
An Axiomatic Approach for Solving
Geometric Problems Symbolically

Beat Bruderlin
Computer Science Department

University of Utah
Salt Lake City, UT 84112,
bruderlin@cs.utah.edu

Technical Report Number: UUCS-90-023 _
November, 1990

supported in part by N SF grant # D D M -8910229

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bruderlin@cs.utah.edu

An Axiomatic Approach for Solving
Geometric Problems Symbolically

Beat Bruderlin
Computer Science Department

University of Utah

Abstract

This paper describes a new approach for solving geometric constraint problems and
problems in geometry theorem proving. We developed a rewrite-rule mechanism
operating on geometric predicates. Termination and completeness of the problem
solving algorithm can be obtained through well foundedness and confluence of the set
of rewrite rules. To guarantee these properties we adapted the Knuth-Bendix
completion algorithm to the specific requirements of the geometric problem. A
symbolic, geometric solution has the advantage over the usual algebraic approach that it
speaks the language of geometry. Therefore, it has the potential to be used in many
practical applications in interactive Computer Aided Design.

1. Introduction

The theory of Euclidean Geometry is the foundation of almost all Computer-
Geometry applications. Also it is one of the first mathematical theories that has been
axiomatized systematically by D. Hilbert, in the beginning of this century [HIL 71].
Already, there have been some very early approaches for proving geometric theorems
with Computer-Algebra methods [COL 75]. The development of new, more efficient
algebraic methods (see, for instance, [BUL 82]), led to a renaissance of automated
geometry theorem proving (see [WUW 86], [KAM 88]). In this paper a new approach
is presented. We use term rewriting and logic programming and directly apply
geometric axioms for deducing constructive proofs of elementary geometry theorems,
as well as for solving geometric constraint problems. We describe the basic
conceptions of the algorithm and its application for interactive modelling of geometric
objects.

2. Symbolic geometric constraint solving.

Computer Aided Design- (CAD) systems are used for interactively constructing
geometric objects. We assume that these objects should fulfill certain given
specifications and that the interactive user can chose from a great number of
construction tools offered by the system. Let us further assume that the specification
can be expressed by geometric constraints, such as, for instance, distances, angles,
etc. Therefore, the problem and its solution are of purely geometric nature. If we
express the properties of each construction operation in an axiomatic way, the problem
of finding the sequence of construction operations for a specified object may be seen as
the problem of finding a proof of the constructibility of the object with the given tools.
Therefore, a construction problem is a special case of a geometric theorem proving
problem.

Most known approaches to this or similar problems first translate from a geometric
language to an algebraic formulation, by introducing coordinates. A solution can be
found with numerical or algebraic methods. With the approach presented here the
geometric constraints (which are geometric relations between points) are represented by
predicates. The geometric construction operations are represented by functional
expressions. We can express geometric axioms by equations on first order formulas,
which allows us to use a rewrite-rule mechanism, and by implications, which may be
inferred by a backtracking mechanism, such as implemented in the logic-programming
language Prolog. We can prove uniform termination of the inference mechanism using
the rewrite-rules, and with a special formulation of the Knuth-Bendix critical pair
criterion we may prove completeness (or unique termination).

The algorithm may be applied for supporting the interactive definition of geometric
objects by geometric constraints: 1) It may derive a sequence of construction operations
automatically from the constraints. 2) It may be used for detecting contradictions
between the constraints or redundancies, and for explicidy showing internal degrees of
freedom of not yet sufficiently specified objects. Thus, it gives the interactive user a
hint, where to add further constraints for uniquely specifying the object. 3) Geometric
relations that are implied by the specification by constraints may be inferred. Thus, a
certain class of theorems of elementary geometry may be proved automatically by the
algorithm.

Since the approach does not require a translation to algebraic expressions over

coordinates it is easy to explain the intermediate or final results in a geometric
language. Therefore, the approach is better suited for an integration with an interactive
CAD system than algebraic approaches.

In order to describe the symbolic approach to geometric constraint solving we first
need to define a language in which the problems may be specified formally. Then, we
express the constraint solving mechanism in this language.

2.1 Expressing constraints by predicates.

Constraints are relations between points which may be expressed by predicates on
these points. The predicates may be stored in the database of a Prolog interpreter as so
called 'facts'. Here is a list of the geometric predicates on points, as used in our
approach:

p(P, Pos).
d(Pl, P2, D).
s(Pl, P2, Alpha).
v(Pl, P2, [Alpha, D]).
a(Pl, P2, P3, Beta).
tr(Pl, P2, P3, [Alpha, Beta]).

The semantics of the predicates is defined as follows:

To express that the position of a point P is known we use the predicate p(P, Pos).
This means that the position of P is defined by the value of Pos to which a symbolic
expression may be assigned. The expressions must be ground terms, i.e. no variables
may occur in them. Possible expressions are, e.g. a pair of coordinates [10, 0.5], or a
geometric function, such as intersection(line(p(P2), 90), circle(p(P3), 20)), meaning
that the point is located at the intersection of a line through another point P2 with a
slope of 90 degrees toward the x-axis, and a circle with center point P3 and a radius of
20.

The predicate d(Pl, P2 Dist), expresses that we know the distance between two

points. For the value of Dist we may again write a constant number, a parameter, or a
function such as length(vector(P3, P4)), i.e. the distance of two points with already
specified position.

s(P2, PI, Alpha) constrains the slope of the line connecting PI and P2 by the angle
Alpha to the x-axis (measured counterclockwise).

Fig. 1 shows how an angle Beta is associated with three points by the predicate
a(Pl, P2, P3, Beta).

pi

The angle Beta is measured counterclockwise from the line (P2, P3) toward the line
(P2, PI). An angle going in the other direction would be written with negative sign:
a(Pl, P2, P3, Beta) <=> a(P3, P2, PI, -Beta). If we know the value of two angles of a
triangle we express this by the predicate tr(Pl, P2, P3, [Alpha, Beta]). The predicate tr
stands for triangle, and implies that the value of the third angle is known implicitly:
Gamma = 180 ° - (Alpha + Beta). Note that only angles, but not distances between
points are defined by 'tr'.

Congruence relations. In addition to the above predicates which assign ground
terms to angles distances, positions, etc., the following equations are used for
expressing congruence relations:

d (P I , P2) = d (P 3 , P 4) .
The distance of points PI and P2 is congruent to the distance between
points P3 and P4.

a (P l , P 2 , P 3) = a (P 4 , P 5 , P 6) .
The two angles are congruent.

s (PI , P 2) = s (P3, P4) .
The line(Pl,P2) is parallel to line(P3,P4).

v (P l , P 2) = v (P3, P 4) .
The \ector(P 1,P2) is equal to vector(P3 ,P4).

t r (P l , P 2 , P 3) = t r (P 4 , P 5 , P 6) .
The two triangles are similar.

t r (P 1 , P 2 , P 3) = s t r (P 4 , P 5 , P 6) .
The two triangles are similar up to symmetry.

p (P l) = p (P 2) .
Two points are identical

What can be expressed by the predicates?

