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Abstract

Our subject is the notion of automated discovery in econometrics. Advances
in computer power, electronic communication, and data collection processes
have all changed the way econometrics is conducted. These advances have
helped to elevate the status of empirical research within the economics pro-
fession in recent years and they now open up new possibilities for empirical
econometric practice. Of particular significance is the ability to build econo-
metric models in an automated way according to an algorithm of decision rules
that allow for (what we call here) heteroskedastic and autocorrelation robust
(HAR) inference. Computerized search algorithms may be implemented to seek
out suitable models, thousands of regressions and model evaluations may be
performed in seconds, statistical inference may be automated according to the
properties of the data, and policy decisions can be made and adjusted in real
time with the arrival of new data. We discuss some aspects and implications
of these exciting, emergent trends in econometrics.

Keywords: Automation, discovery, HAC estimation, HAR inference, model
building,.online econometrics, policy analysis, prediction, trends.
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Automated Discovery in Science

“There’s been a profound transformation in economics since the early
’70s, particularly in the elevation of empirical research in comparison to
pure theory. The explosion of computing power has been integral to that.”
Levitt (2004)

Automated discovery in science is a fairly recent phenomenon. It is commonly
associated with our newfound capacity to collect, store and process vast amounts of
data in extremely short periods of time. These capabilities come from sheer compu-
tational power and storage capability in conjunction with electronic communication,
data processing and statistical analysis. Rapid information processing accelerates
learning. It also enables algorithms to be implemented that automate judgements
and scientific evaluations that would otherwise be made by human participants. The
upshot is that empirical and experimental research can now be conducted in an au-
tomated fashion with much more limited human involvement than in the past.
Fast processing capability of this type is important in many areas of science and

engineering. Familiar examples occur in medical diagnostic imaging, the processing
of particle collision data in experimental physics and in the engineering of space guid-
ance systems. In space-craft guidance, for instance, rapid data processing is needed
to capitalize on the short window of opportunity that exists for the firing of rocket
engines in order to maneuver a space vehicle into a safe landing trajectory. Notwith-
standing extensive planning and preparatory analyses, critical final calculations must
be performed in real time prior to engine ignition and these involve rapidly process-
ing the current coordinates, velocity and trajectory of the space vehicle. A related
example is the use of unmanned robotic vehicles like the Mars exploration rovers.
These machines are programmed to function as “geologists”, analyzing rocks and soil
in their environment in an automated way that does the work of human scientists
and makes new scientific discoveries.
Another example in a different field is the use of automated virus detection sofware

to search and discover new computer viruses. If anti-virus software is to be effective in
the face of mass proliferation of viruses, new viruses must be recognized quickly and
incorporated into virus definition files so that they are accessible to users for updating
virus definitions on individual machines. Popular anti-virus programs automate such
processes. For instance, the engine behind Norton AntiVirus is SARA (Symantec
Antivirus Research Automation). This fully automated anti-virus computer system
provides ongoing screening of internet files and virus analysis, it implements virus
definitions and performs file disinfection, and then adds digital cures to the virus
definitions so that they are ready for updating. Likewise, live updating of virus defi-
nitions on individual PC’s is now implementable in an automated way, just as service
packs and security patches may be downloaded automatically to update operating
systems software files. IT security systems at major institutions now screen thou-
sands of incoming messages and attachments a minute for viruses and automatically
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reset file suffixes to protect users from innocently opening attachments and releasing
viruses and worms. Even with such automated monitoring and protection mecha-
nisms in place, great damage is still being inflicted by the rising number of virus,
worm and spyware attacks.
In a related fashion, the processing capacity of modern computers makes it pos-

sible to subject vast amounts of data to statistical analysis with little or no human
intervention. Automated regression and statistical search algorithms can often be
completed within seconds of the arrival of new data. This means that policy deci-
sions like portfolio investment allocations can be made and adjusted on the fly in real
time using such analysis, just as a craft is maneuvered in space by remote control
once its latest coordinates and trajectory are processed.
Glymour (2004) identifies these modern computer-led developments in science as

bearing the hallmarks of a scientific revolution. In Glymour’s view, this revolution
breaks the long-standing tradition, often associated with Popper (1959, 1963), of a
steady sequential progression of advance and falsification in science:

“The change is from the textbook scientific paradigm in which one or a
very few hypotheses are entertained and tested by a very few experiments,
to a framework in which algorithms take in data and use it to search over
many hypotheses, as experimental procedures simultaneously establish
not one but many relationships.”

