
Title Collaborative internet worm containment

Author(s) Cai, M; Hwang, K; Kwok, YK; Song, S; Chen, Y

Citation Ieee Security And Privacy, 2005, v. 3 n. 3, p. 25-33

Issued Date 2005

URL http://hdl.handle.net/10722/44726

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37883580?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Infrastructure Security

MIN CAI, KAI

HWANG, YU-
KWONG KWOK,
SHANSHAN

SONG, AND YU

CHEN

University of
Southern
California

PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY 25

R ecent Internet worm outbreaks have infected
hundreds of thousands of Internet servers and
user machines within minutes,1 causing billions
of dollars in losses for businesses, governments,

and service providers.2 CodeRed, for example, affected
more than 359,000 Web servers in 14 hours; Slammer
achieved its maximum Internet-wide scanning rate (55
million scans per second) in a few minutes. The high
stakes involved have inspired numerous research projects,
through which industry and academic institutions are
working to strengthen local-area and wide-area net-
worked systems’ abilities to fend off cyberattacks.

To that end, we propose deploying fast, scalable secu-
rity overlay networks based on distributed hash tables
(DHTs)3 to facilitate high-speed intrusion detection and
alert-information exchange. Fortifying the Internet infra-
structure with such a solution could benefit many secu-
rity-sensitive applications, such as digital government,
critical infrastructures, grid computing, e-commerce, and
law enforcement. The broader impacts are far reaching in
science, education, business, and homeland security.

An effective system for worm detection and cyber-
space defense must have the following capabilities:

• robustness and resilience in performing security func-
tions in real-life Internet environments; 4,5

• cooperation among multiple sites, enabled by trust in-
tegration and alert-correlation methodologies;6

• responsiveness to unexpected worm or flooding at-
tacks, enabled by fast anomaly detection and distrib-
uted denial-of-service (DDoS) defense;7 and

• efficiency and scalability, enabled by fast worm-signa-
ture detection and dissemination,8 as well as accurate

traffic monitoring for tracking
DDoS attack-transit routers.9

With these attack-resilience goals in mind, we are devel-
oping a prototype NetShield cyberspace defense system6

for containing the spread of worms and defending against
DDoS flooding attacks (http://gridsec.usc.edu/). Here,
we focus on two major components in the NetShield sys-
tem: the WormShield system for detecting and dissemi-
nating worm signatures and a traffic-monitoring scheme
for tracking DDoS flooding attacks. We present experi-
mental results for these two component systems derived
from large-scale simulations.

DHT-based security
overlay networks
Many researchers have suggested the use of overlay net-
works for security services, building on collaborative nodes
to support fast alert correlation and group communica-
tions.4,5 Network-layer overlays built with virtual links by
IP tunneling are generally faster for message forwarding
than popular application-layer overlays, such as peer-to-
peer (P2P) networks. However, introducing new function-
ality into network-layer overlays requires modifications to
OS kernels and other infrastructure features, which makes
them impractical for ordinary users. To address this fact,
we’ve explored the use of distributed P2P networks with
DHT systems for fast, resilient look-up services.

The idea is to maintain structured overlay networks
among participating peers and use simple message rout-
ing rather than flooding. The basic functionality that
DHTs provide is in the lookup(key) operation,
which returns the identity of the node in which the ob-

Collaborative Internet
Worm Containment

Large-scale worm outbreaks that lead to distributed denial-

of-service attacks pose a major threat to Internet

infrastructure security. Fast worm containment is crucial for

minimizing damage and preventing flooding attacks

against network hosts.

Infrastructure Security

26 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2005

ject with the specified key is stored. When a node issues a
lookup(key) request, the system routes the lookup
message to the node responsible for the key. DHT sys-
tems can guarantee to finish a lookup operation in O(log
N) hops for a network with N nodes. This implies that
the DHT overlay is scalable to very large networks.

Figure 1 illustrates the NetShield architecture, which
is built on a DHT-based overlay network that integrates
multiple security services including attack/intrusion
monitoring, detection and defense, alert correlation, and
security-update delivery. Our design is based on the
Chord system,3 which emphasizes efficient routing, reli-
ability, scalability, robustness to failure, and self-organiza-
tion. We extend the DHT overlay to withstand DDoS,
routing, and storage-and-retrieval attacks.

Our approach differs from the Domino10 and Security
Overlay Service (SOS)4 systems in that we propose an inte-
grated architecture for various security services at the P2P
level. We aim to reduce the communication overhead by

using DHT lookup(key) functionality. NetShield also
supports encrypted tunneling over multiple domains, multi-
cast-based authentication, dissemination of newly detected
worm signatures, and security binding in Internet services.