The constraints discussed here are restricted to relations between points. Each pair
of points implicitly defines a line which may be specified by constraining these two
points. To specify the properties of a circle we would have to constrain some char­
acteristic points (e.g. center point, and a point on the periphery).

With s(P l,P2) - s(P2, P3) we may express that three points are collinear, and that
P2 is between PI and P3 which is equivalent to Tarski's predicate b(Pl, P2, P3) [TAR
51].

Two triangles that are joined by two common points build a quadrilateral. By
expressing the similarity of joined triangles we may describe the similarity of
polygons, or the similarity of mirrored polygons (predicate str).

2.2 Rules for compass and ruler construction

To derive the position of points that are not explicitly specified by a corresponding
predicate we may apply rules known from constructing with compass and ruler. An
example: given the positions of two points PI and P2, the distance between PI and a
third point P3 and the distance between P2 and P3, we may construct P3 by inter­

secting two circles. We first write the precondition of the rule by a conjunction of
predicates:

p(Pl, [Posl]) a p(P2, [Pos2]) a d(Pl, P3, R l) a d(P2, P3, R2)

The position of the third point P3 is found by intersecting two circles with centers
PI and P2. This is expressed symbolically by:

p(P3, intersection(circle(p(Pl), R l), circle(p(P2), R2))).

We formalize this construction rule by introducing the following notation for
rewrite-rules: Conjunctions of predicates are expressed as lists of predicates '[]', and
the symbol indicates the direction in which the rewrite-rule is applied. The above
rule is represented by the following rewrite-rule:

[p(Pl, [Posl]), p(P2, [Pos2]), d(Pl, P3, R l), d(P2, P3, R2)]

-> [p(Pl, [Posl]), p(P2, [Pos2]),

p(P3, intersection(circle(p(Pl), Rl), circle(p(P2), R2)))].

We find similar rules for intersecting circles and lines, or two lines.

[p(Pl, [Posl]), p(P2, [Pos2]), d(Pl, P3, R), s(P2, P3, SI)]

-> [p(Pl, [Posl]), p(P2, [Pos2]),

p(P3, intersection(circle(p(Pl), R), line(p(P2), SI)))].

[p(Pl, [Posl]), p(P2, [Pos2]), s(Pl, P3, Sll), s(P2, P3, S12)]

-> [p(Pl, [Posl]), p(P2, [Pos2]),

p(P3, intersection(line(p(Pl), S ll), line(p(P2), S12)))].

7

All rules are of the form "(p -> 'F'. The precondition (p and the postcondition *F are

in Skolem form. I.e., they are conjunctions of literals (predicates on points) with
Skolem functions for the point positions, distances, etc. These functions express the
geometric operations.

How are the rewrite-rules applied? All constraints defined by the user’s
specification are expressed by predicates which are stored as 'facts' , in the Prolog
database. An inference mechanism tries to apply all the rules. A rule can only be
applied if the precondition holds. If the corresponding predicates of the precondition
can be matched with facts in the database, the rule fires, and a transaction on the
constraint database is performed. Those facts on the left side of the rule, not occurring
on the right side are replaced in the database by the ones only occurring on the right
side of the rule. Inserting and retracting facts in the database is realized with the
commands retract and assert, which are built-in predicates in Prolog. A transaction
must be carried out as an atomic operation, i.e. either it is carried out completely, or not
at all, and thus preserves consistency of the database. The algorithm terminates when
no rule applies.

The inference mechanism, together with rules like the one described above de­
termine an algorithm for automatically constructing a geometric object from a geometric
specification. The result can be regarded as a proof for the correctness of the
specification by constraints. Every step of the proof corresponds to a geometric
operation. If we write down the sequence of operations during the proof, we get an
imperative definition of the specified object. The specification of a geometric object is
complete and consistent, when for each point Pi, there exists exactly one predicate

p(Pi, POSi).

The following 2-D example shows the effect of the construction algorithm. The
initial content of the database is (see fig. 2):

p(Pl, [100, 100]).
p(P2, [200, 100]).
d(Pl, P3, 75).
d(P2, P3, 80).
d(P3, P4), 60).

8

s(P2, P4, 90).

fig. 2 Four constrained points.

After running the construction algorithm, the database contains:

p(P l, [100,100]).
p(P2, [200,100]).
p(P3, intersection(circle(p(Pl), 75), circle(p(P2), 80))).
p(P4, intersection(circle(p(P3), 60), line(p(P2), -90))).

The result of the algorithm is a symbolic prescription for constructing the points
with compass and ruler. The new facts are asserted in a sequence determined by the
algorithm. The expressions specifying point positions therefore may refer to points
defined earlier in the construction process (in our example, the symbolic expression for
the position of point P4 refers to points P2 and P3). A solution would have been found
even if we expressed the distances and angles by parameters, instead of numbers. In
our example the construction parameters are already instantiated by numeric values.
Therefore, the geometric expressions may also be evaluated numerically. For
displaying the result on a graphical screen we have to provide some procedures for
computing the geometric operations on coordinates. In our software system the

numerical evaluation is carried out by procedures written in the procedural
programming language Modula-2. These procedures are compiled and linked to the
Prolog interpreter as so called 'built-in' predicates. The technique of linking the two
languages is discussed in [BRU 85]. When evaluating the symbolic expressions the
Prolog program goes sequentially through the facts and finds numeric values for the
symbolic expressions by means of the built-in predicates. The computed shape may
then be displayed on a graphical screen by some built-in graphic predicates.

Geometric operations do not necessarily have only one unique solution. E.g.
intersecting two circles may result in zero, one, or two points. We therefore speak of a
non-deterministic operation. Fig. 3 shows the various intersections of circles and lines
that correspond to the symbolic solution above.

carrying out the geometric constructions

In backtracking, the built-in predicates return all possible values for each oper­
ation. The backtracking mechanism of Prolog is used for an exhaustive search of all
alternatives. Fig. 4 shows the four possible shapes of a quadrilateral consisting of
points PI to P4.

c) p i P2 d)

fig. 4 The numerical evaluation of the symbolic result (4 possible solutions).

2.3 Expressing axioms of Euclidean geometry as rewrite-rules

A geometric constraint solver should not only be capable of applying construction
operations; it should reason about congruence relations as well. We realized this by
incorporating axioms of Euclidean geometry in form of geometric rewrite-rules into the
algorithm. An example:

For every pair of triangles, if two sides and the angle between them are congruent,
then also all other angles are congruent (fig. 5):

fig. 5 Congruent triangles

d(Pl,P2) = d(P4,P5) a d (PI, P3) = d(P4,P6)
a a (P3,PI,P2) = a(P6,P4,P5)
=> a (PI, P2, P3) = a(P4,P5,P6)

We wish to express this axiom as a rewrite-rule which enables us to employ the
same inference mechanism as for the construction rules. When carrying out the
inference the predicates on the left side of the rule are replaced by those on the right
side; therefore it is important that no information is lost by applying the rewrite-rule.
First we express the above axiom as an equation on clauses.

