208 research outputs found

    Whole-Head Functional Near-Infrared Spectroscopy as an Ecological Monitoring Tool for Assessing Cortical Activity in Parkinson’s Disease Patients at Different Stages

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is increasingly employed as an ecological neuroimaging technique in assessing age-related chronic neurological disorders, such as Parkinson’s disease (PD), mainly providing a cross-sectional characterization of clinical phenotypes in ecological settings. Current fNIRS studies in PD have investigated the effects of motor and non-motor impairment on cortical activity during gait and postural stability tasks, but no study has employed fNIRS as an ecological neuroimaging tool to assess PD at different stages. Therefore, in this work, we sought to investigate the cortical activity of PD patients during a motor grasping task and its relationship with both the staging of the pathology and its clinical variables. This study considered 39 PD patients (age 69.0 ± 7.64, 38 right-handed), subdivided into two groups at different stages by the Hoehn and Yahr (HY) scale: early PD (ePD; N = 13, HY = [1; 1.5]) and moderate PD (mPD; N = 26, HY = [2; 2.5; 3]). We employed a whole-head fNIRS system with 102 measurement channels to monitor brain activity. Group-level activation maps and region of interest (ROI) analysis were computed for ePD, mPD, and ePD vs. mPD contrasts. A ROI-based correlation analysis was also performed with respect to contrasted subject-level fNIRS data, focusing on age, a Cognitive Reserve Index questionnaire (CRIQ), disease duration, the Unified Parkinson’s Disease Rating Scale (UPDRS), and performances in the Stroop Color and Word (SCW) test. We observed group differences in age, disease duration, and the UPDRS, while no significant differences were found for CRIQ or SCW scores. Group-level activation maps revealed that the ePD group presented higher activation in motor and occipital areas than the mPD group, while the inverse trend was found in frontal areas. Significant correlations with CRIQ, disease duration, the UPDRS, and the SCW were mostly found in non-motor areas. The results are in line with current fNIRS and functional and anatomical MRI scientific literature suggesting that non-motor areas—primarily the prefrontal cortex area—provide a compensation mechanism for PD motor impairment. fNIRS may serve as a viable support for the longitudinal assessment of therapeutic and rehabilitation procedures, and define new prodromal, low-cost, and ecological biomarkers of disease progression

    Influence of Early Bilingual Exposure in the Developing Human Brain.

    Get PDF
    190 p.La adquisición del lenguaje es un proceso que ese encuentra determinado tanto por mecanismos de desarrollo cognitivo, como por la experiencia lingüística durante los primeros años de vida. Aunque se trata de un proceso relativamente complejo, los bebés muestran una gran habilidad para el aprendizaje del lenguaje. Un entorno de aprendizaje lingüístico bilingüe podría considerarse aun más complejo, ya que los bebés están expuestos a las características lingüísticas de dos lenguas simultáneamente. En primer lugar, los bebés que crecen en un entorno bilingüe tienen que ser capaces de darse cuenta de que están expuestos a dos lenguas diferentes, y posteriormente deben separar y aprender las características especificas de cada una de ellas; por ejemplo, los distintos fonemas, palabras o estructuras gramaticales. Aunque la exposición lingüística total de los bebés bilingües debería ser comparable a la de los bebés monolingües, es probable que la exposición a cada una de las lenguas de su entorno sea menor, ya que tienen que dividir su tiempo de exposición entre ambas. Si bien los bebés bilingües parecen no tener problemas para enfrentarse a un contexto de aprendizaje potencialmente más complejo, ya que alcanzan las distintas etapas de adquisición del lenguaje a un ritmo similar a los bebés monolingües, sí se han observado adaptaciones a nivel conductual y a nivel de funcionamiento cerebral que podrían producirse como consecuencia de este contexto.Basque Center on cognition, brain and languag

    Influence of Early Bilingual Exposure in the Developing Human Brain.

    Get PDF
    190 p.La adquisición del lenguaje es un proceso que ese encuentra determinado tanto por mecanismos de desarrollo cognitivo, como por la experiencia lingüística durante los primeros años de vida. Aunque se trata de un proceso relativamente complejo, los bebés muestran una gran habilidad para el aprendizaje del lenguaje. Un entorno de aprendizaje lingüístico bilingüe podría considerarse aun más complejo, ya que los bebés están expuestos a las características lingüísticas de dos lenguas simultáneamente. En primer lugar, los bebés que crecen en un entorno bilingüe tienen que ser capaces de darse cuenta de que están expuestos a dos lenguas diferentes, y posteriormente deben separar y aprender las características especificas de cada una de ellas; por ejemplo, los distintos fonemas, palabras o estructuras gramaticales. Aunque la exposición lingüística total de los bebés bilingües debería ser comparable a la de los bebés monolingües, es probable que la exposición a cada una de las lenguas de su entorno sea menor, ya que tienen que dividir su tiempo de exposición entre ambas. Si bien los bebés bilingües parecen no tener problemas para enfrentarse a un contexto de aprendizaje potencialmente más complejo, ya que alcanzan las distintas etapas de adquisición del lenguaje a un ritmo similar a los bebés monolingües, sí se han observado adaptaciones a nivel conductual y a nivel de funcionamiento cerebral que podrían producirse como consecuencia de este contexto.Basque Center on cognition, brain and languag

    Exploring the relationship between hemispheric prefrontal cortex activation, standing balance, and fatigue in individuals post-stroke: A fNIRS study