Internet worm
detection and containment
Recent seminal work suggests that automatically generat-
ing worm signatures by analyzing payload contents and ad-
dress dispersion offers promising results (see the “Related
work in worm containment” sidebar on p. 32 for an
overview). However, most scanning worms are dispersed
over the entire Internet when they start to spread. In the
early stages, it’s difficult to observe significant anomalies and
accumulate enough payload contents with worms at indi-
vidual edge networks. Instead, we need to correlate infor-
mation from multiple edge networks to detect worm signa-
tures quickly and accurately—especially for flash worms.11

To face this challenge, we developed the WormShield

Figure 1. The NetShield system architecture and trust integration over a distributed hash table (DHT) overlay. The system
performs trust management across multiple administrative domains, suppresses Internet worm outbreaks, and defends
against distributed denial-of-service (DDoS) flooding attacks.

Trust integration/negotiation platform overlay

Authentication Authorization Delegation Integrity control

Overlay network for trust management

DHT-based
overlay network

Flood control for
DDoS defense

Collaborative
alert correlation

Distributed intrusion detection/response system

Anomaly
detection

Misuse
detection

Signature updateInvoke response

Worm-signature
generation

Broadcast
update prevalence

Cooperative anomaly and intrusion detection systemWormShield and DDoS defense

Security policy
implementation

Intrusion detection
information exchange

Infrastructure Security

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 27

worm-signature detection and characterization system,
which is designed to identify and contain unknown
worms before they infect most vulnerable hosts. The sys-
tem includes a set of geographically distributed monitors
located in multiple administrative domains.8 These mon-
itors are self-organized into a structured P2P overlay net-
work based on the Chord algorithm.3 Each monitor is
deployed on the edge network’s demilitarized zone
(DMZ), where it analyzes all incoming packets passing
through it. Figure 2 shows an example WormShield net-
work with six sites deployed.

Signature generation and dissemination
Figure 3 illustrates the worm-signature detection and dis-
semination process. Each WormShield monitor i uses the
Rabin footprint algorithm12 to compute the content blocks
in packet payloads. It then updates the local prevalence table
for each content block j, denoted by L(i, j), which tracks the
number of occurrences of content block jobserved by mon-
itor i. It also remembers the set of source addresses S(i, j) and

destination addresses D(i, j) corresponding to content block
j. Once L(i, j) is greater than a local prevalence threshold Tl

and the address dispersion |S(i, j)| + |D(i, j)| is greater than
a local address-dispersion threshold Ts, monitor i starts to up-
date the global prevalence P(i, j) as well as the global address
dispersion C(j) for content block j.

For each content block, we select a root monitor using
the consistent hashing scheme in Chord, which works by
mapping arbitrary content blocks to the monitors in a load-
balanced manner.3 The root monitor maintains its corre-
sponding content block’s aggregated prevalence and address
dispersion. When P(j) is greater than a global prevalence
threshold Tp, and C(j) is greater than an address-dispersion
threshold Tc, the root monitor identifies the content block
jas a potential worm signature. It then constructs a multicast
tree on the overlay network and disseminates the signature
to all monitors in the WormShield network.

Each monitor could automatically deploy the re-
ceived worm signature in local signature-based intrusion
detection systems, such as Snort (www.snort.org) or Bro

Figure 2. The WormShield architecture. In this example, six worm-monitoring sites are deployed in six edge networks.
This DHT-based overlay system performs distributed worm monitoring, anomaly detection, signature updating, alert
correlation, and automated intrusion response.

Chord ID
Content Local Addresses

(src, dest)

 76 s1 1 S1(A), D1(A)
112 s2 4 S2(A), D2(A)
 55 s3 2 S3(A), D3(A)
215 s4 5 S4(A), D4(A)

0/256

U
p
d
a
t
e
p
r
e
v
a
l
e
n
c
e

{
2
1
5
,

S
4
,

5
,

S
4

(
A
)
,

D
4
(
A
)
}

U
p
d
a
t
e
p
r
e
v
a
l
e
n
c
e

{
2
1
5
,

S
4
,

5
,

S
4

(
A
)
,

D
4
(
A
)
}

192

128

64

Chord ID
Content Global Address

215 s4 5 + 6 = 11 18
180 s5 4 + 8 = 12 22
...

