9,967 research outputs found

    A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images

    Get PDF
    BACKGROUND: Knowledge of the subcellular location of a protein is critical to understanding how that protein works in a cell. This location is frequently determined by the interpretation of fluorescence microscope images. In recent years, automated systems have been developed for consistent and objective interpretation of such images so that the protein pattern in a single cell can be assigned to a known location category. While these systems perform with nearly perfect accuracy for single cell images of all major subcellular structures, their ability to distinguish subpatterns of an organelle (such as two Golgi proteins) is not perfect. Our goal in the work described here was to improve the ability of an automated system to decide which of two similar patterns is present in a field of cells by considering more than one cell at a time. Since cells displaying the same location pattern are often clustered together, considering multiple cells may be expected to improve discrimination between similar patterns. RESULTS: We describe how to take advantage of information on experimental conditions to construct a graphical representation for multiple cells in a field. Assuming that a field is composed of a small number of classes, the classification accuracy can be improved by allowing the computed probability of each pattern for each cell to be influenced by the probabilities of its neighboring cells in the model. We describe a novel way to allow this influence to occur, in which we adjust the prior probabilities of each class to reflect the patterns that are present. When this graphical model approach is used on synthetic multi-cell images in which the true class of each cell is known, we observe that the ability to distinguish similar classes is improved without suffering any degradation in ability to distinguish dissimilar classes. The computational complexity of the method is sufficiently low that improved assignments of classes can be obtained for fields of twelve cells in under 0.04 second on a 1600 megahertz processor. CONCLUSION: We demonstrate that graphical models can be used to improve the accuracy of classification of subcellular patterns in multi-cell fluorescence microscope images. We also describe a novel algorithm for inferring classes from a graphical model. The performance and speed suggest that the method will be particularly valuable for analysis of images from high-throughput microscopy. We also anticipate that it will be useful for analyzing the mixtures of cell types typically present in images of tissues. Lastly, we anticipate that the method can be generalized to other problems

    An incremental approach to automated protein localisation

    Get PDF
    Tscherepanow M, Jensen N, Kummert F. An incremental approach to automated protein localisation. BMC Bioinformatics. 2008;9(1): 445.Background: The subcellular localisation of proteins in intact living cells is an important means for gaining information about protein functions. Even dynamic processes can be captured, which can barely be predicted based on amino acid sequences. Besides increasing our knowledge about intracellular processes, this information facilitates the development of innovative therapies and new diagnostic methods. In order to perform such a localisation, the proteins under analysis are usually fused with a fluorescent protein. So, they can be observed by means of a fluorescence microscope and analysed. In recent years, several automated methods have been proposed for performing such analyses. Here, two different types of approaches can be distinguished: techniques which enable the recognition of a fixed set of protein locations and methods that identify new ones. To our knowledge, a combination of both approaches – i.e. a technique, which enables supervised learning using a known set of protein locations and is able to identify and incorporate new protein locations afterwards – has not been presented yet. Furthermore, associated problems, e.g. the recognition of cells to be analysed, have usually been neglected. Results: We introduce a novel approach to automated protein localisation in living cells. In contrast to well-known techniques, the protein localisation technique presented in this article aims at combining the two types of approaches described above: After an automatic identification of unknown protein locations, a potential user is enabled to incorporate them into the pre-trained system. An incremental neural network allows the classification of a fixed set of protein location as well as the detection, clustering and incorporation of additional patterns that occur during an experiment. Here, the proposed technique achieves promising results with respect to both tasks. In addition, the protein localisation procedure has been adapted to an existing cell recognition approach. Therefore, it is especially well-suited for high-throughput investigations where user interactions have to be avoided. Conclusion: We have shown that several aspects required for developing an automatic protein localisation technique – namely the recognition of cells, the classification of protein distribution patterns into a set of learnt protein locations, and the detection and learning of new locations – can be combined successfully. So, the proposed method constitutes a crucial step to render image-based protein localisation techniques amenable to large-scale experiments

    Automated segmentation of tissue images for computerized IHC analysis

    Get PDF
    This paper presents two automated methods for the segmentation ofimmunohistochemical tissue images that overcome the limitations of themanual approach aswell as of the existing computerized techniques. The first independent method, based on unsupervised color clustering, recognizes automatically the target cancerous areas in the specimen and disregards the stroma; the second method, based on colors separation and morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Extensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual segmentations; additional experiments show that our techniques are more effective in immunohistochemical images than popular approaches based on supervised learning or active contours. The proposed procedure can be exploited for any applications that require tissues and cells exploration and to perform reliable and standardized measures of the activity of specific proteins involved in multi-factorial genetic pathologie