These changes, which have been affecting many different areas of scientific work in
the last decade, are now beginning to be felt in econometrics.

Automation in Econometric Modeling

Methodological and software advances in econometrics in recent years have made the
idea of automated modeling a practical reality in many applied econometric problems.
Some of these methods are already in use in financial econometric analysis (Pesaran
and Timmermann, 1995, 2002 & 2004), in macroeconometrics (Hendry and Krolzig,
2001 & 2002) and in ex ante econometric forecasting and policy analysis (Phillips,
1992, 1995, 1995b; Schiff and Phillips, 2000).
These methods use various model determination procedures in a largely auto-

mated fashion to model and predict single and multiple time series. Work on large
multidimensional panels (Bai and Ng, 2001) is also ongoing and can be used in a
mechanical way to search for a small number of reference variables that suitably cap-
ture the variation in the larger set. Methods of this type have been used in dynamic
factor modeling and forecasting exercises (Stock and Watson, 1999). Related work
has been underway in the systems engineering literature for a decade or more on
subspace algorithms for estimation, prediction and model selection in large linear
dynamic systems (Bauer, 2002). This work has recently been extended to allow for
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unit roots and cointegration (Bauer and Wagner, 2002 & 2003) and is overviewed by
Bauer (2004) in the present issue. Algorithms have also been developed for analyzing
causal structure among variables by computing conditional independence relations
in what are called Bayes net diagrams (c.f. Pearl, 2000). These graph-theoretic ap-
proaches are discussed and used in Swanson and Granger (1997) and Hoover (2004)
in this issue. In addition to this work, there appears to be scope for using genetic
programming algorithms (like those utilized in computer science and optimization
theory) to find suitable functional forms in empirical work and thereby assist the
model building process. These procedures work by a constructive process of com-
bining elementary mathematical operations through tree structures and mutations
to develop more complex functions and are capable of identifying unusual functional
forms. Some econometric examples are given in Kaboudan (2000) and Milev (2004).
Just as financial analysts hunt out market opportunities for investment, it is easy

for empirical modelers to use modern computing power and tailored software to search
systematically over models for ones with apparently superior performance. Statistical
testing as in general to specific modeling algorithms (e.g., Perez and Hoover, 1999 ;
Hendry, 1995), or direct model selection methods (Phillips, 1996) may be used in this
process. The practice is steadily becoming widespread in econometrics. Even in what
now seem routine exercises like unit root or cointegration testing, important decisions
on lag length parameter settings and variable inclusion need to be made. These deci-
sions often influence the results of inference and so it is reasonable to integrate such
decisions into the overall process of finding a suitable model specification rather than
to isolate them and treat them separately. Bayesian thinking, of course, tends to
encourage coherent model evaluation along such lines. Bayes methods also provide
a natural mechanism for smoothing over uncertainties by model averaging and fore-
cast combination, both of which are becoming more common in applied work. Such
procedures may, of course, be implemented over subsets of models corresponding to
those that are found a posteriori to be most likely.
Model determination exercises of this type inevitably generate some controversy.

Particularly since Leamer (1978), there has been ongoing discussion of the validity of
specification searches in econometrics and the effect of data mining on inference. In
the present issue, this controversy is reflected in the contributions of Hansen (2004),
Hoover (2004), Leeb and Pötscher (2004), Paruolo (2004), Perez-Amaral, Gallo, and
White (2004), and in the dialogue of Granger and Hendry (2004).
In another recent contribution to this literature, White (2000) examined data-

snooping exercises and gave statistical criteria that facilitate the assessment of a
chosen model from such a search against certain benchmarks. A central difficulty
in this assessment arises from the need to allow for the cross-model statistical de-
pendence that arises from reuse of the same data across models. The complication
bears some similarity to the type of dependence that can arise in cross section or
panel modeling where there is cross section error dependence but no natural ordering
of the data and therefore no natural concepts of weak and strong dependence. A
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further complication is that practical data-snooping typically involves hunting for a
model that works well, not just comparing a fixed number of models and locating
the ‘best’ one. In other words, a specification search is often called off only when
a seemingly adequate model specification is found. This means that the number of
models examined is itself data-dependent and the endogeneity needs to be accounted
for in the statistical analysis.
Recent empirical work by Sala-i-Martin (2003) exemplifies this phenomenon, where