 Tl = 3Local table:

Global table:Tp = 10,Tc = 20

Chord ID
Content

block
Local

prevalence
Addresses
(src, dest)

215 s4 6 S4(C),D4(C)
180 s5 4 S5(C),D5(C)

Local table:

Chord ID
Content

block
Local

prevalence
Addresses
(src, de st)

180 s5 7 S5(D),D5(D)

Tl = 3 Tl = 3Local table:

Identified
worm

signature

Site A

Site F

Site E

Site D

block prevalence dispersion

block prevalence

Site B

Site C

Infrastructure Security

28 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2005

(http://bro-ids.org), or define different policies for im-
porting signatures generated by other root monitors. For
example, they might notify local security administrators
before activating signature filtering or rate limiting.

Simulated worm-spreading experiments
We evaluated WormShield with a large-scale simulation
using a method similar to that employed by David Moore
and colleagues7 and Hyang-Ah Kim and Brad Karp.13

Specifically, we simulated two variants of CodeRed
worms on a real Internet configuration of 105,246 edge
networks in 11,342 autonomous systems (ASes) with
338,652 vulnerable hosts. We assigned IP address ranges
for edge networks and ASes based on a Border Gateway
Protocol (BGP) table snapshot from the University of
Oregon’s RouteViews project (www.routeviews.org) for
the date of the CodeRed outbreak (19 July 2001).

We truncated all address blocks that were larger than
class B networks (/16 network, so-called because its net-
work prefix is the first 16 bits) because it’s unreasonable to
attempt to monitor class A networks (/8 network) with
only one monitor. We also ignored address blocks smaller
than class C networks (/24 network) because those address
blocks often represent router link interfaces rather than po-
tentially vulnerable end hosts. In the end, we identified
6,378 vulnerable ASes and 61,216 vulnerable edge net-
works (containing at least one vulnerable host). Like Kim

and Karp, we assumed that 50 percent of the address space
within the vulnerable ASes was populated with reachable
hosts, and that 25 percent of those hosts were running Web
servers. Given that CodeRed worms send infecting pack-
ets only after establishing TCP connections with targets,
only 1/8 of the address space within those vulnerable ASes
would receive TCP payloads with infecting packets.

We simulated a CodeRedI-v2-like worm, which
uniformly probes the entire IP address space except for
244.0.0.0/8 (multicast) and 127.0.0.0/8 (loopback), as
these are invalid addresses for any end host. We also simu-
lated a CodeRedII-like worm, which probes a com-
pletely random IP address 1/8 of the time, addresses in
the same class A network half the time, and addresses in
the same class B network 3/8 of the time. Both worms
sent 10 probes per second and began the simulation with
25 infected hosts.

Figure 4a shows the infection progress for these two
simulated worms. The results for the CodeRedI-v2
worm are very similar to Moore and colleagues’ simula-
tion. Because CodeRedII uses subnet-preferred scan-
ning, which is biased toward probing hosts in local
subnets rather than uniform scanning, it spreads much
faster—CodeRedII infected 50 percent of the vulnera-
ble population (169,326 hosts) in 66 minutes, whereas
CodeRedI-v2 took 219 minutes to infect the same
number of hosts.

Figure 3. The worm-signature detection and dissemination process. Each WormShield monitor carries out three key
mechanisms: local prevalence with address dispersion, global prevalence with address dispersion, and dissemination of
suspected worm signatures.

Other
WormShield

monitors

Monitored DMZ traffic

Local content-prevalence table

Chord ID
Content

block
Local

prevelance

ID(j) j L(i, j)

Content block j

Rabin fingerprinting

Update L(i,j)

Local address-dispersion table

Content
block

Source IP Destination
IP

j S(i, j) D(i, j)
Update
S(i,j) , D(i, j)

|S(i, j) | + |D(i, j) | > T

Send updates
for P(j) and C(j) to
monitor root (j)

Global content-prevalence
and address-dispersion table

Address
dispersion

C(j)

P(j) > Tp
&& C(j) > Tc

No

Yes

No

Yes

No

Update P(j) , C(j)

Yes

Process updates
for P(j) and C(j) from

other monitors

Report j as
suspected worm

Disseminate suspected
worm signature j to

WormShield network

Global
prevalence

P(j)

Chord ID

ID(j)

Chord protocol

L(i, j) > Tl

Infrastructure Security

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 29

Figure 4b shows the number of vulnerable hosts in-
fected when WormShield succeeds in detecting the
worm signature. We plot the results as a function of the
global prevalence threshold required to trigger signature
detection. In this experiment, we monitored 1 percent of

the vulnerable edge networks (612 out of 61,216 net-
works) with both independent monitors and collabora-
tive WormShield monitors.

