871 research outputs found

    Improving QED-Tutrix by Automating the Generation of Proofs

    Full text link
    The idea of assisting teachers with technological tools is not new. Mathematics in general, and geometry in particular, provide interesting challenges when developing educative softwares, both in the education and computer science aspects. QED-Tutrix is an intelligent tutor for geometry offering an interface to help high school students in the resolution of demonstration problems. It focuses on specific goals: 1) to allow the student to freely explore the problem and its figure, 2) to accept proofs elements in any order, 3) to handle a variety of proofs, which can be customized by the teacher, and 4) to be able to help the student at any step of the resolution of the problem, if the need arises. The software is also independent from the intervention of the teacher. QED-Tutrix offers an interesting approach to geometry education, but is currently crippled by the lengthiness of the process of implementing new problems, a task that must still be done manually. Therefore, one of the main focuses of the QED-Tutrix' research team is to ease the implementation of new problems, by automating the tedious step of finding all possible proofs for a given problem. This automation must follow fundamental constraints in order to create problems compatible with QED-Tutrix: 1) readability of the proofs, 2) accessibility at a high school level, and 3) possibility for the teacher to modify the parameters defining the "acceptability" of a proof. We present in this paper the result of our preliminary exploration of possible avenues for this task. Automated theorem proving in geometry is a widely studied subject, and various provers exist. However, our constraints are quite specific and some adaptation would be required to use an existing prover. We have therefore implemented a prototype of automated prover to suit our needs. The future goal is to compare performances and usability in our specific use-case between the existing provers and our implementation.Comment: In Proceedings ThEdu'17, arXiv:1803.0072

    Automating the Generation of High School Geometry Proofs using Prolog in an Educational Context

    Full text link
    When working on intelligent tutor systems designed for mathematics education and its specificities, an interesting objective is to provide relevant help to the students by anticipating their next steps. This can only be done by knowing, beforehand, the possible ways to solve a problem. Hence the need for an automated theorem prover that provide proofs as they would be written by a student. To achieve this objective, logic programming is a natural tool due to the similarity of its reasoning with a mathematical proof by inference. In this paper, we present the core ideas we used to implement such a prover, from its encoding in Prolog to the generation of the complete set of proofs. However, when dealing with educational aspects, there are many challenges to overcome. We also present the main issues we encountered, as well as the chosen solutions.Comment: In Proceedings ThEdu'19, arXiv:2002.1189

    Towards Ranking Geometric Automated Theorem Provers

    Full text link
    The field of geometric automated theorem provers has a long and rich history, from the early AI approaches of the 1960s, synthetic provers, to today algebraic and synthetic provers. The geometry automated deduction area differs from other areas by the strong connection between the axiomatic theories and its standard models. In many cases the geometric constructions are used to establish the theorems' statements, geometric constructions are, in some provers, used to conduct the proof, used as counter-examples to close some branches of the automatic proof. Synthetic geometry proofs are done using geometric properties, proofs that can have a visual counterpart in the supporting geometric construction. With the growing use of geometry automatic deduction tools as applications in other areas, e.g. in education, the need to evaluate them, using different criteria, is felt. Establishing a ranking among geometric automated theorem provers will be useful for the improvement of the current methods/implementations. Improvements could concern wider scope, better efficiency, proof readability and proof reliability. To achieve the goal of being able to compare geometric automated theorem provers a common test bench is needed: a common language to describe the geometric problems; a comprehensive repository of geometric problems and a set of quality measures.Comment: In Proceedings ThEdu'18, arXiv:1903.1240

    An axiomatic approach for solving geometric problems symbolically

    Get PDF
    technical reportThis paper describes a new approach for solving geometric constraint problems and problems in geometry theorem proving. We developed a rewrite-rule mechanism operating on geometric predicates. Termination and completeness of the problem solving algorithm can be obtained through well foundedness and confluence of the set of rewrite rules. To guarantee these properties we adapted the Knuth-Bendix completion algorithm to the specific requirements of the geometric problem. A symbolic, geometric solution has the advantage over the usual algebraic approach that it speaks the language of geometry. Therefore, it has the potential to be used in many practical applications in interactive Computer Aided Design

    Compiling Unit Clauses for the Warren Abstract Machine

    Get PDF
    This thesis describes the design, development, and installation of a computer program which compiles unit clauses generated in a Prolog-based environment at Argonne National Laboratories into Warren Abstract Machine (WAM) code. The program enhances the capabilities of the environment by providing rapid unification and subsumption tests for the very significant class of unit clauses. This should improve performance substantially for large programs that generate and use many unit clauses

    leanCoP: lean connection-based theorem proving

    Get PDF
    AbstractThe Prolog programimplements a theorem prover for classical first-order (clausal) logic which is based on the connection calculus. It is sound and complete (provided that an arbitrarily large I is iteratively given), and demonstrates a comparatively strong performance

    Progress Report : 1991 - 1994

    Get PDF

    An Introduction to Mechanized Reasoning

    Get PDF
    Mechanized reasoning uses computers to verify proofs and to help discover new theorems. Computer scientists have applied mechanized reasoning to economic problems but -- to date -- this work has not yet been properly presented in economics journals. We introduce mechanized reasoning to economists in three ways. First, we introduce mechanized reasoning in general, describing both the techniques and their successful applications. Second, we explain how mechanized reasoning has been applied to economic problems, concentrating on the two domains that have attracted the most attention: social choice theory and auction theory. Finally, we present a detailed example of mechanized reasoning in practice by means of a proof of Vickrey's familiar theorem on second-price auctions

    Poof Analysis: A technique for Concept Formation

    Get PDF
    corecore