literally millions of regressions were run in a hunt for significant explanations of eco-
nomic growth. At a more subtle level, these data-snooping effects operate across
research communities and over time. New empirical work regularly builds on past
studies and, however careful individual practitioners may be in the implementation
of their methods, data-snooping effects operate in the aggregate across researchers.
Practical econometric work seems to be moving inexorably in this general direction
and the subject is ripe for theoretical study.
A further issue that complicates matters is the effect that model selection has

on subsequent estimation. As discussed in work by Pötscher (1991) and Kabaila
(1995), the use of model selection (e.g., in lag length determination) can have a
big effect on the distributions of econometric estimators, tests, confidence regions
and prediction intervals. Some related research on the finite sample distribution
of post-model-selection estimators in the normal linear regression model is given in
Leeb and Potscher (2003). More recently, Leeb and Pötscher (2003b) established an
impossibility theorem, revealing that model selection searches set up an obstacle that
prevents uniformly consistent estimation of the distribution of subsequent estimators.
These results are discussed and extended in Leeb and Pötscher’s (2004) contribution
to the present issue. This work has deep significance for applications, revealing an
important limitation of what can be accomplished in estimation when uncertainty
about model specification requires the use of model selection.
This research follows in the tradition of an earlier literature on pre-test estima-

tion (e.g. Judge and Bock, 1978). That literature was guided by a similar concern
about the effects of prelimary specification tests on estimation. Careful analysis of
this problem in linear regression analysis showed that pre-test (of linear restrictions)
estimators were inferior in terms of risk to ordinary least squares regression over an
infinite range of the parameter space, although they could be far superior in neighbor-
hoods where the restrictions were approximately correct. Further, carefully designed
biased estimators (like Stein-rule, positive part and Bayes estimators) were capable
of uniformly reducing risk and producing non-trivial gains in multivariate contexts
provided risk averaging across dimension was permitted.
Important though these contributions were, their direct impact on applied econo-

metric work has been minor. One reason is that, while prescriptions were available
for point estimation, guidelines for hypothesis testing and interval estimation have
proved much more difficult. Another is that extensions of these results to more re-
alistic models than linear regression with fixed regressors has also been an obstacle.
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In short, this interesting research agenda complicated inference even in simple linear
models, did not appear to generalize in a simple manner and did not produce sim-
ple algorithms for inference. On the other hand, its indirect impact gave increasing
recognition to the role of pre-testing in modeling and showed that empirical workers
need clear guidance from theorists about desirable procedures and general rules to
follow in applied work that will validate or robustify inference in the face of sequential
data analysis. Attention to these issues is ongoing and some relevant recent work, for
instance, examines the harm of pretesting and its effects on forecasting (Danilov and
Magnus, 2004a and 2004b). None of this research has, or will, put least squares out
of business. But it has increased awareness of some of the implications of preliminary
specification search on inference.
My own practical experience in the field of automated modeling relates primarily

to the use of automation in building models for ex ante macroeconometric forecasting.
I started out in this field in the early 1990s, keen to apply some automated model de-
termination methods that I had developed in joint work with Ploberger (1994, 1996).
These techniques were well suited to finding models in the reduced rank regression
class and error correction model class for practical uses such as economic forecasting
(Phillips, 1995a & 1995b), policy analysis and impulse response analysis (Phillips,
1998), the latter subject to conventional issues such as shock identification. In such
problems, many seemingly innocuous but often practically important decisions are
made in building models, such as trend degree specification, intercept inclusion or ex-
clusion, the timing of any structural breaks, and lag length selection. In conventional
econometric work, such decisions are commonly made, possibly as part of some group
of overall specification tests, prior to further analysis that may involve testing for re-
duced rank and cointegration or the presence of certain causal patterns in the data.
In real time ex ante forecasting, such decisions on the details of model specification
can (and, arguably, should) be made jointly, for example by model selection methods,
albeit with some consequential effects on subsequent inference as discussed in the last
paragraph. It is also possible to weight models according to posterior probabilities
and combine them to produce weighted forecasts. In implementation, these model
determination exercises take only a few seconds to perform on modern computing
equipment, although computing time rapidly increases with the size of the system
and with the number of evaluations performed. Hundreds of multivariate regressions
are well within the short-time-frame capability (less than five minutes, say) of present
equipment, including laptops, and once conducted a final model can be selected on
some criterion such as penalized or predictive likelihood. Alternatively, the methods
can produce a weighted average of several models based on their posterior probability.
All of these decisions can be built into the software algorithm so that users need only
specify the variables to be included and, if they wish, insist on certain restrictions,
such as specific cointegrating relations involving certain variables.
The development time that went into programming this work ran into months.

