44,668 research outputs found

    The "Artificial Mathematician" Objection: Exploring the (Im)possibility of Automating Mathematical Understanding

    Get PDF
    Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer

    Towards an integrated discovery system

    Get PDF
    Previous research on machine discovery has focused on limited parts of the empirical discovery task. In this paper we describe IDS, an integrated system that addresses both qualitative and quantitative discovery. The program represents its knowledge in terms of qualitative schemas, which it discovers by interacting with a simulated physical environment. Once IDS has formulated a qualitative schema, it uses that schema to design experiments and to constrain the search for quantitative laws. We have carried out preliminary tests in the domain of heat phenomena. In this context the system has discovered both intrinsic properties, such as the melting point of substances, and numeric laws, such as the conservation of mass for objects going through a phase change

    Automated Discovery in Econometrics

    Get PDF
    Our subject is the notion of automated discovery in econometrics. Advances in computer power, electronic communication, and data collection processes have all changed the way econometrics is conducted. These advances have helped to elevate the status of empirical research within the economics profession in recent years and they now open up new possibilities for empirical econometric practice. Of particular significance is the ability to build econometric models in an automated way according to an algorithm of decision rules that allow for (what we call here) heteroskedastic and autocorrelation robust (HAR) inference. Computerized search algorithms may be implemented to seek out suitable models, thousands of regressions and model evaluations may be performed in seconds, statistical inference may be automated according to the properties of the data, and policy decisions can be made and adjusted in real time with the arrival of new data. We discuss some aspects and implications of these exciting, emergent trends in econometrics.Automation, discovery, HAC estimation, HAR inference, model building, online econometrics, policy analysis, prediction, trends

    On the automated extraction of regression knowledge from databases

    Get PDF
    The advent of inexpensive, powerful computing systems, together with the increasing amount of available data, conforms one of the greatest challenges for next-century information science. Since it is apparent that much future analysis will be done automatically, a good deal of attention has been paid recently to the implementation of ideas and/or the adaptation of systems originally developed in machine learning and other computer science areas. This interest seems to stem from both the suspicion that traditional techniques are not well-suited for large-scale automation and the success of new algorithmic concepts in difficult optimization problems. In this paper, I discuss a number of issues concerning the automated extraction of regression knowledge from databases. By regression knowledge is meant quantitative knowledge about the relationship between a vector of predictors or independent variables (x) and a scalar response or dependent variable (y). A number of difficulties found in some well-known tools are pointed out, and a flexible framework avoiding many such difficulties is described and advocated. Basic features of a new tool pursuing this direction are reviewed
    corecore