[d(Pl,P2) = d(P4J>5), d(Pl J>3) = d(P4J>6), a(P3,Pl,P2) = a(P6,P4J>5)] =

[a(Pl,P2J>3) = a(P4J>5J>6), a(P3,Pl,P2) = a(P6J>4J>5), d(Pl,P2) = d(P4,P5)]

By imposing a direction of application the equation may be expressed as a rewrite-
rule with the desired property.

[d(Pl,P2) = d(P4J>5), d(Pl J>3) = d(P4,P6), a(P3,Pl,P2) = a(P6,P4J>5)]

->

[a(Pl,P2,P3) = a(P4,P5)P6), a(P3,Pl,P2) = a(P6,P4)P5)> d(Pl,P2) = d(P4,P5)]

3. Theoretical properties of the constraint solver (completeness
and termination).

A theoretic framework has been developed for proving the algorithmic
completeness and termination of the mechanism that applies the rewrite-rules. We

adapted the 'critical-pair algorithm' by Knuth and Bendix [KNB 70] for the structure
of the geometric problem. The algorithm introduces new rewrite-rules as lemmas of the
theory. Using this method, we can prove that the set of rules is complete, and that the
inference mechanism applying these rules always terminates. Thus, we can show that
the algorithm is a decision algorithm for theorems provable by the axioms, and that it
solves the constraint problems solvable by the construction rules [BRU 87].

In this chapter we discuss some properties of the rewrite-rules introduced in the
previous chapter. Important question are: first, whether the algorithm applying the
rules stops in any case (the uniform termination property of the algorithm), and
second, whether the sequence in which the rules are applied matters for the result (the
unique termination property). We give a short introduction to theory of term rewriting
methods and the Knuth-Bendix critical pair algorithm. We have implemented a Knuth-
Bendix algorithm in PROLOG accepting the rewrite rules of the previous chapter. The
algorithm uses unification modulo associativity, commutativity, and a set of equations.
The Knuth-Bendix algorithm is applied as a meta algorithm for finding new rules, and
to make the set of rules algorithmically complete.

3.1 Termination properties of the algorithm

Uniform termination. The idea behind the geometric rewrite-rules was to replace
some facts in the database by "simpler" ones. To prove that the inference mechanism
applying the rules to a given database terminates, we have to find orderings such that
the right hand side of a rule is always smaller than the left hand side, and furthermore
to prove that the orderings have lower bounds so that no infinite decreasing sequence is
possible.

Definition 3.1: (well-foundedness) Given a set of terms T, a partial ordering ')■' on
T is well-founded (or Noetherian) if there is no infinite descending chain of terms t]
\ t2 \ ...

Definition 3.2: (order-function f) For our geometric predicates and for the set of
conjunctions C we introduce a function t : C -> N which is defined as follows:

for literals:
m P l , P2, J) = 6
T(a(Pl, P2, P3, _)) = 5
T(s(Pl, P2, J) = 4
t(tr(Pl, P2, P3, J) = 3
t(v(Pl, P2, _)) = 2

Kp (P1 ,J) = 1
Ttfalse) = 0

T(d(Pl, P2) = d(P3, P4)) = 6
r(a(Pl, P2, P3) = a(P4, P5, P6)) = 5
t(s(P1, P2) = s(P3, P4)) = 4
t(tr(Pl, P2, P3) = tr(P4, P5, P6)) = 3
T(tr(Pl, P2, P3) = str(P4, P5, P6)) = 3
T(v(Pl, P2) = v(P3, P4)) = 2

tfP(P 1) - P(P2)) - 1

For conjunctions X, Y: t(X a Y) = t(X) + t(Y), for the empty conjunction: t() = 0

Lemma 3.1: If for all rules I -> r: t(l) > T(r) then Ton C is well founded.

Proof of lemma 3.1: For each conjunction X to which a rewrite-rule can be applied
Thas some finite value x(X) = n e N. Each rule applied to X reduces t(X) at least
by one (by assumption), 0 is a lower bound for t, therefore X is reduced in at most
n steps to an irreducible conjunction X0. ♦

Unique termination. With the following example we want to show what happens
when different rules may be applied to the same facts in a database (see fig. 3.1). For
the points PI to P6 some relations for distance-congruence, angle-congruence, and
parallelism are expressed by the facts in the database. When examining the rewrite-
rules described in chapter 3 we can see that rules rj, and r2 can both be applied to the
initial database. Depending on which of the two rules is applied the database will be in
a different state (fig. 3.2, or fig. 3.3). Proceeding from there we may continue
applying rules. On the left side, after applying rule dj twice, we end with a database
state as shown in fig. 3.4. On the right side we may apply rule r2 twice and then dj,

and end with the database shown in fig. 3.6.

1 4

V P3 V
/ p / p

* 2 ■' 5
fig. 3.1

d (PI, P2) = d(P4, P5) , s(P2, P3) = s (P5, P6) ,
d(P2, P3) = d(P5, P6), a (PI, P2, P3) = a(P4, P5, P6)

/ \

P.* /4 . S p

' %P2
fig. 3.2

V * H

V P3 V
* p * p

fig. 3.3

d(P2, P3) = d(P5, P6) , s (P2, P3) = s (P5, P6),
d(Pl, P2) = d(P4, P5) , a (PI, P2, P3) = a (P4, P5, P6) ,
s(Pl, P2) = s(P4, P5) , a (P2, P3, PI) = a (P2, P3, PI) ,
s (P2, P3) = s (P5,

1

P6) .

I .

d(P2, P3) = d(P5, P6) .

2 x di / l 2 x r 2

p p

v p- V
fig. 3.4

/ SP '*'P»r -> ♦
V* V4-1- - -

fig. 3.5

v (P2, P3) = v(P5, P6) ,
v(Pl, P2) = v(P4, P5).

d(P2, P3)
s(P2, P3)
s(Pl, P2)
s(Pl, P3)

d (P 5 , P6) ,

s(P5, P6),
s(P4, P5),
s (P4, P6) .

d i

'.P2 '.P5

v(P2, P3) = v (P5, P6),
s(PI, P2) = s (P4, P5),
s (PI, P3) = s (P4, P6) .

fig. 3.6

In both cases we can’t find rules that apply. The facts in the databases are what we
call irreducible. Since both states do have the same offspring and the inference
mechanism maintains the consistency of the database the two final states are equivalent
but obviously not identical. The sensitivity to the sequence of application is an
undesired property of our rules. The actual situation may be cured by adding a new
rewrite-rule that either rewrites the facts in fig. 3.4 to those of fig. 3.6 or the other way
round. With the order function x defined above we may find out which way round.
The total value for the facts of the database in fig. 3.4 is T = 4, and the value of the
facts in fig. 3.6 is T = 10, to maintain well-foundedness the new reduction rule must

be:

[v(P2, P3) = v(P5, P6) , s(Pl, P2) = s (P4, P5) , s (PI, P3) = s (P4, P6)]

-> [v(P2, P3) = v(P5, P6), v(Pl, P2) = v(P4, P5)]

In order to find out whether we need more rules it seems that we need to inspect an
infinite number of such examples. We may also ask ourselves: "Does there exist a
finite set of reduction rules that suffice for obtaining the desired property, namely to
bring any database to normal form, independently of the order in which the rules are
applied, or do we have to add more and more rules?"
The answers to these question can be given by a theory applied for solving word
problems in algebra, described by Knuth and Bendix in 1965 [KNB 70]. This theory
is discussed formally in the next section.

