124 research outputs found

    Artificial neural networks in nuclear medicine

    Get PDF
    An analysis of the accessible literature on the diagnostic applicability of artificial neural networks in coronary artery disease and pulmonary embolism appears to be comparative to the diagnosis of experienced doctors dealing with nuclear medicine. Differences in the employed models of artificial neural networks indicate a constant search for the most optimal parameters, which could guarantee the ultimate accuracy in neural network activity. The diagnostic potential within systems containing artificial neural networks proves this calculation tool to be an independent or/and an additional device for supporting a doctor’s diagnosis of artery disease and pulmonary embolism

    Neural hypernetwork approach for pulmonary embolism diagnosis

    Get PDF
    Background Hypernetworks are based on topological simplicial complexes and generalize the concept of two-body relation to many-body relation. Furthermore, Hypernetworks provide a significant generalization of network theory, enabling the integration of relational structure, logic and analytic dynamics. A pulmonary embolism is a blockage of the main artery of the lung or one of its branches, frequently fatal. Results Our study uses data on 28 diagnostic features of 1427 people considered to be at risk of pulmonary embolism enrolled in the Department of Internal and Subintensive Medicine of an Italian National Hospital “Ospedali Riuniti di Ancona”. Patients arrived in the department after a first screening executed by the emergency room. The resulting neural hypernetwork correctly recognized 94 % of those developing pulmonary embolism. This is better than previous results obtained with other methods (statistical selection of features, partial least squares regression, topological data analysis in a metric space). Conclusion In this work we successfully derived a new integrative approach for the analysis of partial and incomplete datasets that is based on Q-analysis with machine learning. The new approach, called Neural Hypernetwork, has been applied to a case study of pulmonary embolism diagnosis. The novelty of this method is that it does not use clinical parameters extracted by imaging analysis

    Chosen Abstracts of Xth Polish Society of Nuclear Medicine Scientific Congress

    Get PDF

    Perfusion vector - a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients

    Get PDF
    The interpretation of myocardial perfusion scintigraphy (MPS) largely relies on visual assessment by the physician of the localization and extent of a perfusion defect. The aim of this study was to introduce the concept of the perfusion vector as a new objective quantitative method for further assisting the visual interpretation and to test the concept using simulated MPS images as well as patients

    Aerospace medicine and biology. A continuing bibliography (supplement 231)

    Get PDF
    This bibliography lists 284 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1982

    Diagnostic evaluation of three cardiac software packages using a consecutive group of patients

    Get PDF
    Purpose: The aim of this study was to compare the diagnostic performance of the three software packages 4DMSPECT (4DM), Emory Cardiac Toolbox (ECTb), and Cedars Quantitative Perfusion SPECT (QPS) for quantification of myocardial perfusion scintigram (MPS) using a large group of consecutive patients. Methods: We studied 1,052 consecutive patients who underwent 2-day stress/rest 99mTc-sestamibi MPS studies. The reference/gold-standard classifications for the MPS studies were obtained from three physicians, with more than 25 years each of experience in nuclear cardiology, who re-evaluated all MPS images. Automatic processing was carried out using 4DM, ECTb, and QPS software packages. Total stress defect extent (TDE) and summed stress score (SSS) based on a 17-segment model were obtained from the software packages. Receiver-operating characteristic (ROC) analysis was performed. Results: A total of 734 patients were classified as normal and the remaining 318 were classified as having infarction and/or ischemia. The performance of the software packages calculated as the area under the SSS ROC curve were 0.87 for 4DM, 0.80 for QPS, and 0.76 for ECTb (QPS vs. ECTb p = 0.03; other differences p < 0.0001). The area under the TDE ROC curve were 0.87 for 4DM, 0.82 for QPS, and 0.76 for ECTb (QPS vs. ECTb p = 0.0005; other differences p < 0.0001). Conclusion: There are considerable differences in performance between the three software packages with 4DM showing the best performance and ECTb the worst. These differences in performance should be taken in consideration when software packages are used in clinical routine or in clinical studies

    QRS pattern and improvement in right and left ventricular function after cardiac resynchronization therapy: a radionuclide study

    Get PDF
    open12siPredicting response to cardiac resynchronization therapy (CRT) remains a challenge. We evaluated the role of baseline QRS pattern to predict response in terms of improvement in biventricular ejection fraction (EF). METHODS: Consecutive patients (pts) undergoing CRT implantation underwent radionuclide angiography at baseline and at mid-term follow-up. The relationship between baseline QRS pattern and mechanical dyssynchrony using phase analysis was evaluated. Changes in left and right ventricular EF (LVEF and RVEF) were analyzed with regard to baseline QRS pattern. RESULTS: We enrolled 56 pts, 32 with left bundle branch block (LBBB), 4 with right bundle branch block (RBBB) and 20 with non-specific intraventricular conduction disturbance (IVCD). A total of 48 pts completed follow-up. LBBB pts had significantly greater improvement in LVEF compared to RBBB or non-specific IVCD pts (+9.6 ± 10.9% vs. +2.6 ± 7.6%, p = 0.003). Response (defined as ≥ 5% increase in LVEF) was observed in 68% of LBBB vs. 24% of non-specific IVCD pts (p = 0.006). None of the RBBB pts were responders. RVEF was significantly improved in LBBB (+5.0 ± 9.0%, p = 0.007), but not in non-specific IVCD and RBBB pts (+0.4 ± 5.8%, p = 0.76). At multivariate analysis, LBBB was the only predictor of LVEF response (OR, 7.45; 95% CI 1.80-30.94; p = 0.006), but not QRS duration or extent of mechanical dyssynchrony. CONCLUSIONS: Presence of a LBBB is a marker of a positive response to CRT in terms of biventricular improvement. Pts with non-LBBB pattern show significantly less benefit from CRT than those with LBBB.openDomenichini G; Burri H; Valzania C; Gavaruzzi G; Fallani F; Biffi M; Sunthorn H; Diemberger I; Martignani C; Foulkes H; Fleury E; Boriani GDomenichini G; Burri H; Valzania C; Gavaruzzi G; Fallani F; Biffi M; Sunthorn H; Diemberger I; Martignani C; Foulkes H; Fleury E; Boriani

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging
    corecore