase in the amount of new
information in the traffic. Their anomaly-detection method
detects deviations from normal data-flow scenarios, which
are captured in rules. In comparison, our work inspects traf-
fic for signatures of sensitive-data and does not require any
assumption on the patterns of normal header fields or pay-
load. Furthermore, our solution provides privacy protection
of the sensitive data against semi-honest DLD providers. We
also give performance evidences indicating the efficiency of
our solution in practice.

The method of deep packet inspection is also widely
used in network intrusion detection system (NIDS), such as
SNORT [31] and Bro. They focus on designing and imple-
menting efficient string matching algorithms [1, 24] to han-
dle short and flexible patterns in network traffic [26]. How-
ever, NIDS is not designed for various kinds of sensitive data
(e.g. long non-duplicated data), it may cause problems (e.g.
large amount of states in an automata) in data leak detec-
tion scenarios. On the contrary, our solution is not limited
to very special types of sensitive data, and we provide an
unique privacy-preserving feature for service outsourcing.

An alternative to our approach for privacy-preserving
computation is to use cryptographic mechanisms. Secure
multi-party computation (SMC) is a research direction pi-
oneered by Yao [44], where participants only learn the out-
comes of computation, not the private inputs. Existing SMC
solutions can support a wide range of fundamental arith-
metic, set, and string operations such as private set intersec-
tion [16, 47], as well as complex functions such as knapsack
computation [45], automated trouble-shooting [18], peer
computation [13], network event statistics [10], private infor-
mation retrieval [40, 41], genomic computation [20], private
join operations [12], and distributed data mining [19]. The
provable privacy guarantees offered by SMC come at a cost
in terms of computational complexity and implementation
complexity as well. The advantage of our shingle/fingerprint
based approach is much more efficient and simpler.

7. Conclusions and Future Work
Preventing sensitive data from being compromised is an
important and practical research problem. We proposed a
novel fuzzy fingerprint framework and algorithms to real-
ize privacy-preserving data-leak detection. Using special di-
gests, the exposure of the sensitive data is kept to a mini-
mum during the detection. We described its application in
the cloud computing environments, where the cloud provider
naturally serves as the DLD provider. We defined our privacy
goal by quantifying and restricting the probability that the
DLD provider identifies the exact value of the sensitive data.
We presented the protocols and data structures including a
Bloom-filter based fuzzy fingerprint filter. Our extensive ex-
periments validate the accuracy, privacy, and efficiency of
our solutions. For future work, we will test our current so-
lution on binary sensitive data, and then focus on designing
solutions that will efficiently prevent the leakage of complex
data types, especially dynamically-changing sensitive data,
such as source code of programs and sensitive documents
constantly being modified.
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Figure 4. The distribution of the smallest subset of finger-
prints in terms of their positions in the original data in ran-
dom text (a) and Brown Corpus (b).

A. Appendix: Verification on Min-Wise
Independence Property

The subset independence property provides the strong assur-
ance on the fairness of using partial fingerprints in our detec-
tion. This property is important because the DLD provider is
only allowed to access a subset of sensitive-data fingerprints
for detection. To ensure the smallest subset of fingerprints
(used for detection) are uniformly distributed across the en-
tire set of sensitive fingerprints, we perform several experi-
ments as follows.

We plot the distribution of the smallest subset of finger-
prints in terms of their positions in the original data. The
position is calculated as the percentage offset relative to the
beginning, e.g., the first fingerprint is 0% and the last one
100%. In the first experiment, we select the smallest finger-
print and the second experiment, we select the 20 smallest
fingerprints. The results shown in Figure 4 (a) are averaged
over 10,000 and 500 runs on 1KB randomly generated data,
respectively. The data used to compute shingles and finger-
prints is 1KB. Besides random bytes, we also test the Brown
Corpus in Figure 4 (b). Both results validate the min-wise
independence property of Rabin fingerprint, as the smallest
fingerprints are uniformly distributed across the data.