3.2 Using the Knuth-Bendix completion algorithm to obtain a
canonical set of rewrite rules.

In this section the theoretical foundation of a proof of the unique termination- (or
Church-Rosser-) property of an algorithm that is based on reduction rules is
developed. An algorithm invented by Knuth and Bendix for completing a set of
reduction rules that does not have the Church-Rosser property is described. We first
need to give some definitions.

Definition 3.3: (term, set o f term T, sub-terms, occurrence, Oc, replacement,
t[U 5])

1) A variable is a term: xj, X2 , ... e T
2) A constant is a term: ci, C2 , ... e T
3) If ti, t2 , ...,tm e T and f im is a function symbol for an m-ary function or

operator then f im(tj, t2 , ...,xm) e T.

We say that the term t = t(tj, t2 , ts(t^j, ts^)) consist of terms t, tj, t2 , t^, t^ j , tst2

(the sub-terms of t). The structure of t may be represented as a tree (fig. 3.7)

With ts j = t@ (3,l) we express that ts j occurs at the place (3,1) in t. We call (3,1)
the occurrence of ts j in t. The occurrence of t itself in t is (0). With Oc(t) we denote
the set of the occurrences of all sub-terms in t. For the above example Oc(t) = {(0),
(1), (2), (3), (3,1), (3,2)}. For terms s, t and an occurrence u e Oc(t), w = t[u<- s]
is the term derived from t by replacing the sub-term occurring at u in t by s.

fig. 3.7 The tree structure of a term

Definition 3.4: (substitution, instance, unifier, most general common instance,
mgu)
A substitution a is a finite set of replacements of variables X(by terms t i : a =
{xi/ti, X2 U2 , ..., XkltkJ. Applying a substitution crto a term t which is expressed
by a t means to replace simultaneously all occurrences of xi in t by ti for all
replacements xt/ti e c. The term s = Otis called an instance of t. A term t is called
more general than a term s if s is an instance of t, i.e. if 3 a: at = s but t is not an
instance of s. Two terms t] and t2 can be unified if there is a substitution cr which
applied to the two terms makes them identical (oti = <Jt2). The term w = oti = ot2 is
called a common instance of ti and t2 and <7 is called their unifier. A unifier does not

necessarily exist for any two terms, and in general there is more than only one
possible common instance for two terms. If the common instance w is more general
than all other common instances of tj and t2 , w is called the most general common
instance, and the corresponding substitution o is called the most general unifier

(mgu) of ti and t2 . It can be shown that an mgu is unique up to renaming of
variables. An early description of an algorithm for finding the mgu of two terms
may be found in [ROB 65]. More efficient unification algorithms have been

developed since then which are integrated in the interpreters of the programming
language PROLOG.

Definition 3.5: (Equational theory, '=£^. An equational theory is a theory
represented by a set of equations E on terms: E = {t{ = ti"}. An important question
that may be asked in such a theory is: Given two terms s and r; are s and t congruent
modulo the set of equations E l We say that s =e t if we find a finite chain of
equations ti}‘ = ti}", ti2' = ti2"...... " where tik' - tik" are instances of

equations of E: with either (t^ = ti") = (Oit{ = Oit{') or (t^ = ti") = (<%•" - &${)>

s = tij”, t = tin', and t i ” = tik j ' for k = 1 to n-1. The congruence relation '= e ' is

defined as the reflexive-symmetric-transitive closure of the equations in E. The
question whether such a chain of equations exists for two terms and a given set of
equations E is called a word problem and is undecidable in general.

Definition 3.6: (reduction rules, order function x,). For the equations a = b e E

one can often define in a natural way a "reduction operation" o r "reduction rule"
a^>b. With R we denote the set of all reduction rules derived from E by orientating
the equations, such that the left side of the rule is always bigger than the right side,
with respect to an order function t (see for example the previous section). To
explain how a reduction a b e R is applied to a term s we give the following

definition.

Definition 3.7: (reduction, completeness, uniform termination, unique
termination).
s ->r t (s reduces to t by R) if and only if there is a rule a -^ b e R, a substitution <7
and an occurrence u e Oc(s) such that s@u - csa, and t = s[« <- s(bj\.

’->r' is called complete if it has the following two properties:

• The iteration of reduction process always terminates after a finite number of

steps at an irreducible object (uniform termination property).

• Different reduction processes starting from the same object always terminate at

the same irreducible object (unique termination property).

In order to prove these properties for a given set of reduction rules R we need to
introduce the following definitions.

Definition 3.8: (—>r * , x-l^y , Noetherian, irreducible term). .

1) x —»r* y means that there is a finite sequence of reduction rules a -» r b e R
that can be applied consecutively to the term x which is then reduced to y by
means of these rules.

2) By jcI r J ' we mean that x and y have a common successor, i.e. 3 z: x -» r * x

r V y.

3) '->r' is called Noetherian if there is no infinite chain of the form xj -»r X2 -»r
X3 —»r -.

4) x is called an irreducible term, if there is no rule in R that further reduces x.

From now on we assume that '-»r' is Noetherian. Then the following lemmas (3.2
- 3.4) hold:

Lemma 3.2: S r is a canonical simplifier for '=e if and only if ’-» r ' has the
Church-Rosser property, i.e. V x j e T: x = £y =$ ^ I rJ . In other words: If we
can prove that S r is a canonical simplifier, then congruence modulo E becomes
decidable. For any two terms x =e y holds, if and only if S-r(x) - S&(y). (the
function S r (x) is defined algorithmically by the inference mechanism applying the
rules of R on x until an irreducible term is obtained).

Lemma 3.3: Reduction of the Church-Rosser property to confluence.
1—>r' has the Church-Rosser property if and only if '-»r' is confluent (i.e. V x , y , z

e T, x *<- z -» * y => x | r J .

Lemma 3.4: Reduction of confluence to local confluence (Newman 1942).
' - > r ' is confluent if and only if is locally confluent, i.e. V jc ,y ,z & T, x < - z ->
y => xlzy.

Proof of lemmas 3.2 - 3.4: The proofs of the lemmas with an almost identical
notation can be found in [BUC 82]. Therefore they are given without proof here.

The criterion of local confluence seems intuitively simpler than proving canonicality
through the original definition but is still not effective since an infinite number of terms
x, y, z need be considered in general. With the following theorem 3.5 by Knuth and
Bendix we obtain a criterion for proving the Church Rosser property of a set of rules
by a finite number of tests.

Definition 3.9: (critical pair). The terms p and q form a critical pair <p,q> in R if
there are rules // -> rj and I2 -> 2̂ in R, and an occurrence u in Oc(11) such that li@u
is not a variable, lj@ u and I2 are unifiable, p = Gi(li) [u <- 02(^2/!, and q - Ojrj
where Cj and 05 are substitutions such that Gj(lj@ u) = O2 I2 is a most general
common instance of lj@ u and I2 with the property that no variable of Oi(li@ u)
occurs in I2 .