But, in large part this was a one-time fixed investment. Once the system software was

6



set up, forecasts could be obtained from large multi-equation systems in a matter of
seconds, with hundreds of regressions and model evaluations (including unit root and
cointegration tests) automatically conducted in this time. Practical experience soon
revealed that the forecasting performance of such automated methods was frequently
very competitive with that of labor intensive modeling methods, sometimes where
entire research teams were involved in building and maintaining models. Some exam-
ples and comparisons of this type for the New Zealand economy are given in Schiff
and Phillips (1999). In forecasting US GDP and inflation up to 12 quarters ahead for
four years from 1995-1998, my findings (Phillips, 1998b) were that automated use of
multivariate error correction model methods (with in-built automated selection of in-
tercepts, trends, and lag length) did as well as seasoned macroeconometric forecasters
on the level playing field of ex ante economic forecasting.
These comparisons do not necessarily devalue the contribution of more labor in-

tensive methods. Considerations of which variables to include, the quality of the
data, and the relevant ideas from economic theory and past empirical studies will
always be matters for direct human involvement. Dealing with data-revisions and se-
ries updating also requires manual intervention. But the comparisons do point to the
reality that is now upon us — that much of the applied work that used to take weeks
or even months to complete can now be done in a matter of a few seconds or minutes
by automated procedures. Moreover, these procedures have the great advantage that
they can be mounted on the web for online use by anyone on a 24/7 basis, much as
the simple graphical display of exchange rate and stock price data is now routinely
available at financial sites on the web. Some discussion of these possiblilities is given
in Phillips (2003). Examples of the use of these methods in practice online are now
available at the website http://www.covec.co.nz/predicta/. Interactive elements
have not been activated on this site for security reasons. Browser interaction, up-
loading, and open ports all increase website and server vulnerabilities. These threats
must be faced as we progress in the development of online econometric technology
and the implementation of effective defense barriers becomes a vital part of any such
installation, as indeed it is in network operations more generally because of the rising
tide of malware on the internet.
A great advantage of online automated econometrics is that it can make avail-

able econometric methods to a wide audience in our communities. Business people,
politicians, journalists, educators and economic commentators may use these online
econometric tools to forecast variables that are of interest to them and to conduct
some elementary policy analyses. Newsroom interviews and national level economics
discussion can be enlivened by showing the data and producing forecasts online as
the discussion proceeds. Policy analyses can be computed that map out the tra-
jectories of key economic indicators under different assumptions about forthcoming
Central Bank interest rate decisions and Government taxation policy or even external
economic shocks. As methods become more sophisticated it will become possible to
program automated facilities so that they are flexible enough to match user needs in
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decision making. For example, it is possible to allow users to select loss functions that
they deem most relevant to the application in hand in evaluating results like inflation
and unemployment forecasts. Such real time econometric analysis adds quantitative
information to the discussion of economic issues and it can be compelling in clarifying
differences in the projected outcomes of various economic policies.
When utilized in such a way, econometric data analysis can be of immediate and

transparent benefit to society. Basic data analysis is now becoming familiar to a
wider public through televised weather and sports commentating. The value added
is particularly apparent in the television coverage of sports events, where statistical
data from past events is combined with ongoing data analysis of the current event
to provide more informative television coverage. In live tennis broadcasting, for
example, data is collected on each point as the match proceeds regarding such things
as placement of service, number of shots in the rally, number of winners, number of
forehand/backhand errors and so on. This data is analyzed as the match continues
and the results are reported in the ongoing commentary and in onscreen visual data
displays, showing such statistical information as each player’s service location up to
the present moment in the match. Viewers may then evaluate the data themselves, as
well as listen to the analysis by commentators. Ongoing match data of this type can
be combined with past data about earlier matches by the competitors to highlight
similarities and differences and to support real time match projections/predictions
being made by the commentators. In the past, television coverage relied on human
memory to bring these elements into match coverage. Nowadays, sports data bases
and ongoing statistical data analysis are available to commentators to enrich coverage
in a more detailed, rigorous, and visually engaging manner.
If televised economic commentary and data analysis ends up proceeding along

similar lines to championship tennis match coverage the resulting public exposure of
econometric methods will have its share of drawbacks as well as benefits. Indeed,
we may well expect commercial and media usage of econometrics to bring the sub-
ject some notoriety, like meteorology, by publicly revealing its limitations when it
fails badly. But failures form part of the overall picture and need to be acknowl-
edged. The methods of econometrics are developed to be used and ongoing changes
in computerization and automation make these methods eminently more useable. So
it is both desirable and inevitable that econometrics will become more widely used
and available in society. The societal effects of these changes in the practical side of
econometrics may end up being a further manifestation of the scientific revolution to
which Glymour (2003) has so aptly drawn attention.