When the global prevalence threshold was 1,000—
often the number required in distinguishing innocent

Figure 4. Signature detection and growth of infected hosts for simulated CodeRed worms. The simulations ran on an
Internet configuration of 105,246 edge networks in 11,342 autonomous systems containing 338,652 vulnerable hosts.
(a) Infection progress for two CodeRed variants shows that worms with subnet-preferred scanning spread faster than those
with uniform scanning. (b) The effects of the global prevalence threshold show that collaborative monitors can detect
signatures much faster than independent monitors. (c) The effects of the local prevalence threshold show that signature
detection slows down slightly as local prevalence threshold increases. (d) The effects of monitors deployed over different
edge networks show that WormShield monitors can reduce more infected hosts at detection time than independent
monitors when edge networks being monitored increase from 0.1 percent to 50 percent of total networks monitored.

61
(0.1%)

612
(1%)

6,121
(10%)

30,608
(50%)

0

Edge networks monitored

Independent monitors (average)
Independent monitors (best)
Collaborative monitors in WormShield

(d)

In
fe

ct
ed

 h
os

ts
(t

ho
us

an
ds

)

(a) (b)

350

300

250

200

150

100

50

350

300

250

200

150

100

50

0 1 2 3 4 5 6 7
Time (hours)

CodeRedll (subnet-preferred scanning
CodeRed1-v2 (uniform scanning)

In
fe

ct
ed

 h
os

ts
 a

t
de

te
ct

io
n

tim
e

(t
ho

us
an

ds
)

Global prevalence threshold (Tp)

Independent monitors (average)
Independent monitors (best)
WormShield monitors (T1 = 10)
WormShield monitors (T1 = 100)
WormShield monitors (T1 = 500)

1 10 100 1,000 10,000 100,000 1e+06

(c)

Local prevalence threshold (Tj)

In
fe

ct
ed

 h
os

ts
 a

t
de

te
ct

io
n

tim
e

(t
ho

us
an

ds
)

Tp = 10,000

Tp = 100,000

10 100 1,000

350

300

250

200

150

100

50

In
fe

ct
ed

 h
os

ts
 a

t
de

te
ct

io
n

tim
e

(t
ho

us
an

ds
)

350

300

250

200

150

100

50

Infrastructure Security

30 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2005

content blocks—the worm infected 223,510 hosts be-
fore the average independent monitors succeeded in de-
tecting its signature. Even the best independent monitors
detected worm signatures only after 35,219 hosts were
infected. WormShield monitors, on the other hand, de-
tected the signatures by the time 1,354, 8,127, and
18,287 hosts were infected (for local prevalence thresh-
olds of 10, 100, and 500, respectively).

Figure 4c plots the effect of the local-prevalence
threshold required to trigger global-prevalence up-
dates. With a global threshold of 100,000, the number
of infected hosts at detection time increased only
slightly when the local threshold increased from 10 to
1,000. For a global threshold of 10,000, however, the
number of infected hosts at detection time increased
from 9,482 to 35,897 when the local threshold in-
creased from 200 to 1000. This suggests that the local
threshold must be set at a value smaller than 200 for a
global threshold of 10,000.

We also compared WormShield’s signature-detection
speeds when different fractions of the vulnerable edge
networks were monitored. Figure 4d shows the number
of vulnerable hosts infected at detection time when 61,
612, 6,121 and 30,608 edge networks were monitored.
With independent monitors, worm-detection speeds
didn’t improve as we increased the number of monitors.
Because WormShield monitors work collaboratively,
however, total infected hosts at detection time decreased
from 77,889 to 4,063 as we increased the number of
monitored edge networks.

Fast and accurate
traffic monitoring
Spreading worms often trigger DDoS flooding attacks.
Effective containment of worms can significantly reduce
the number of infected hosts, as well as stem the creation
of “zombie” end-user machines that can be used later as
attackers. However, we can’t completely prevent DDoS
attacks by simply containing worm outbreaks. Backbone
ISPs often need to monitor traffic volumes among routers
to identify attack-transit routers (ATRs)—ingress routers
that unwittingly forward malicious DDoS attack flows.

