1,974 research outputs found

    Photoelasticity revived for Tactile Sensing

    Get PDF

    Intelligent 3D seam tracking and adaptable weld process control for robotic TIG welding

    Get PDF
    Tungsten Inert Gas (TIG) welding is extensively used in aerospace applications, due to its unique ability to produce higher quality welds compared to other shielded arc welding types. However, most TIG welding is performed manually and has not achieved the levels of automation that other welding techniques have. This is mostly attributed to the lack of process knowledge and adaptability to complexities, such as mismatches due to part fit-up. Recent advances in automation have enabled the use of industrial robots for complex tasks that require intelligent decision making, predominantly through sensors. Applications such as TIG welding of aerospace components require tight tolerances and need intelligent decision making capability to accommodate any unexpected variation and to carry out welding of complex geometries. Such decision making procedures must be based on the feedback about the weld profile geometry. In this thesis, a real-time position based closed loop system was developed with a six axis industrial robot (KUKA KR 16) and a laser triangulation based sensor (Micro-Epsilon Scan control 2900-25). [Continues.

    Design and Development of Sensor Integrated Robotic Hand

    Get PDF
    Most of the automated systems using robots as agents do use few sensors according to the need. However, there are situations where the tasks carried out by the end-effector, or for that matter by the robot hand needs multiple sensors. The hand, to make the best use of these sensors, and behave autonomously, requires a set of appropriate types of sensors which could be integrated in proper manners. The present research work aims at developing a sensor integrated robot hand that can collect information related to the assigned tasks, assimilate there correctly and then do task action as appropriate. The process of development involves selection of sensors of right types and of right specification, locating then at proper places in the hand, checking their functionality individually and calibrating them for the envisaged process. Since the sensors need to be integrated so that they perform in the desired manner collectively, an integration platform is created using NI PXIe-1082. A set of algorithm is developed for achieving the integrated model. The entire process is first modelled and simulated off line for possible modification in order to ensure that all the sensors do contribute towards the autonomy of the hand for desired activity. This work also involves design of a two-fingered gripper. The design is made in such a way that it is capable of carrying out the desired tasks and can accommodate all the sensors within its fold. The developed sensor integrated hand has been put to work and its performance test has been carried out. This hand can be very useful for part assembly work in industries for any shape of part with a limit on the size of the part in mind. The broad aim is to design, model simulate and develop an advanced robotic hand. Sensors for pick up contacts pressure, force, torque, position, surface profile shape using suitable sensing elements in a robot hand are to be introduced. The hand is a complex structure with large number of degrees of freedom and has multiple sensing capabilities apart from the associated sensing assistance from other organs. The present work is envisaged to add multiple sensors to a two-fingered robotic hand having motion capabilities and constraints similar to the human hand. There has been a good amount of research and development in this field during the last two decades a lot remains to be explored and achieved. The objective of the proposed work is to design, simulate and develop a sensor integrated robotic hand. Its potential applications can be proposed for industrial environments and in healthcare field. The industrial applications include electronic assembly tasks, lighter inspection tasks, etc. Application in healthcare could be in the areas of rehabilitation and assistive techniques. The work also aims to establish the requirement of the robotic hand for the target application areas, to identify the suitable kinds and model of sensors that can be integrated on hand control system. Functioning of motors in the robotic hand and integration of appropriate sensors for the desired motion is explained for the control of the various elements of the hand. Additional sensors, capable of collecting external information and information about the object for manipulation is explored. Processes are designed using various software and hardware tools such as mathematical computation MATLAB, OpenCV library and LabVIEW 2013 DAQ system as applicable, validated theoretically and finally implemented to develop an intelligent robotic hand. The multiple smart sensors are installed on a standard six degree-of-freedom industrial robot KAWASAKI RS06L articulated manipulator, with the two-finger pneumatic SHUNK robotic hand or designed prototype and robot control programs are integrated in such a manner that allows easy application of grasping in an industrial pick-and-place operation where the characteristics of the object can vary or are unknown. The effectiveness of the actual recommended structure is usually proven simply by experiments using calibration involving sensors and manipulator. The dissertation concludes with a summary of the contribution and the scope of further work

    Towards the Fabrication Strategies for Intelligent Wire Arc Additive Manufacturing of Wire Structures from CAD Input to Finished Product

    Get PDF
    With the increasing demand for freedom of part design in the industry, additive manufacturing (AM) has become a vital fabrication process for manufacturing metallic workpieces with high geometrical complexity. Among all metal additive manufacturing technologies, wire arc additive manufacturing (WAAM), which uses gas metal arc welding (GMAW), is gaining popularity for rapid prototyping of sizeable metallic workpieces due to its high deposition rate, low processing conditions limit, and environmental friendliness. In recent years, WAAM has been developed synergistically with industrial robotic systems or CNC machining centers, enabling multi-axis free-form deposition in 3D space. On this basis, the current research of WAAM has gradually focused on fabricating strut-based wire structures to enhance its capability of producing low-fidelity workpieces with high spatial complexity. As a typical wire structure, the large-size free-form lattice structure, featuring lightweight, superior energy absorption, and a high strength-weight ratio, has received extensive attention in developing its WAAM fabrication process. However, there is currently no sophisticated WAAM system commercially available in the industry to implement an automated fabrication process of wire or lattice structures. The challenges faced in depositing wire structures include the lack of methods to effectively identify individual struts in wire structures, 3D slicing algorithms for the whole wire structures, and path planning algorithms to establish reasonable deposition paths for these generated discrete sliced layers. Moreover, the welded area of the struts within the wire structure is relatively small, so the strut forming is more sensitive and more easily affected by the interlayer temperature. Therefore, the control and prediction of strut formation during the fabricating process is still another industry challenge. Simultaneously, there is also an urgent need to improve the processing efficiency of these structures while ensuring the reliability of their forming result

    Electric Vehicle Battery Module Dismantling "Analysis and Evaluation of Robotic Dismantling Techniques for Irre- versible Fasteners, including Object Detection of Components."