Robustification and HAR Inference

Empirical investigators in economics face many hard realities. One inescapable re-
ality is that the models used in empirical work are inevitably wrong. Even if an
empirical model were thought to be correctly specified ab initio, a relevant policy
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intervention would typically disturb the empirical relationship. As Goodhart (1975)
aptly observed,

“any observed statistical regularity will tend to collapse once pressure
is placed upon it for control purposes”

Goodhart’s law (as this is now called) and the closely related Lucas (1976) critique
(see Chrystal and Mizen, 2001, for a discussion of their differences), as well as their
many antecedents in the history of econometric thought (as discussed in detail by
Hendry and Morgan, 1995) emphasize that in the world of economic activity the
observed system and its apparent statistical regularities are not invariant to policy
actions (or rules) and other interventions by authorities. This line of thinking has
placed a premium on finding autonomous economic relations or economic laws that
stem from “deep” theories about the behavior of economic agents.
In practice, of course, all empirical models can only provide simplified representa-

tions of economic systems. Simple behavioral models, as Milton Friedman once said,
lead to powerful predictions, the permanent income hypothesis being a prominent
example. Simplicity comes at the price of reduced realism, so we often prefer to think
of the models we use in economics as being sophisticatedly simple (c.f., Zellner et al.,
2001; Zellner, 2004). Sophisticated simplicity seeks to buy more realism in a model
by marrying ‘kernels of economic truth’ from economic theorizing about primitive
behavior with stylized empirical facts that are known to accord, at least in a general
way, with observation. But even very sophisticated models rely on some premises
that are unwarranted, and practical empirical models are, as we all know, nothing
more than approximations.
In acceptance of the reality that practical models are approximations, economet-

ric methods have been devised to accommodate some generality in the maintained
hypothesis. One approach is to impose only weak requirements on a model’s supple-
mental components. For instance, the regression errors may be taken to be stationary
or weakly dependent and mildly heterogeneous; or the time series being studied may
be assumed to be rather general integrated or fractionally integrated processes. Part
of the appeal of the unit root/cointegration revolution has surely been the very general
form of the models with which these methods can deal.
Such general maintained hypotheses are sometimes adequate to justify or validate

inference. However, reality suggests that even these general hypotheses are wrong
— stochastic trends do not always fall in the class of integrated processes and error
terms may have some nonstationary elements that are not easily modeled. Ultimately,
whatever empirical model we write down, no matter how general it is, is still likely
to be misspecified.
The econometric challenge before the empiricist is to find and justify a particular

model as a suitable lens for viewing the data, making inferences, producing forecasts
and analyzing policy. Several issues present themselves in this process. One is the
problem of hunting for an appropriate model specification. Some aspects of the search
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process of “finding” a suitable model and automated mechanisms for doing so were
discussed above. A second issue is robustification. This is our focus in the present
section.
In recognition of the fact that empirical models are misspecified in an unknown

way, it is now commonplace to attempt to robustify inference. Regression residuals in-
herit the effects of specification errors in a model, and robust methods of inference use
procedures that insulate the estimated standard errors of the regression coefficients
from the effects of certain types of model misspecification. The most common proce-
dures utilize consistent covariance matrix estimates that adapt for heteroskedasticity
and autocorrelation of unknown form in the errors. These so-called HAC estimates
are appealing because they lead to asymptotic tests involving convenient standard
normal and chi-squared distributions which remain valid for a wide class of equation
errors with weak (short memory) temporal dependence and heterogeneity. Because
of their appealing asymptotic properties and their computational convenience, HAC
estimates are now in widespread use in empirical work. Some suggestions have also
been made to extend their validity to situations where there is unknown forms of
cross section dependence in panel data studies (Driscoll and Kraay, 1998).
HAC estimates are typically formulated using conventional kernel smoothing tech-