The network traffic matrix (TM), which represents
the amount of traffic in bytes, packets, or flows between
ingress and egress routers, is very useful for identifying
ATRs. We consider packet-level TM (PTM) and flow-
level TM (FTM). We proposed a cardinality-based TM-
measurement approach (CBTM) for both PTM and
FTM. We denote X(tk) as the TM for time slot tk. Let
Si

+ (tk) be the set of traffic entering the network from
ingress router ri during tk and Sj

– (tk) be the set of traffic
leaving from egress router rj during tk. According to the
definition of TM, we have

Xi,j(tk) = | Si
+ (tk) � Sj

– (tk) |
= | Si

+ (tk)| + |Sj
– (tk)| – | Si

+ (tk) � Sj
– (tk) |.

Obviously, it’s impractical to collect all original traffic
from routers and perform the union operations. Instead,
we compress traffic sets Si

+ (tk) and Sj
– (tk) into very small

cardinality summaries at routers ri and rj, denoted by Ci
+ (tk)

and Cj
– (tk). We estimate |Si

+ (tk)| and |Sj
– (tk)| from

Cj
+ (tk) and Cj

– (tk), respectively, using our proposed
adaptive cardinality counting algorithm,9 which extends
the LogLog counting algorithm designed by Marianne
Durand and Philippe Flajolet.14 By max-merging Ci

+ (tk)
and Cj

– (tk), we can also estimate | Si
+ (tk) � Sj

– (tk) | from
the merged cardinality summary.

For PTM, we use the invariant IP header fields and
first few bytes of payload as a packet identity. We then
compress packet traffic data into cardinality summaries
using their identities. For FTM, we compress IP flows at
each router using five-tuple flow identities consisting of
source IP addresses and port numbers, destination IP ad-
dresses and port numbers, and protocol identifiers. In
CBTM, each cardinality summary takes only O(log log N)
storage capacity to record the traffic set of N packets or
flows.9 For example, we need only 640 Kbytes of storage
to record traffic data at 40 Gbits-per-second line speed.

Figure 5 illustrates our trace-driven simulation results
on the accuracy of PTM and FTM monitoring. To better
understand the error distribution among TM elements,
we use the root-mean-squared relative error (RMSRE)
metrics.15 For a given percentage of traffic, RMSRE re-
flects the average relative error of the largest TM elements
whose traffic sum is that percentage of the total traffic in

Figure 5. Root-mean-squared relative error (RMSRE) of packet-level
(PTM) and flow-level traffic matrix (FTM) elements for various
percentages of traffic. It is generally easier to accurately estimate
larger TM elements than smaller ones; accuracy improves
significantly for PTM and FTM as the top percentage of traffic
taken into account decreases.

RM
SR

E
fo

r
to

p
 p

er
ce

nt
ag

e
of

 t
ra

ffi
c

Traffic taken into account (%)

0.12

0.10

0.08

0.06

0.04

0.02

0 20 40 60 80 100

FTM (160 Kbytes)
PTM (160 Kbytes)
FTM (640 Kbytes)
PTM (640 Kbytes)

Infrastructure Security

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 31

all elements. Figure 5 shows that when all traffic is taken
into account, the RMSRE of PTM and FTM with car-
dinality summaries of 640 Kbytes are 0.038 and 0.042,
respectively. However, when we consider only 90 per-
cent of the traffic in the largest elements, both decrease to
0.021 and 0.022, respectively. Similar trends hold for esti-
mations with cardinality summaries of 160 Kbytes.

Monitoring the spatial and temporal behaviors of
PTM and FTM can help ISP operators track DDoS
flooding attacks. During a flooding attack, the victim
often receives a large surge of small flows because flood-
ing packets usually have randomly spoofed source IP
addresses. Because they don’t use sampling on packets,
our FTMs can capture all these small flows. The egress
router to the victim can identify the ATRs (as illustrated
in Figure 6) by correlating the PTM and FTM. The
ATRs often show significant increases in the number of
flows but no corresponding increase in the number of
packets to the victim. For increased packets �Pi,j(tk) and
flows �Fi,j(tk) from ingress router ri to the victim’s egress
router rj in time slot tk, we can estimate the average size
of new flows zi(tk) at router ri as zi(tk) = �Pi,j(tk)/�Fi,j(tk).
Therefore, if an ingress router has exceptionally large
�Fi,j(tk) and small zi(tk), we can identify it as a suspected
ATR. Anukool Lakhina and colleagues also use the
time serials of PTM and FTM to diagnose various net-
work anomalies, including DDoS attacks.16 Our fast
PTM and FTM monitoring can provide very useful on-

line inputs for Lakhina’s algorithm to diagnose DDoS
flooding attacks.