    A multiresolution approach to automated classification of protein subcellular location images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fluorescence microscopy is widely used to determine the subcellular location of proteins. Efforts to determine location on a proteome-wide basis create a need for automated methods to analyze the resulting images. Over the past ten years, the feasibility of using machine learning methods to recognize all major subcellular location patterns has been convincingly demonstrated, using diverse feature sets and classifiers. On a well-studied data set of 2D HeLa single-cell images, the best performance to date, 91.5%, was obtained by including a set of multiresolution features. This demonstrates the value of multiresolution approaches to this important problem.</p> <p>Results</p> <p>We report here a novel approach for the classification of subcellular location patterns by classifying in multiresolution subspaces. Our system is able to work with any feature set and any classifier. It consists of multiresolution (MR) decomposition, followed by feature computation and classification in each MR subspace, yielding local decisions that are then combined into a global decision. With 26 texture features alone and a neural network classifier, we obtained an increase in accuracy on the 2D HeLa data set to 95.3%.</p> <p>Conclusion</p> <p>We demonstrate that the space-frequency localized information in the multiresolution subspaces adds significantly to the discriminative power of the system. Moreover, we show that a vastly reduced set of features is sufficient, consisting of our novel modified Haralick texture features. Our proposed system is general, allowing for any combinations of sets of features and any combination of classifiers.</p

    Machine vision-assisted analysis of structure-localization relationships in a combinatorial library of prospective bioimaging probes

    Full text link
    With a combinatorial library of bioimaging probes, it is now possible to use machine vision to analyze the contribution of different building blocks of the molecules to their cell-associated visual signals. For this purpose, cell-permeant, fluorescent styryl molecules were synthesized by condensation of 168 aldehyde with 8 pyridinium/quinolinium building blocks. Images of cells incubated with fluorescent molecules were acquired with a high content screening instrument. Chemical and image feature analysis revealed how variation in one or the other building block of the styryl molecules led to variations in the molecules' visual signals. Across each pair of probes in the library, chemical similarity was significantly associated with spectral and total signal intensity similarity. However, chemical similarity was much less associated with similarity in subcellular probe fluorescence patterns. Quantitative analysis and visual inspection of pairs of images acquired from pairs of styryl isomers confirm that many closely-related probes exhibit different subcellular localization patterns. Therefore, idiosyncratic interactions between styryl molecules and specific cellular components greatly contribute to the subcellular distribution of the styryl probes' fluorescence signal. These results demonstrate how machine vision and cheminformatics can be combined to analyze the targeting properties of bioimaging probes, using large image data sets acquired with automated screening systems. © 2009 International Society for Advancement of CytometryPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63004/1/20713_ftp.pd

    Objective Clustering of Proteins Based on Subcellular Location Patterns

    Get PDF
    The goal of proteomics is the complete characterization of all proteins. Efforts to characterize subcellular location have been limited to assigning proteins to general categories of organelles. We have previously designed numerical features to describe location patterns in microscope images and developed automated classifiers that distinguish major subcellular patterns with high accuracy (including patterns not distinguishable by visual examination). The results suggest the feasibility of automatically determining which proteins share a single location pattern in a given cell type. We describe an automated method that selects the best feature set to describe images for a given collection of proteins and constructs an effective partitioning of the proteins by location. An example for a limited protein set is presented. As additional data become available, this approach can produce for the first time an objective systematics for protein location and provide an important starting point for discovering sequence motifs that determine localization

    Random subwindows and extremely randomized trees for image classification in cell biology

    Get PDF
    Background: With the improvements in biosensors and high-throughput image acquisition technologies, life science laboratories are able to perform an increasing number of experiments that involve the generation of a large amount of images at different imaging modalities/scales. It stresses the need for computer vision methods that automate image classification tasks. Results: We illustrate the potential of our image classification method in cell biology by evaluating it on four datasets of images related to protein distributions or subcellular localizations, and red-blood cell shapes. Accuracy results are quite good without any specific pre-processing neither domain knowledge incorporation. The method is implemented in Java and available upon request for evaluation and research purpose. Conclusion: Our method is directly applicable to any image classification problems. We foresee the use of this automatic approach as a baseline method and first try on various biological image classification problems

    Many Local Pattern Texture Features: Which Is Better for Image-Based Multilabel Human Protein Subcellular Localization Classification?

    Get PDF
    Human protein subcellular location prediction can provide critical knowledge for understanding a protein’s function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification
    corecore