niques (for an overview, see den Haan and Levin, 1997), although different approaches
like wavelets (Hong, 2001; Lee and Hong, 2001; Duchesne, 2003) may also be used.
A new approach that involves automated regression on a trend basis is explored in
the paper by the author (2004) in the present issue. HAC estimates may also be
extended to accommodate long memory dependence, as shown in Peter Robinson’s
(2004) paper in the present issue. The asymptotic theory justifying the use of HAC
procedures in econometrics has generally closely followed earlier work in statistical
theory on the asymptotic properties of kernel estimates of the spectrum. However,
particular features of the data may sometimes prevent the immediate use of conven-
tional asymptotic theory. One example is the presence of unbalanced data sets, which
commonly appear in applied econometric work, and which are considered by Linton
(2004) in the present issue.
Consistent HAC estimation provides asymptotic not finite sample robustness in

econometric testing. While the generality that HAC estimation lends to inference is
appealing, our enthusiasm for such procedures needs to be tempered by knowledge
that finite sample performance can be very unsatisfactory. Distortions in test size
and low power in testing are both very real problems that need to be acknowledged
in empirical work and on which further theoretical work is needed. The situation is
particularly acute when there is strong autocorrelation in the data. In such cases
the spectra is peaked at the origin and kernel-based HAC estimates typically under-
estimate the peak. This tends to produce confidence intervals that are too narrow
and liberal-biased tests. Wavelet methods appear to do better in such cases (Hong
and Lee, 1999). Some discussion of the failings of conventional approaches to HAC
estimation are contained in recent work by Kiefer and Vogelsang (2003). Sul, Phillips
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and Choi (2003) provide some further recent evidence on this matter, and show that
the common use of prefiltering and recoloring in HAC estimation is also not a cure-
all and can produce additional bias problems (especially when the data is demeaned
or detrended) and even test inconsistency, as in KPSS testing for stationarity (Lee,
1996).
Robustification of inference is achieved whenever the test statistic is asymptoti-

cally pivotal under a general maintained hypothesis for the regression components.
For this to be so, it is not necessary to use consistent HAC estimates. It has been
known for some time, for instance, that any procedure that scales out the effects of
the nuisance parameters in the test statistics will work. Kiefer, Vogelsang and Bun-
zel (2000) gave an important recent demonstration when they suggested the use of
untruncated, inconsistent kernel estimates in testing. In such cases, the limit theory
of the resulting test statistics is no longer as convenient as the standard normal or
chi-squared but it is free of nuisance parameters. The fact that the limit theory of
tests that use inconsistent estimates is non standard seems to play an interesting role
in improving the size properties of the resulting tests, essentially because it preserves
the finite sample randomness of the denominator in t− and F− ratios in the limit,
unlike conventional asymptotic chi-squared tests. The test statistic ends up being
closer to its limit distribution by an order of magnitude in the asymptotic sense than
that of tests using consistent HAC estimators (Jansson, 2004). While such tests
typically have better size than those that use HAC estimators, there is also a clear
and compensating reduction in power. Work on finding procedures that improve size
properties while retaining power in robust econometric testing is a challenge that
is presently ongoing. Some recent efforts in this direction include Jansson (2004),
Phillips, Sun and Jin (2003a &2003b), Vogelsang and Kiefer (2003). These robust
inferential techniques may be grouped together with conventional HAC procedures as
having the same general goals. The term heteroskedastic and autocorrelation robust
(HAR) methods can be used to describe them collectively.
The HAR approach seeks to robustify inference in a way that accommodates

departures from the model but keeps statistical behavior within the realm of some
maintained set of general hypotheses about the processes being observed. The main-
tained hypothesis may be as general as some form of weak or strong dependence with
controlled heterogeneity in the component errors or some encompassing class of sto-
chastic trends. This standpoint seems both flexible and reasonable, and it underpins
the HAR approach. But there is another position one can take that justifies this
approach.
In particular, one can productively debate whether the formal structure of proba-

bilistic models ever allows for a true data generating process (dgp). Such a debate may
appear to belong solely to the philosophical realm of econometric methodology and
have little connection with practical methods. Yet the issue touches a fundamental
nerve-centre in econometric modeling and affects the interpretation of the statisti-
cal methods used in econometrics. Some dimensions of this complex subject have
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been thoughtfully addressed in recent studies by Keuzenkamp (2000) and Cartwright
(2001).
As we look more carefully at the data and as the number and nature of the ob-

servations of economic activity change, it appears inevitable that the mechanism of
economic data generation changes. This is not just a matter of the mechanism itself
evolving over time, a phenomenon that all too frequently does happen as economic in-
stitutions and policy goals change (c.f. Goodhart’s law), but also that the underlying
probabilistic framework is inevitably too underdeveloped to reflect fully the factors
involved in the determination of the observed data.
To illustrate, we take an example from modern financial econometrics. In this