O ur large-scale simulation showed that deploying col-
laborative WormShield monitors on just 1 percent of

the vulnerable edge networks can let us detect worm sig-
natures roughly 10 times faster than with independent
monitors. To handle the major threats posed today by soft-
ware vulnerabilities and naïve users, we plan to develop a
trust-negotiation layer on top of the P2P overlay network
to coordinate distributed detection and defense activities.
This subsystem will identify and isolate compromised
peers to help minimize negative effects. Providing the
means to isolate compromised peers could also let ISPs
and other administrative entities share attack data and re-
quest response actions from entities that remain trusted.

In swiftly dealing with worm outbreaks, the major re-
search challenge is still in containment. In particular, we
need automated signature generation and fast suppres-
sion of malicious flows. We’re in the process of imple-
menting the WormShield system and will evaluate its
performance with real worm-spreading experiments on
the Cyber Defense Technology Experimental Research
(Deter) test bed (www.isi.edu/deter/). We will also eval-
uate our PTM and FTM correlation schemes to diagnose
network-wide traffic anomalies caused by DDoS flood-
ing attacks in a real-life environment.

Figure 6. Traffic matrix monitoring for tracking attack-transit routers (ATRs). Collaborative routers can perform distributed
tracking of ATRs by correlating the packet-level (PTM) and flow-level traffic matrix (FTM). Here, the egress router identifies
two potential ATRs by correlating the PTM and FTM.

Cardinality
summary

Cardinality
summary

Cardinality
summary

Cardinality
summary

Ingress
router

Ingress
router

Ingress
router

Attack flows
Attack flows

Legitimate flows

Le
gi

tim
at

e
flo

w

Le
gi

tim
at

e
flo

w

Tracking and
flood control

Tracking
and
flood
control

Identified
as an ATR

Identified
as an ATR

Victim

Cardinality
summary

Egress router

Packet-level traffic matrix A

Flow-level traffic matrix B

Cardinality
summary

Infrastructure Security

32 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2005

Acknowledgments
The US National Science Foundation supports this work under ITR
grant number ACI-0325409. We thank the GridSec research group at
the University of Southern California for helpful discussions that im-
proved this article.

References
1. S. Savage, “Internet Outbreaks: Epidemiology and

Defenses,” Keynote Address, Internet Society Symp.
Network and Distributed System Security (NDSS 05),
2005; www.cs.ucsd.edu/~savage/papers/InternetOut
break.NDSS05.pdf.

2. A. Chakrabarti and G. Manimaran, “Internet Infra-
structure Security: A Taxonomy,” IEEE Network, Nov.
2002, pp. 13–21.

3. I. Stoica et al., “A Scalable Peer-to-Peer Lookup Proto-
col for Internet Applications,” IEEE/ACM Trans. Net-
working, vol. 11, no. 1, 2003, pp. 17–32.

4. A.D. Keromytis, V. Misra, and D. Rubenstein, “SOS:
Secure Overlay Services,” Proc. ACM SIGCOMM, ACM
Press, 2002, pp. 61–72.

5. J. Li, P. Reiher, and G. Popek, “Resilient Self-Organiz-
ing Overlay Networks for Security Update Delivery,”
IEEE J. Selected Areas in Comm., Jan. 2004, pp. 189–202.

6. K. Hwang, Y. Chen, and H. Liu, “Defending Distrib-
uted Systems against Malicious Intrusions and Network
Anomalies,” Proc. IEEE Workshop Security in Systems and
Networks (SSN 05), IEEE CS Press, 2005, pp. 286–286.

7. D. Moore et al., “Internet Quarantine: Requirements
for Containing Self-Propagating Codes,” Proc. IEEE
INFOCOM, IEEE CS Press, 2003, pp. 1901–1910.

8. M. Cai et al., “WormShield: Collaborative Worm Sig-
nature Detection Using Distributed Aggregation Trees,”
tech. report TR 2005-10, Internet and Grid Comput-
ing Lab, Univ. of Southern California, 2005; http://grid
sec.usc.edu/TR/TR-2005-10.pdf.

9. M. Cai et al., “Fast and Accurate Traffic Matrix Mea-
surement Using Adaptive Cardinality Counting,” tech.
report TR 2005-12, Internet and Grid Computing Lab,
Univ. of Southern California, 2005; http://gridsec.usc.
edu/TR/TR-2005-12.pdf.

10. V. Yegneswaran, P. Barford, and S. Jha, “Global Intru-
sion Detection in the Domino Overlay System,” Proc.
Network and Distributed System Security (NDSS 04), Inter-
net Soc., 2004, pp. 79–95.

