110 research outputs found

    Defining the meaning of TPTP formatted proofs

    Get PDF
    International audienceThe TPTP library is one of the leading problem libraries in the automated theorem proving community. Over time, support was added for problems beyond those in first-order clausal form. TPTP has also been augmented with support for various proof formats output by theorem provers. Such proofs can also be maintained in the TSTP proof library. In this paper we propose an extension of this framework to support the semantic specification of the inference rules used in proofs

    Four Decades of Mizar

    Get PDF

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    ProverX: rewriting and extending prover9

    Get PDF
    O propósito principal deste projecto é tornar o demonstrador automático de teoremas Prover9 programável e, por conseguinte, extensível. Este propósito foi conseguido acrescentando um interpretador de Python, uma linha de comandos e uma biblioteca de módulos, objectos e funções escritos em Python para interagir com ficheiros de Prover9 e Mace4. Foi também criada uma “interface” gráfica de utilizador (GUI) sob a forma de uma aplicação web para trazer aos utilizadores um meio mais eficiente e rápido de trabalhar com demonstrações automáticas de teoremas. A nova biblioteca de “scripting” oferece aos utilizadores novas funcionalidades tais como correr várias sessões simultâneas de Prover9 parando automaticamente quando uma demonstração (ou um contraexemplo) é encontrada, elaborar estratégias para aumentar a velocidade com que as demonstrações são encontradas ou diminuir o tamanho das mesmas. Outro módulo permite interagir com o sistema de álgebra GAP. Sobre esta biblioteca, muitas outras funcionalidades podem ser facilmente acrescentadas pois o objectivo principal é dar aos utilizadores a capacidade de acrescentar novas funcionalidades ao Prover9. Resumindo, o objectivo deste projecto é oferecer à comunidade matemática um ambiente integrado para trabalhar com demonstração automática de teoremas.The primary purpose of this project is to extend Prover9 with a scripting language. This was achieved by adding a Python interpreter, an interactive command line and a special scripting library to interact with Prover9 and Mace4 files. A user interface in the form of a web application was also created to help users achieve a more rapid and efficient way of working with automated theorem proving. The new scripting library offers utilities that allows a user to run several Prover9 sessions concurrently and to create strategies for increasing the effectiveness of the proof search or to search for shorter proofs. Another module allows to interact with the algebra system GAP. Based on the library, many more functionalities can be easily added, as the main goal is to give users the ability to extend the functionality of Prover9 the way they see fit. In conclusion, the aim of this project is to offer to the mathematical community an integrated environment for working with automated reasonin

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Emerging trends proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics: TPHOLs 2004

    Get PDF
    technical reportThis volume constitutes the proceedings of the Emerging Trends track of the 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004) held September 14-17, 2004 in Park City, Utah, USA. The TPHOLs conference covers all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification. There were 42 papers submitted to TPHOLs 2004 in the full research cate- gory, each of which was refereed by at least 3 reviewers selected by the program committee. Of these submissions, 21 were accepted for presentation at the con- ference and publication in volume 3223 of Springer?s Lecture Notes in Computer Science series. In keeping with longstanding tradition, TPHOLs 2004 also offered a venue for the presentation of work in progress, where researchers invite discussion by means of a brief introductory talk and then discuss their work at a poster session. The work-in-progress papers are held in this volume, which is published as a 2004 technical report of the School of Computing at the University of Utah
    corecore