field, it is now popular to model frequently-observed processes like financial asset
prices in terms of a continuous stochastic process. Yet further inspection and the
collection of ultra high-frequency data reveal that the data themselves are related to
the method of observation, just as in quantum physics the measurements may affect
the observations. As we look carefully at intra-day financial data, for instance, we find
that the observed process depends on specific features of the market place and that
this market microstructure plays a role in every observed data point. Microstructure
itself tells a new empirical story which relates to events on a wider probability space,
like the placing of orders to buy and sell, time limits on orders, conditional orders,
regulation of the trading day and so forth. Such events, which reflect the decisions
of many different market participants, the procedural rules of brokers and traders,
as well as the institutional regulations of the marketplace (which have historically
evolved partly in response to past random shocks), all end up figuring as part of
the data generating process. Proper consideration of these events would require
the probability space itself to be augmented, in combination with an extension of
the modeling apparatus to accommodate all that has been identified in the wider
empirical story. Clearly, this process can be continued almost indefinitely, at which
point the great omega in the probabily space (Ω,F , P ) is itself seen to be inadequate
to the task and we have to admit that there is no ‘true’ dgp in a probabilistic sense.
Against such a background, models that are now popular in financial econometrics
like scalar diffusion equations and affine multi-factor models can only ever be viewed
as crude empirical approximations. The same can, of course, be said of empirical
econometric models in other applied areas.
In short, the approximate nature of probabilistic models is endemic in economics.

But if there is no truth, then what is meant by empirical discovery? In writing his
classic textbook, Malinvaud (1966) characterized the aim of econometrics to be “the
empirical determination of economic laws”. One way of interpreting this description,
while admitting the fact that misspecification is endemic, is to say that econometrics
is simply concerned with the discovery of empirical relationships. Within these rela-
tionships, some underlying economic law (like the law of one price) may reside as a
“kernel of truth” and may even be represented in a mathematically precise form as a
“primitive dgp” without ever requiring that this be a complete underlying true dgp.
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In effect, the maintained hypothesis relating to the residual and other unobserved
components in the model is always more complex than the hypotheses we can use to
describe it in probabilistic terms. In the context of such a view, econometric practice
that seeks generality wherever possible while allowing for specificity where it connects
most closely to economic ideas seems most desirable. This sounds like (and indeed
it is) a strong argument for the use of semiparametric methods in econometrics and,
in part, explains the growing popularity of these methods. Automated inference in-
volving HAR procedures precisely fall within this ambit. Also included are methods
that allow directly for the parameter space of a conventional model like a vector au-
toregression to be infinite dimensional, as in Kuersteiner’s (2004) contribution to this
colloquium.
Suppose we characterize some phenomena that is to be explained (like the tempo-

ral dependence or nonstationarity of economic time series) in terms only of the local
behavioral characteristics of those series (like the way their spectra behave locally in
the vicinity of the origin - what we call local long-run behavior). Further, we may
build into this characterization the possibility that certain of the series have compa-
rable and related local long-run behavior, thereby incorporating some economic ideas
(like purchasing power parity) into the primitive dgp. Then, without attempting to
prescribe a complete dgp for the data, we may seek empirical confirmation of the
characteristics we have modeled purely in terms of the local behavior. While we may
not have built a complete stochastic model to study the data in their entirety, we can
at least attempt to confirm the validity or usefulness of certain underlying economic
ideas by doing some local empirical analysis.
One reason for the widespread empirical econometric interest in unit roots and

cointegration is that in their general semiparametric form these concepts fit well into
the framework of ideas relating to local behavior (Phillips, 1991a & 1991b). The
same is true of modern work involving fractional processes (e.g., Robinson, 1995;
Kim and Phillips, 1999; Robinson and Hualde, 2003; Phillips and Shimotsu, 2004).
Correspondingly, a literature that provides semiparametric approaches to the study
of unit roots, cointegration and fractional integration has emerged to meet the needs
of practitioners and is becoming popular in applied work. In such contexts, HAR
principles are employed to conduct inference, so that only local long-run behavior
is assumed in treating the nonparametric components. Data-based automation now
plays an important role in the implementation of these methods. In this way empirical
investigators are freed from some of the consequences of having to build and rely upon
a complete stochastic model to study the data.