11. S. Staniford et al., “The Top Speed of Flash Worms,” Proc.
Workshop on Rapid Malcode (WORM 04), ACM Press,
2004, pp. 33–42.

Several university and industrial projects are working to develop

worm-containment systems. However, as most are in the initial

research-and-development stages, widely deployed antiworm

software products have yet to emerge from these efforts.

The Earlybird system (www.cs.ucsd.edu/groups/sysnet/), by

Sumeet Singh and colleagues,1 and Autograph (http://www-2.

cs.cmu.edu/~hakim/autograph/), by Hyang-Ah Kim and Brad Karp,2

were the first to automatically generate worm signatures by ana-

lyzing packet payload-content prevalence and address dispersion.

Earlybird uses a content-sifting approach to detect content

prevalence and scaled bitmaps to estimate address dispersion.

Sensors sift through traffic on configurable address space zones

and report signatures to an aggregator, which coordinates real-

time updates from the sensors, merges related signatures, and

activates network- or host-level blocking services. Earlybird’s key

contribution is its clever algorithmic design, which supports a

robust, scalable wire-speed implementation in a single worm

sensor. On the other hand, the system supports distribution only

through the centralized aggregator. It doesn’t support information

sharing among different sensors in content prevalence. Without

such collaborative features, we expect that Earlybird’s performance

will match the best independent monitors in our simulation.

Autograph automatically generates signatures from worms

propagating with TCP transport. The system analyzes the

prevalence of partial-flow payloads and produces signatures that

exhibit high true positives and low false positives. Autograph has

better support for distributed deployment; it uses application-level

multicast to share port-scan reports among distributed monitors.

As in Earlybird, however, the monitors don’t share worm payload

information, so each accumulates only as much payload as an

independent monitor in our simulation.

Nicholas Weaver and colleagues developed a fast scan-

detection and suppression algorithm based on the Threshold

Random Walk online malicious-host-detection algorithm. The sim-

plifications in their algorithm make it suitable for both hardware

and software implementation (www.icsi.berkeley.edu/Networks/).3

Their project also enhances containment through collaboration

among containment devices.

Cliff Zou and colleagues proposed a worm-monitoring and early

warning system, called trend detection (http://tennis.ecs.umass.edu/

~czou/research.htm).4 Based on some worm-propagation dynamic

models, the trend detection system detects the presence of a worm

in its early stage by using a Kalman filter estimation algorithm.

Our NetShield5 system (http://gridsec.usc.edu/) uses a dis-

tributed hash table-based overlay system for fast worm detection

with automated signature generation and dissemination. We also

aim at monitoring network traffic matrix at backbone ISPs to track

network anomalies caused by distributed denial-of-service (DDoS)

flooding attacks.

Rather than analyzing network traffic, the Columbia Worm

Vaccine project6 and the Microsoft Shield system7 adopt end-system

approaches to prevent vulnerable hosts from being infected.

Related work in worm containment

Infrastructure Security

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 33

12. M.O. Rabin, “Fingerprinting by Random Polynomi-
als,” tech. report 15-81, Center for Research in Com-
puting Technology, Harvard Univ., 1981.

13. H.A. Kim and B. Karp, “Autograph: Toward Auto-
mated Distributed Worm Signature Detection,” Proc.
Usenix Security Symp., Usenix Assoc., 2004, pp.
271–286.

14. M. Durand and P. Flajolet, “LogLog Counting of Large
Cardinalities,” Proc. European Symp. Algorithms, LNCS
2832, Springer-Verlag, 2003, pp. 605–617.

15. Y. Zhang et al., “Fast Accurate Computation of Large-
scale IP Traffic Matrices from Link Loads,” Proc. SIG-
COMM, ACM Press, 2003, pp. 301–312.

16. A. Lakhina, M. Crovella, and C. Diot, “Characteriza-
tion of Network-Wide Anomalies in Traffic Flows,” Proc.
ACM/SIGCOMM Internet Measurement Conf., ACM
Press, 2004, pp. 201–206.

Min Cai is pursuing a PhD in computer science at the Univer-
sity of Southern California. His research interests include
distributed worm-detection and DDoS-defense systems, peer-
to-peer, grid computing, and Semantic Web technologies. Cai
received a BS and an MS in computer science from Southeast
University, China. Contact him at mincai@usc.edu.