Theorem 3.5: Reduction of local confluence to confluence o f critical pairs (Knuth -
Bendix, 1967). '->r' is locally confluent if and only if for all critical pairs p, q of R:

P i R4-

Proof of theorem 3.5: Again the proof of the theorem can be found in [BUC 82].

It should be clear from the definition that for a finite set of rules only a finite number
of critical pairs can exist, and therefore the Church Rosser property may be proved in
finite time. The so called "critical pair algorithm" tests for all pairs of rules in R if there
is a superposition of the left side of one rule and a sub-term of the left side of another
rule. When we know that '—>r is not confluent we need some method for transforming
the non canonical system into a canonical one without changing the theory. An
algorithm called the Knuth-Bendix critical pair completion algorithm converts critical

1) Find a critical pair < p ,q > in R where SR (p) # SR (q) ;
. If no such pair was found report "R is confluent"; go to 4
2) if T (SR (p)) < T (SR (q)) then

R := R U (SR (q) —> SR (p))

if T (SR (p)) > T (SR (q)) then
R R U (SR (p) —> SR (q))

else report "aborted" got to 4 .
3) use the new rules to simplify (or delete) the rest of R

go to 1
4) stop

In the following section we want to apply the theory with some modifications to the
geometric reduction rules.

pairs into new rules. The algorithm is outlined roughly as follows:

3.3 A critical pair algorithm for geometric rewrite-rules

In chapter 2 we showed how axioms of elementary geometry may be expressed by
equations between conjunctions. The theory obtained is an equational theory for
elementary geometry. The equations are applied as rewrite rules which have the
character of the reduction rules defined in the previous section. With some adaptions
for the special properties of conjunctions of predicates we may use the theoretical
results, and the Knuth-Bendix completion algorithm, described in section 3.2 to
complete the set of geometric reduction rules, or to prove that it is complete.

Definition 3.10 (literal): A predicate, e.g. a(Pl, P2, P3, Alpha), d(Pl, P2, Dist),
etc., or a congruence relation like e.g. d(Pl, P2) = d(P3, P4), etc. are called literals.
The arguments of the predicates are terms (point variables or geometric operations).

The rewrite rules are of the form cj C2, where cj and C2 are conjunctions of
literals. In order to prove the completeness of our set of rules we also need to take into
consideration the associativity law: (p a q) a w - p a (q a w) for conjunctions p, q, w,

and the commutativity law p a q = q a p. We cannot find an order function such that p
a q reduces in a natural way to q a p. The two conjunctions are intrinsically

incomparable. A method that may be applied is to integrate the associativity and
commutativity law into the unification algorithm. An algorithm for the so called
unification modulo AC for conjunctions is described in [HSI 83] under the name of
BN-unification. We use a similar definition for describing what we call AC-critical
pairs of conjunctions for which we can prove that they lead us to a criterion for local
confluence for the special type of rewrite rules used in our program.

Definition 3.11: (separated). Two conjunctions are separated if they do not share
common literals.
Some examples: p a q a r and r a s a q are not separated since they share the
literals q and r , neither are p(a) a q(x) and p(a) a r (y , z) , however the conjunctions
p(a) a q(x) and p(x) a r (y , z) are separated although they have the common predicate

p (but p(a) and p(x) are not identical).

Let us consider two conjunctions s and t of the form: s = sj a S2 , and t = tj a t2

with sub-conjunctions sj, S2 , tj, t2 . We define the conjunctions s' := u a sj, and t' :=
v A t] where u and v stand for variable conjunctions.

Definition 3.12: (unification modulo AC). The conjunctions s and t are unifiable
modulo AC if there are substitutions for the arguments of the literals o ’, a" such
that o'S2 = o"t2 = w, w is a most general common instance of S2 and t2 , sj and tj
are separated, and s' = t’ i.e. u <- tjA w, v <- s j a w. Since in general there is a
finite number of ways for splitting s ant t into sub-conjunctions there is a finite
number of ways for unifying the two terms, and there is in general more than one,
but a finite number of most general unifiers. By BNU(s,t) we mean a complete set
of most general unifiers of conjunctions s and t. When the two terms s and t are
separated the unifier will be a trivial one, namely u <- t, and v <- s. Since such a
unification is useless, as we shall see later, we will treat the conjunctions as non
unifiable.

Definition 3.13: (Reduction o f a fact-database). The database of facts D to which
the rewrite rules are applied may be interpreted as a conjunction of literals (the
facts): D = p i a p 2 a ... a pic. Since conjunction is closed under associativity and
commutativity, all permutations of of literals in D are equivalent (D' = Ptfi) a p-^2)
a . . . a Pn(k) - D for some permutation k of the indices). We may therefore

regard the expression as an unstructured set D = {pj, p 2 , ..., Pk} orD = LJ/ {pj}.

We say the database DL reduces to the database DL+ib y R (Di ->r Di+j) if and only
if there is a rule I ->r <= R and a substitution cr such that for a subset, D' czD[, D ' =
ol, and Di+i = (Di - ol) u or. (With a difference A - B we mean the set
difference that is only defined if the set to be subtracted B £ A).

Definition 3.14: (AC-critical pair). <p,q> is called an AC-critical pair if l\ -> rj
and I2 r2 is a pair of rules of R with unifiable left sides, l\ is of the form lj ' a lj",
12 is of the form I2 ' a I2 ", if 3 0 1 , 0 2 : o il]" = 0 2 12" thenp = o j l j ' a 02^2, q
= 0 2 I2 ' a cr/r;.

Theorem 3.6: '->r' is locally confluent if and only if for all AC-critical pairs p, q
o fR : p iRq.

Proof of theorem 3.6:

I t . i t

Let us assume that for arbitrary databases Si, S2 and where S] <- Dinit -> S2 ,
we have to show that S1 IS 2 , i.e. Sj ->* Df<- S2 for some Df. We also assume that
there are rules /; -> rj, I2 -> r2 e R and substitutions Oj, 0 2 with <77/7 c:Z)ZW7

and 0 2 I2 ^ Dini[such that Sj = (Dinit - O ih) u 0 \r \ t and S2 = (Dinit - O2 I2) u

02T2-

There are essentially two cases that need be considered:

In the first case otfi n 0 2 I2 = 0 ­
S] n 0 2 I2 = ((Dinit - d l l) u a m) n G2h = Dinit n 0 2 I2 = 0^ 2, and
S2 n O il] = ((Dinit - 0 2 I2) u 02T2) n Oil] = Dinit n O ili = O ih , therefore
(((Dinit - o ili)y j o m) - 0 2 I2) u 02̂ 2 = D/is defined, and

(((Dinit - G2h) ^ &2r2) - &ih) u &irl = Df is defined as well, therefore S1 IS 2 .