Empirical Econometrics and its Future

Automated econometric analysis, which has been made possible by the power of mod-
ern computing and electronic data availability, has many natural advantages and con-
veniences. But automation does not of itself lead to scientifically sound conclusions.
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The framework is only as good as the algorithms and the statistical justifications
that underly it, the economic ideas that are being incorporated, and ultimately the
quality of the data. Inevitably there are shortcomings in automated procedures, in
the model classes being utilized in the analysis and in the data being used, just as
there are when the more conventional tradition of falsification of a single hypothesis
at a time is implemented.
The present paper and those published in this Colloquium only touch the surface

of some of these questions. Yet the fact that they are being discussed is itself im-
portant and indicates that the goals of econometrics are evolving just as our tools
are changing. Right now, econometrics is in its infancy in considering this very wide
class of problems in automated specification searches, model construction, validation
and inference. While consensus is unlikely in the consideration of the many method-
ological issues that arise in this process, increasing reliance on computerization and
some degree of automation in estimation and inference seem certain to be part of the
future of econometrics.
Many good empirical economists appear to believe that they

“... have a talent for taking a big pile of data, thinking economically
about it, and sometimes making conclusions come out the other end.”
Levitt (2004)

Let it also be said that computers have a truly indefatigable talent for a large part
of this task — collecting, processing and analyzing data. Utilizing this talent is a piv-
otal strength of computer automation in econometrics. Our challenge in econometric
theory in this emergent age of automated scientific discovery is to provide guidance
mechanisms: automated mechanisms for incorporating economic thinking and meth-
ods for adapting for the imperfections and simplifications in that thinking into the
empirical model construction process.
Recent experience with automated discovery algorithms in econometrics leads me

to believe that these methods will play an important role in the future use of applied
econometrics. I also believe that they offer our best current hope of reaching out
with our methodology to the wide group of potential practitioners in society who are
interested in economic and business forecasts and policy analysis but who are not part
of our immediate community of econometrically well-trained professionals. Of course,
automation means that such users may proceed without any real understanding of the
manner in which critical choices (like bandwidth or lag length selection) have been
made in the practical implementation of the econometric software, not to mention
the implication of these choices. But present empirical econometric practice reveals
that such circumstances are already common in applied work by trained economists.
Indeed, the practice is inevitable as econometric software options widen and allow
users ready access to advanced procedures on a point and click basis.
No driver’s licence of econometric training is currently needed to implement pack-

aged software. Users can implement procedures like HAC estimates or the bootstrap
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while having little knowledge of what these procedures do or what their properties
may be. Even less skill will be needed to use automated econometric methods in pack-
aged form or online as they develop and mature. Such shortcomings are unavoidable.
But they are matters that theorists who develop data-driven procedures can largely
anticipate; and practitioners who write software packages can think about these mat-
ters in advance, implementing devices in software that forewarn or signal users about
potential problems. The challenges that are involved in these endeavours will keep
the econometrics community busy at many different levels in the years ahead.
As we look forward to the next decade of research in econometrics, it is clear that

changing computing technology will continue to play a large role in the evolution
of econometrics. More importantly, technology now seems poised to advance the
services that the discipline of econometrics can provide to society and these services
seem likely to be much more broadly based than in the past. In the second half of
the last century, econometrics provided a practical mechanism by which relationships
between economic variables could be evaluated, quantified and used to assist in the
formulation of economic policy and in the making of economic predictions. Much of
the perceived practical benefit to society came through the econometrically informed
advice given by economists to government (not all of it at the national level), business,
and the financial industry. In recent years, econometric tools have been brought to
bear in understanding microeconomic behavior, pricing policies, auctions, regulated
markets, and the economic effects of social issues like education policy, environmental
pollution, crime and deforestation, to name just a few.
Econometric methods and computer software have developed in part to meet the

needs of this growing practical research agenda. As this has occured, tool makers
have recognised the need for and inherent advantages in automation. We now have
the technology that enables most econometric procedures to be performed online us-
ing remote servers that are dedicated to the task. Just as software packages brought
econometrics to the desktop and laptop during the 1980s and 1990s, online econo-
metrics now seems capable of bringing econometric methodology and data analysis
to the vast community of internet users.
The possibilities for automation in the implementation of econometric methods

are already substantial and they seem likely to grow enormously in the next decade
as user needs increase, as computer technology advances further, and as our under-
standing of automated inference methods improves. None of us can anticipate the
landscape on the road ahead for the discipline. But as econometrics makes its journey
forward, increasing automation in econometric methodology seems likely to become
a significant factor in its various practical and public manifestations. This new di-
mension of econometrics is something theorists must learn much more about. “I ran
a million regressions” is no longer simply a wisecrack. It is a practical reality that we
have to live with and understand.
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