Kai Hwang is a professor and director of the Internet and Grid
Computing Laboratory at USC. An IEEE fellow, he specializes in
computer architecture, parallel processing, Internet security, and
distributed computing systems. He also leads the GridSec pro-
ject at USC. Hwang received a PhD in electrical engineering and
computer science from the University of California, Berkeley. Con-
tact him at kaihwang@usc.edu.

Yu-Kwong Kwok is an associate professor of electrical and elec-
tronic engineering at the University of Hong Kong (HKU), cur-
rently serving as a visiting associate professor at USC. His
research interests include grid and mobile computing, wireless
communications, and network protocols. Kwok received a PhD
in computer science from the Hong Kong University of Science
and Technology (HKUST). Contact him at ykwok@hku.hk.

Shanshan Song is a PhD student in the computer science
department at USC. Her research interests include trust man-
agement in grid and P2P systems, and security-driven schedul-
ing algorithms for computational grids. Song received a BS in
computer science from the University of Science and Technology
of China. Contact her at shanshan.song@usc.edu.

Yu Chen is a PhD student in the electrical engineering depart-
ment at USC. His research interests include Internet security,
DDoS attack detection and defense, Internet traffic analysis,
and distributed security infrastructure. Chen received a BS in
opto-electronic engineering from Chongqing University, China.
Contact him at cheny@usc.edu.

Columbia’s Network Worm Vaccine (http://nsl.cs.columbia.edu/

projects/wormv/) employs a collection of sensors that detects and

captures potential worm-infection vectors based on a set of

heuristics. Worm Vaccine uses source code transformations to quickly

apply patches to vulnerable segments of targeted applications and

then tests the patched applications’ resistance to the infection vectors.

Microsoft Research’s Shield project (http://research.microsoft.

com/research/shield/) installs vulnerability-specific and exploit-

generic network filters in end systems once a vulnerability is dis-

covered and before a patch is applied. These filters examine traffic

coming in or out of the applications, and drop or correct traffic

that exploits vulnerabilities. The system is resilient to polymorphic

or metamorphic variations of exploits.

On the research front, Symantec is currently working on a

solution to support multiple platforms and protect all network tiers

(www.icir.org/vern/worm04/carey.ppt). The company provides

patching based on vulnerability information, real-time backup,

early-warning and monitoring systems, proactive host and network

blocking, and reactive technologies.

Large-scale worm-containment experiments are very much

needed. The Cyber Defense Technology Experimental Research

(Deter) test bed provides a good platform for performing worm-

control experiments (www.isi.edu/deter/).8 To consolidate the

effort, the US National Science Foundation has just funded a new

Center for Internet Epidemiology and Defense at the University of

California, San Diego, in collaboration with the Berkeley

International Computer Science Institute. The annual ACM

Workshop on Rapid Malcode (WORM) is a good source of infor-

mation on recent research in this field (WORM 2004 information is

available at www.icir.org/vern/worm04/worm04-program.html).

References

1. S. Singh et al., “Automated Worm Fingerprinting,” Proc. Usenix Symp. Oper-

ating System Design and Implementation, Usenix Assoc., 2004, pp. 45–60.

2. H.A. Kim and B. Karp, “Autograph: Toward Automated Distributed Worm

Signature Detection,” Proc. Usenix Security Symp., Usenix Assoc., 2004, pp.

271–286.

3. N. Weaver, S. Staniford, and V. Paxson, “Very Fast Containment of Scanning

Worms,” Proc. 13th Usenix Security Symp., Usenix Assoc., 2004, pp. 29–44.

4. C.C. Zou et al., “Monitoring and Early Warning for Internet Worms,” Proc.

10th ACM Conf. Computer and Comm. Security (CCS 03), ACM Press., 2003,

pp. 190–199.

5.K. Hwang et al., “GridSec: Trusted Grid Computing with Security Binding

and Self-Defense against Network Worms and DDoS Attacks,” Int’l Work-

shop on Grid Computing Security and Resource Management (GSRM 05),

Springer-Verlag, 2005.

6. S. Sidiroglou and A.D. Keromytis. “Countering Network Worms through

Automatic Patch Generation,” to appear in IEEE Security & Privacy, 2005.

7. H.J. Wang et al., “Shield: Vulnerability-Driven Network Filters for Prevent-

ing Known Vulnerability Exploits,” Proc. ACM SIGCOMM, ACM Press, 2004.

8. R. Bajcsy et al., “Cyber Defense Technology Networking and Evaluation,”

Comm. ACM, vol. 47, no. 3, 2004, pp. 58–61.