In the second case a il1 n <72/2 ^ 0-
we call w = ail] n <72/2, therefore 07/7 ' = o il7 \ w, and <72/2 ' = <72/2 \w .
Si = ((Dinit - w) - o ih ') u o ir i, and S2 = ((Dinu - w) - G2 I2 ') u a2n- Si and S2

have a common successor if 0 2 I2 ' ^ &irl and a j / 7 ' u o 2 *2 have a common
successor. It is easy to see that this condition for confluence corresponds to the,
confluence condition of instances of AC critical pairs. If critical pairs are confluent
then all their instances are confluent, therefore S1 IS2 .

We assume that is a most general common instance of the left sides 11 and I2 of
two rules in R. Therefore Sj = Oirj u O2 I2 \ and S2 = <72̂ 2 ^ Glh - From the
confluence of Sj and S2 follows the confluence of the corresponding critical pair. ♦

We have implemented an AC critical pair algorithm in PROLOG for testing the
confluence of the geometric rewrite-rules. An important part of the algorithm is
"unification modulo AC" which is not supported by PROLOG, but may be
implemented easily with the unification already given by the language. The rewrite-
rules for the reflexivity-, symmetry- and transitivity-laws of the congruence relations
and for the addition properties of vectors, angles and triangles are not reduction rules in
the sense of our order function T. The confluence of these rewrite-rule will be shown in

section 3.4. They have been integrated in the unification of our Knuth-Bendix
algorithm. Since the equivalence classes are finite and not pair-wise unifiable, there
exist no critical pairs between them. For many predicates changing the order of the
arguments yields an equivalent predicate. For example, the predicate d(Pl, P2, Dist) is
equivalent to d(P2, PI, Dist). Such equivalences also needed to be integrated in the
unification algorithm. They are independent from the other laws, and do not affect the
above proofs. Our critical pair algorithm finds all critical pairs for the given set of
rules. The critical pairs lead to new rules which are used to reduce or delete old rules,
before they are added to the set of rules. This process is done iteratively as is described
in section 3.2. The algorithm served us for testing the theory. Many earlier versions of
the rewrite rules lead to contradictions not necessarily seen by looking at individual
rules but arising as a consequence of their combination. It also became clear that for
some rules in their original formulation it was impossible to obtain confluence with a

finite set of reduction rules. The critical pair algorithm was an important tool for
guiding us to the right way of thinking about the problem, and finally, for proving the
algorithmic completeness and the independence of the rules.

We now want to apply the critical pair algorithm to geometric rewrite-rules such as
found in chapter 2. For the following discussion we leave out the terms that represent
the construction operations, and treat the axioms as relations between points. We start
with a set of 5 rules. The rules listed below are those rules using predicates for
assigning constant values to point tuples (The procedure for the rules dealing with
congruence relations is very similar).

1 [S (A, B, _), d (A, B, _)] -> [v (A, B, _)] .
2 [p (A, _) , v (A, B, _)] -> [p (A, _) , p (B, _)] .
3 [S(A,B, _), a(B,A,C, _)] -> [S(A,B) , s(A,C, _) .
4 [a (A, B, C, _) , d (A, B, _) , d (B, C, _)]

-> [tr (A, B, C, _) , d (B, C, _)] .
5 [a(A,B,C, _) , a(B,C,A, _)] -> [tr(A,B,C, _)] .

The Knuth-Bendix completion algorithm generates 7 more rules:

6 [a (A, B, C, _), v (B, C, _)] -> [v (B, C, _) , S (A, B, _)]

was found from a critical pair of rules 1 and 3

7 [v(A,B, _), tr(A,B,C, _)] -> [v(A,B, _), v(B,C, _)]

was found from a critical pair of rules 1 and 4

8 [s(A,B, _) , s(B,C, _) , S(C,A, _)]
-> [S(A,B, _) , tr(A,B,C, _)]

was found from a critical pair of rules 3 and 5

9 [v (A, B, _) , s (A, C, _) , S (B, C, _)] -> [v (A, B, _) , v(A,C, _)]

2 5

was found from a critical pair of rules 1 and 8

11 [tr(A,B,C, _), p(A, _), p(B, _)]
—^ [p (Ar _) t p (B, _) r p (C/ _)]

was found from a critical pair of rules 2 and 7

12 [p (A, _), p<B, _), S {A, Cr _) , S (B, Cr _)]
-> [p (A, _) , p (B, _) , p (A, _)]

was found from a critical pair of rules 2 and 9

Finally, we obtain a set of 12 rules that are locally confluent, i.e. for all critical pairs
p, q the relation p i Rq holds. For obtaining the above result we had to also introduce

the so called "inconsistency rules", that are used to detect when the database of facts is
inconsistent. As an example, the rule [d(A,B, _), d(A,B, _)] -> [false] indicates that
representing the distance between points A and B by two facts in the database is either
redundant or contradictory. Similarly, for slopes we define [s(AJi, _), s(A,B, _)] ->
[false]. These two rules build critical pairs with rule (1) of above, which introduce the
following two new inconsistency rules: [v(A, B, _), d(A, B, _)] -> [false] , and [v(A,
B, _), s(A, B, _)] -> [false]. These rules may be interpreted as follows: The
knowledge of the relative vector between two points already implies the knowledge of
the slope and the distance between these points, therefore explicitly stating these
constraints in combination is redundant or contradicting. More such inconsistency
rules that find contradicting conjunctions of predicates by a reduction to false' have
been created from critical pairs by the algorithm (they are not listed here). Many critical
pairs that have been found do not result in a new rule, but disappear later on, as soon
as additional rules are introduced. For example, the critical pair <[v(A, B, _), d(A, B,
_)] , M A , B, _), s(A, B, _)]> is reduced to a trivial critical pair <false, false>, as
soon as the two inconsistency rules of above are introduced.

was found from a critical pair of rules 2 and 6

Theorem 3.7. The algorithm based on the final set of rules R obtained from EQ by
means of the order function t, and the Knuth-Bendix completion algorithm, as

described, is a decision algorithm for the theory r cR (A subset of elementary

Euclidean geometry, for compass and ruler constructions).

Proof of theorem 3.7: The proof follows from the confluence of the rules and the
Church-Rosser property stated by lemma 3.2 (see diagram, fig. 3.8)..

L

r ^ i - cp(p) <-» (P) p) ► (p\p) V ¥(P)

fig. 3.8

Forward vs, backward reasoning. The information associated with the predicates
retracted from the database by application of rewrite-rules is still implied by the new
predicates. Instead of adding the inverse rule (which would cause termination
problems) we define some implications. Such implications can be represented in Prolog
by so called "Prolog-rules". The notation of a Prolog rule is as follows: "A :- B."
means that A is implied by B, where A is a predicate (the head of the rule), and B is a
conjunction of predicates (the body of the rule). The Prolog backtracking mechanism is
used to derive the truth of predicates either directly from facts '[]', or indirectly by
applying Prolog-rules. Together with the rewrite-rule d j we define the following

2 8

a(Pl,P2,P3) = a(P4,P5,P6) [tr(Pi,P2,P3) = tr(P4,P5,P6)]
a(P2,P3,Pi) = a(P5,P6,P4) [tr(PI,P2,P3) = tr(P4,P5,P6)]
a (P3,PI,P2) = a(P6,P4,P5) [tr(PI,P2,P3) = tr(P4,P5,P6)]

Another axiom of Euclidean geometry used in our system is expressed by the
rewrite-rule V2 -

r 2 ■
[a(PI, P2, P3) = a(P4, P5, P6), s(P2, P3) = s(P5, P6)]

-> [s(P2, P3) = s(P5, P6) , s(Pl, P2) = s(P4, P5)]

The corresponding implication is:

a(PI, P2, P3) = a (P4, P5, P6):-
[s(Pl, P2) = s(P4, P5)] , [s(P2, P3) = s(P5, P6)] .