    Get PDF
    Balance impairments are common after stroke. Reasons for this are multifactorial and include motor dysfunction and fatigue. Limited research has explored the combined effects of post-stroke fatigue and balance on brain activation patterns. Research has shown that prefrontal cortex (PFC) activation may be involved in both motor control and fatigue throughout the recovery process post-stroke. The aim of this thesis was to determine whether: (1) PFC activation levels change between standing balance tasks, (2) PFC hemispheric activation is asymmetric during standing balance tasks, and (3) fatigue levels are associated with task-based activation. Patients with hemiparesis were recruited from the inpatient stroke unit at Parkwood Institute. Functional near-infrared spectroscopy was applied bilaterally over the PFC to measure brain activation during balance tasks. Fatigue was assessed using the Fatigue Severity Scale (FSS). Nine patients were included. Measures of PFC activation during the semi-tandem stance showed a greater amplitude than the double-leg stance, indicating more brain activation during this activity. Participants with greater fatigue (higher score on FSS) showed more activation in the ipsilesional PFC compared to the contralesional PFC. Greater ipsilesional PFC activation may occur when performing more challenging balance positions, potentially indicating compensatory activation

    A consensus guide to using functional near-infrared spectroscopy in posture and gait research

    Get PDF
    BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is increasingly used in the field of posture and gait to investigate patterns of cortical brain activation while people move freely. fNIRS methods, analysis and reporting of data vary greatly across studies which in turn can limit the replication of research, interpretation of findings and comparison across works. RESEARCH QUESTION AND METHODS: Considering these issues, we propose a set of practical recommendations for the conduct and reporting of fNIRS studies in posture and gait, acknowledging specific challenges related to clinical groups with posture and gait disorders. RESULTS: Our paper is organized around three main sections: 1) hardware set up and study protocols, 2) artefact removal and data processing and, 3) outcome measures, validity and reliability; it is supplemented with a detailed checklist. SIGNIFICANCE: This paper was written by a core group of members of the International Society for Posture and Gait Research and posture and gait researchers, all experienced in fNIRS research, with the intent of assisting the research community to lead innovative and impactful fNIRS studies in the field of posture and gait, whilst ensuring standardization of research

    Adaptive yoga versus low-impact exercise for adults with chronic acquired brain injury: a pilot randomized control trial protocol

    Get PDF
    BackgroundEach year, millions of Americans sustain acquired brain injuries (ABI) which result in functional impairments, such as poor balance and autonomic nervous system (ANS) dysfunction. Although significant time and energy are dedicated to reducing functional impairment in acute phase of ABI, many individuals with chronic ABI have residual impairments that increase fall risk, decrease quality of life, and increase mortality. In previous work, we have found that yoga can improve balance in adults with chronic (i.e., ≥6 months post-injury) ABI. Moreover, yoga has been shown to improve ANS and brain function in healthy adults. Thus, adults with chronic ABI may show similar outcomes. This protocol details the methods used to examine the effects of a group yoga program, as compared to a group low-impact exercise, on primary and secondary outcomes in adults with chronic ABI.MethodsThis study is a single-blind randomized controlled trial comparing group yoga to group low-impact exercise. Participants must be ≥18 years old with chronic ABI and moderate balance impairments. Group yoga and group exercise sessions occur twice a week for 1 h for 8 weeks. Sessions are led by trained adaptive exercise specialists. Primary outcomes are balance and ANS function. Secondary outcomes are brain function and structure, cognition, quality of life, and qualitative experiences. Data analysis for primary and most secondary outcomes will be completed with mixed effect statistical methods to evaluate the within-subject factor of time (i.e., pre vs. post intervention), the between-subject factor of group (yoga vs. low-impact exercise), and interaction effects. Deductive and inductive techniques will be used to analyze qualitative data.DiscussionDue to its accessibility and holistic nature, yoga has significant potential for improving balance and ANS function, along with other capacities, in adults with chronic ABI. Because there are also known benefits of exercise and group interaction, this study compares yoga to a similar, group exercise intervention to explore if yoga has a unique benefit for adults with chronic ABI.Clinical trial registration:ClinicalTrials.gov, NCT05793827. Registered on March 31, 2023

    Towards multimodal driver state monitoring systems for highly automated driving

    Get PDF
    Real-time monitoring of drivers’ functional states will soon become a required safety feature for commercially available vehicles with automated driving capability. Automated driving technology aims to mitigate human error from road transport with the progressive automatisation of specific driving tasks. However, while control of the driving task remains shared between humans and automated systems, the inclusion of this new technology is not exempt from other human factors-related challenges. Drivers’ functional states are essentially a combination of psychological, emotional, and cognitive states, and they generate a constant activity footprint available for measurement through neural and peripheral physiology, among other measures. These factors can determine drivers’ functional states and, thus, drivers’ availability to safely perform control transitions between human and vehicle. This doctoral project aims at investigating the potential of electrocardiogram (ECG), electrodermal activity (EDA) and functional near-infrared spectroscopy (fNIRS) as measures for a multimodal driver state monitoring (DSM) system for highly automated driving (i.e., SAE levels 3 and 4). While current DSM systems relying on gaze behaviour measures have proven valid and effective, several limitations and challenges could only be overcome using eye-tracking in tandem with physiological parameters. This thesis investigates whether ECG, EDA and fNIRS would be good candidates for such a purpose. Two driving simulator studies were performed to measure mental workload, trust in automation, stress and perceived risk, all identified as modulators of drivers’ functional states and that could eventually determine drivers’ availability to take-over manual control. The main findings demonstrate that DSM systems should adopt multiple physiological measures to capture changes in functional states relevant for driver readiness. Future DSM systems will benefit from the knowledge generated by this research by applying machine learning methods to these measures for determining drivers’ availability for optimal take-over performance
    • …
    corecore