    Get PDF
    This thesis examines a study of The Litium-Ion Battery (LIB) from a electric vehicle, and it’s recycling processes. A Battery Module (BM) from the LIB is shredded when considered an End-Of-Life product, and motivates for automated dismantling concepts to separate the components to save raw materials. From State-of-the-art (SoA) research projects and background theory, automatic module dis- mantling concepts have been evaluated for a Volkswagen E-Golf 2019 battery module. The presence of irreversible fasteners make the use off destructive dismantling techniques neces- sary. This study evaluates two different concepts to disconnect laser welds holding together the compressive plates made of steel. A hydraulic actuated concept is first investigated to separate the welded compressive plates within the casing. A FEM analysis with different configurations is performed to evaluate the most effective hydraulic solution when analysing the Von Mises stress. This solution is further compared with another automatic dismantling concept, namely milling. For the purpose of an automated milling concept, manipulators from ABB are assessed and the feasibility is verified based on results from manual milling operation. The proposed dismantling operation is made possible by developing a system architecture combining robotic control and computer vision. Open source software based on Robot Op- erating System (ROS) and MoveIt connect and control an ABB IRB4400 industrial robot whereas the computer vision setup involves a cutting edge 3D camera, Zivid, and object detection algorithm YOLOv5 best suited for this task. Adjustable acquisition settings in services from Zivid’s ROS driver are tested to accomplish the optimal capture configuration. Two datasets generated with RoboFlow were exported in the YOLOv5 PyTorch format. Custom object detection models with annotated components from the BM was trained and tested with image captures. All in all, this study demonstrates that the automatic dismantling of battery modules can be achieved even though they include irreversible fasteners. The proposed methods are verified on a specific battery module (Egolf 2019) but are flexible enough to be easily extended to a large variety of EV battery modules

    Development of a real-time ultrasonic sensing system for automated and robotic welding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The implementation of robotic technology into welding processes is made difficult by the inherent process variables of part location, fit up, orientation and repeatability. Considering these aspects, to ensure weld reproducibility consistency and quality, advanced adaptive control techniques are essential. These involve not only the development of adequate sensors for seam tracking and joint recognition but also developments of overall machines with a level of artificial intelligence sufficient for automated welding. The development of such a prototype system which utilizes a manipulator arm, ultrasonic sensors and a transistorised welding power source is outlined. This system incorporates three essential aspects. It locates and tracks the welding seam ensuring correct positioning of the welding head relatively to the joint preparation. Additionally, it monitors the joint profile of the molten weld pool and modifies the relevant heat input parameters ensuring consistent penetration, joint filling and acceptable weld bead shape. Finally, it makes use of both the above information to reconstruct three-dimensional images of the weld pool silhouettes providing in-process inspection capabilities of the welded joints. Welding process control strategies have been incorporated into the system based on quantitative relationships between input parameters and weld bead shape configuration allowing real-time decisions to be made during the process of welding, without the need for operation intervention.British Technology Group (BTG

    Robots in Industry. Past,present and future of a growing collaboration with humans

    Get PDF
    Robots have been part of automation systems for a very long time, and in public perception, they are often synonymous with automation and industrial revolution perse. Fueled by Industry 4.0 and Internet of Things (IoT) concepts as well as by new software technologies, the field of robotics in industry is currently undergoing a revolution on its own. This article gives an overview of the evolution of robotics from its beginnings to recent trends like collaborative robotics, autonomous robots, and human- robot interaction. Particular attention is devoted to the deep changes of the last decades, from the traditional industrial scenario based on isolated robotic cells up to the most recent coworking and collaborative robots. The role of robotics in the Industry 4.0 framework is analyzed, and the relationships with industrial communications and software technologies are also discussed. Some future directions for robotics are envisaged, focusing on the contributions coming from new materials, sensors, actuators, and technologies. Open issues are highlighted as well as the main barriers that currently limit the deployment of industrial robots in the small and medium enterprise (SME) world

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Mass Production Processes

    Get PDF
    It is always hard to set manufacturing systems to produce large quantities of standardized parts. Controlling these mass production lines needs deep knowledge, hard experience, and the required related tools as well. The use of modern methods and techniques to produce a large quantity of products within productive manufacturing processes provides improvements in manufacturing costs and product quality. In order to serve these purposes, this book aims to reflect on the advanced manufacturing systems of different alloys in production with related components and automation technologies. Additionally, it focuses on mass production processes designed according to Industry 4.0 considering different kinds of quality and improvement works in mass production systems for high productive and sustainable manufacturing. This book may be interesting to researchers, industrial employees, or any other partners who work for better quality manufacturing at any stage of the mass production processes

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF
    corecore