Here the importance of the order of the arguments becomes clear. If we reversed the
order of points in one of the predicates the rule would be in contradiction to its
geometric meaning.

It is a general principle of our program to apply the rewrite-rules are in one direction
(for replacing the predicates in the database with new predicates, and thus bringing
them to a certain normal form), and the implications in the other direction (for deriving
predicates implied by other predicates). The method of applying rewrite-rules is also
called forward reasoning, whereas the built-in reasoning mechanism of Prolog is called
backward reasoning. Both reasoning mechanisms are combined in this program. The
implications used in combination with the so called construction rules introduced at the
beginning of this section may be interpreted as measuring operations. The following
implication may be used for measuring the distance between two points:

distance(Pl, P2, D):-

p(Pl, [XI,Yl]),

implications.

Here forward reasoning is used for construction operations and backward reasoning
is used for measuring operations.

3.4 Representing equivalence classes

Congruence relations, like e.g. d(Pl,P2) - d(P3,P4), are of great importance to
geometry; they are equivalence relations, satisfying the reflexivity-, symmetry-, and
transitivity laws. The present section describes how equivalence relations are treated in
our system. To treat the issue in a more general way here we abstract from the
geometric meaning, and write an equation X = Y, where X and Y stand for predicates.
An equation may be syntactically represented as a directed graph (an arrow going from
X to Y). The system of equations A = B ,B = C, D = C, and D = E is represented by
the graph shown in fig. 3.9

B

We use the graph notation to illustrate the laws of equivalence classes (fig. 3.10)

A

. 3.9 Representing equations by a directed graph

fig. 3.10 The laws of equivalence classes represented with directed graphs

To find out whether two objects U, V (here vertices of a graph) belong to the same
equivalence class we would have to apply the above laws repeatedly to the graph, and
to infer a directed edge from U to V. The representation of equivalence classes by
directed graphs, as shown in fig. 3.9, is not unique and solving such a problem
requires a graph search algorithm. A unique and complete representation of the
equivalence class in fig. 3.9 is the reflexive-, transitive-, symmetric closure of the
graph (see fig. 3.11) which is a complete and undirected graph for the vertices A , ...,

fig. 3.11 transitive closure of the equation system

The information is explicit, but certainly redundant. For n equivalent objects the r?
edges need to be generated by some preprocessing algorithm. We were looking for a
representation that a) is unique, b) does not store information redundantly, and c) fits
into our system of rewrite-rules such that we can apply the same inference mechanism
as for the other rules. We define two rewrite-rules e] and e2 (shown graphically in fig.

3.12).

[X = Y, Y = Z] -> [X = Y, X = Z]

fig. 3.12 rewrite rules for congruence relations

Applying these rewrite-rules to the graph in fig. 3.9 results in a tree of depth 1 (fig.
3.13) where n-1 vertices are directly connected to one vertex (the root of the tree).

A

fig. 3.13 An equivalence class represented by a graph in tree form.

Lemma 3.1. An inference mechanism applying the rewrite-rules e i and e2 to a
set of m equations represented as a directed graph with m + 1 vertices stops after
finitely many steps resulting in a tree representation of depth 1 as shown in fig. 3.13.

The representation is unique up to the choice of the root vertex.

Proof of Lemma 3.1. For the proof we make the further assumption that rule e j is

3 3
applied with higher priority, i.e. rule e2 is only applied when rule ej does not apply.
An arbitrary graph may be viewed as consisting of several partial trees that point to
each other pair-wise.

a) By applying rule e j to each of the partial trees the connection of each node is

propagated to the root of the partial tree. After a while all partial trees are in normal
form (trees of depth 1, see fig. 3.15), and ej does no longer apply.

b) By applying e2 to one connected pair of partial trees the two directed edges

pointing to each other reverse their direction, (fig. 3.15). This makes their common
vertex the new root, and the two partial trees the sub-trees of the now merged tree. By
repeated application of e j this new tree is brought to normal form.

Whenever e j does not apply e2 merges two partial trees as described under b). This
works until the complete tree is in normal form. The root of the final tree will be the
common vertex of the two partial trees merged last. ♦

To decide that two objects, X and Y, belong to the same equivalence class once the
equations are in normal form means to check if either X = Y is stated explicitly, or is
implied by the other equations which are in normal form. In PROLOG we express the

fig. 3.14 fig. 3.15

implications by the following rules for the predicate 'congruent:

congruent(X, Y) [X = Y] .

congruent(X, Y) [Y = X] .

congruent(X, X):- true.

congruent(X, Y):- [Z = X] , [Z = Y] .

The method for treating equivalence classes described in this section is applied to all
congruence relations, such as d(Pl, P2) = d(P3, P4), s(Pl, P2) = s(P3, P4), a(Pl,
P2,P3) = a(P4,P5,P6), etc.

Addition properties of vectors, angles and triangles. The addition
properties of vectors, angles and triangles can be treated in a similar way as the
congruence relations above. Some examples:

• If we know a relative vector going from point A to point B, by v(A, B, v]),
and a vector from B to C by v(B, C, V2), the knowledge of a vector from A to C is
implied, namely v(A, C, vj + v2) (transitivity).

• If we know the vector v(A, B, v), the vector in the opposite direction v(B, A, -
v) is also known (symmetry).

• For every point P the vector v(P, P, 0) is known to have zero length
(reflexivity).

We need some means for treating the transitivity-, symmetry- and reflexivity-
properties of the predicate V. Like above, we write some rewrite-rules that bring the
vectors to normal form:

35

[v(A,B, v i), v(B,C, v2)] -> [v(A,B, v l), v(A,C, v l + v2)]

[v(A,B, v i), v(C,B, v2)] -> [v(B,A, -vi), v(B,C, -v2)]

and express the corresponding implications by PROLOG rules:

v(A,B, V):- [v(A,B, V)].
v(B,C, V2 - VI):- [v(A,B, Vl),v(A, C, V2)]. ‘
v(B,A, -V):- [v(A,B, V)].
v(X,X, 0):- true.

Very similar rules have been found for treating the addition properties of angles and
triangles (they are not explicitly given here). By means of these rules we may not only
express properties for simple triangles but also for polygons specified by constraints,

4 Conclusion

An advantage of the symbolic, geometric approach is the closeness of the language
in which it is realized to the language of geometric applications, for instance interactive
Computer Aided Design (CAD). The predicates and functions used in the algorithm
have a direct geometric interpretation. Therefore it is relatively straight forward to
develop a user interface that explains the results in words or graphically. In the
implemented prototype system the graphical user interface and the numerical evaluation
of the symbolical expressions are realized with the language interface of the Prolog
interpreter with the procedural programming language Modula-2 (see [MUL 85] and
[WIR 83]). An application of the constraint solver for 3-dimensional geometric
modelling is described in [SOB 91].

The rewrite-rules arise from equations of formulas. Therefore applying these rules
cannot invent new points that don't occur in the description of the problem, although
this is sometimes necessary for finding a proof or a construction. Theoretically it is

possible to have the computer invent such points, but then the program would be
intractable for real-life problems. The intended application of the system is to support
the interactive user in finding a solution when constructing geometric objects. Also the
system may be used for interactively proving elementary geometry theorems. The
strength of the system is that it helps detecting inconsistencies in the definition (in an
interactive session such inconsistencies are quite often) and gives hints where to add
constraints.

References

[BUL 82] B. Buchberger and R. Loos. Algebraic Simplification. Computing,
Suppl. 4, 11, (1982) pp. 11-43

[BRU 86] B. Briiderlin. Constructing Three-Dimensional Geometric Objects
Defined By Constraints. 1986 Workshop on Interactive 3D Graphics,
Conference Proceedings, Chapel Hill, North Carolina, published by
ACM Siggraph, 1986

[BRU 87] B. Briiderlin. Rule-Based Geometric Modelling. Ph.D. thesis, ETH
Zurich, Switzerland, Verlag der Fachvereine, vdf-Verlag, Zurich 1987
(ISBN 3 7281 1638)

[CHO 84] Shang-Ching Chou. Proving Elementary Geometry Theorems Using
Wu's Algorithm. Contemporary Mathematics, Volume 29, 1984,
American Mathematical Society, pp 234 - 287

[CHS 86] Shang-Ching Chou and William F. Schelter. Proving Geometry
Theorems with Rewrite Rules. Journal of Automated Reasoning 2
(1986) pp. 253 - 373

[CHO 86] Shang-Ching Chou. A Collection of Geometry Theorems Proved
Mechanically. Technical Report 50, July 1986. Institute for Computing
Science, University of Texas at Austin

[CLM81] W.F. Clocksin, C.S. Mellish. Programming in Prolog. Springer
Verlag, Berlin, Heidelberg, New York 1981

[COP 86] Helder Coelho, Luiz Moniz Pereira. Automated Reasoning in Geometry
Theorem Proving with Prolog. Journal of Automated Reasoning 2
(1986)

[COL 75] G.E. Collins. Quantifier Elimination for Real Closed Fields by
Cylindrical Algebraic Decomposition. Lecture Notes in Computer
Science No. 33, pp. 134 - 183, Springer Verlag, 1975.

[ENG 83] E. Engeler. Metamathematik der Elementarmathematik. Springer Verlag,
Berlin, Heidelberg, New York 1983

37
[GEL 59] H. Gelemter. Realization of a Theorem Proving Machine, 1959.

Published in "Automation of Reasoning" Vol.l, Springer Verlag, 1983

[GOS 83] James Gosling. Algebraic Constraints. Ph.D. thesis, Carnegie-Mellon
University, May 1983

[HIL71] D. Hilbert. Foundations of Geometry. Open Court Publishing
Company, La Salla, Illinois 1971

[HUC 86] Ulrich Huckenbeck. Geometrische Maschinenmodelle (german). PhD.
thesis, Universitat Wurzburg, Germany, 1986

[HSI 83] Jieh Hsiang. Topics in Automated Theorem Proving and Program
Generation. Ph.D. Thesis, Univ. of Illinois at Urbana-Champaign,
1983

[HOA 69] C.A.R. Hoare. An Axiomatic Basis for Computer Programming.
Communications of the ACM. Vol. 12 No. 10, 1969

[KAM 88] D.Kapur, J.L. Mundi. Special Volume on Geometric Reasoning.
Artificial Inteligence, Volume 37, Numbers 1-3, December 1988.

[KNB 70] D.E. Knuth, P.B. Bendix. Simple Word Problems in Universal
Algebra. Computational Problems in Abstract Algebra. Conference
Proceedings, Oxford 1967, J. Leech ed., Pergamon 1970

[KOH85] H.-P. Ko and M.A. Hussain. ALGE-PROVER. An Algebraic
Geometry Theorem Proving Software. Report No. 85CRD139, july
1985. Technical Information Series, General Electric

[LIG 82] R. Light, D. Gossard. Modification of geometric models through
variational geometry. CAD vo. 14, No. 4, Butterworth 1982

[MUL 85] C. Muller. Modula — Prolog, User Manual. Rep. No. 63, July 1985.
Inst, fiir Informatik, ETH Zurich, Switzerland

[NEL 85] G. Nelson. Juno, a constraint-based graphics system. 1985 ACM
Siggraph Conference Proceedings

[POP 86] R.J. Popplestone. The Edinburgh Designer System as a Framework for
Robotics

[ROB 65] J.A. Robinson. A Machine-oriented Logic Based on the Resolution
Principle, JACM, Vol. 12, No. 1, Jan. 1965, pp. 23-41.

[SCH 88] F. Schmid. A Symbolic Approach to Solving Formulas in Projective
Geometry. Ph.D. Thesis, ETH, Switzerland, 1988.

[SCH 75] Peter Schreiber. Theorie der geometrischen Konstruktionen (german).
VEB Verlag der Wissenschaften, Berlin, 1975

[SST 83] W. Schwabhauser, W. Szmielev, A. Tarski. Metamathematische
Methoden in der Geometrie (german). Springer Verlag Berlin,
Heidelberg, New York 1983

[SHA 78]

[SUT 63]

[SOB 91]

[TAR 51]

[WIR83]

[WUW 84a]

[WUW 84b]

[WUW 86]

Michael Ian Shamos. Computational Geometry. Ph.D. thesis, Yale
University, New Haven, Connecticut, 1978.

I. Sutherland. Sketchpad, A Man-Machine Graphical Communication
System. Ph.D. thesis, MIT, January 1963

W. Sohrt, B. Bruderlin, Interactive Geometric Modelling with
Constraints. To appear in proceedings of the 17th Annual Conference
on Advances in Design and Manufacturing, Austin Texas, Jan 1991.

A. Tarski. A Decision Method for Elementary Algebra and Geometry.
Univ. of Calif. Press, Berkeley, 1951

N. Wirth. Programming in Modula-2. Texts and Monographs in
Computer Science. Springer Verlag Berlin, Heidelberg, New York
1983

Wu Wen-tsiin. Some Recent Advances in Mechanical Theorem Proving
of Geometries. Contemporary Mathematics, Volume 29, 1984,
American Mathematical Society, pp. 235 - 241

Wu Wen-tsiin. On the decision Problem and the mechanization of
Theorem -Proving in Elem entary Geometry. Contemporary
Mathematics, Volume 29, 1984, American Mathematical Society, pp.
213-23

Wu Wen-tsiin. Basic Principles of Mechanical Theorem Proving in
Elementary Geometries. Journal of Automated Reasoning 2 (1986) pp.
221 - 252

