7 research outputs found

    Inteligencia artificial aplicada en la odontología: revisión sistemática de la literatura

    Get PDF
    La presente revisión sistemática de la literatura tiene como objetivo recopilar los principales trabajos de investigación que hayan aplicado la inteligencia artificial en la odontología. Para cumplir con este objetivo, se realizó una búsqueda en tres bases de datos: ProQuest Central, IEEE Xplore y ScienceDirect, dónde se utilizó la cadena de búsqueda “Inteligencia artificial en la odontología” limitando los resultados a las publicaciones hechas desde el año 2017 al año 2020. Posteriormente, se aplicaron criterios de inclusión y exclusión, para finalmente evaluar la calidad de forma manual. Se inició con 180 artículos, de los cuales fueron seleccionados 15, siendo estos, las fuentes de información primaria. Los documentos se agruparon por: países, logrando de esta manera saber cuál de ellos mostraba un mayor interés en la aplicación de la inteligencia artificial en la odontología; por año, y así dar a conocer en cual hubo más productividad de investigaciones y por revistas, con el propósito de notar en cuál se publica más sobre la inteligencia artificial aplicada en la odontología. Finalmente, se concluyó que los países de Estados Unidos y Reino Unido son los que tienen mayor interés en estos estudios, con mayor acogida en el año 2020. Además, la revista IEEE Access fue la que obtuvo el mayor porcentaje de publicaciones con un 27%

    Alveolar Bone Detection from Dental Cone Beam Computed Tomography using YOLOv3-tiny

    Get PDF
    Cone Beam Computed Tomography (CBCT) is a medical imaging technique widely used in dentistry including dental implant planning. To determine the size of the dental implant, it is necessary to detect the alveolar bone at the implant site. In this study, we propose automatic detection of alveolar bone from CBCT images of teeth using the YOLOv3-tiny method. The YOLOv3-tiny network architecture consists of a seven-layer convolution networks and six max-pooling layers in the Darknet-53 network with two output branch scale predictions. CBCT images of teeth obtained from 4 patients consisted of 800 coronal slices of 2D grayscale images, containing 830 alveolar bone annotations. Before the training process, the ground truth image annotation was made in the form of a bounding box on the alveolar bone object. The detection results of the YOLOv3-tiny model were compared with the detection results of the YOLOv3 and YOLOv2-tiny models. The results of the experiment on 640 training images and 160 testing images showed that YOLOv3-tiny outperformed YOLOv2-tiny with mAP of 98.6% and 96.73%, respectively. Meanwhile, shows the same good result as YOLOv3

    Multiclass CBCT image segmentation for orthodontics with deep learning

    Get PDF
    Accurate segmentation of the jaw (i.e., mandible and maxilla) and the teeth in cone beam computed tomography (CBCT) scans is essential for orthodontic diagnosis and treatment planning. Although various (semi)automated methods have been proposed to segment the jaw or the teeth, there is still a lack of fully automated segmentation methods that can simultaneously segment both anatomic structures in CBCT scans (i.e., multiclass segmentation). In this study, we aimed to train and validate a mixed-scale dense (MS-D) convolutional neural network for multiclass segmentation of the jaw, the teeth, and the background in CBCT scans. Thirty CBCT scans were obtained from patients who had undergone orthodontic treatment. Gold standard segmentation labels were manually created by 4 dentists. As a benchmark, we also evaluated MS-D networks that segmented the jaw or the teeth (i.e., binary segmentation). All segmented CBCT scans were converted to virtual 3-dimensional (3D) models. The segmentation performance of all trained MS-D networks was assessed by the Dice similarity coefficient and surface deviation. The CBCT scans segmented by the MS-D network demonstrated a large overlap with the gold standard segmentations (Dice similarity coefficient: 0.934 ± 0.019, jaw; 0.945 ± 0.021, teeth). The MS-D network–based 3D models of the jaw and the teeth showed minor surface deviations when compared with the corresponding gold standard 3D models (0.390 ± 0.093 mm, jaw; 0.204 ± 0.061 mm, teeth). The MS-D network took approximately 25 s to segment 1 CBCT scan, whereas manual segmentation took about 5 h. This study showed that multiclass segmentation of jaw and teeth was accurate and its performance was comparable to binary segmentation. The MS-D network trained for multiclass segmentation would therefore make patient-specific orthodontic treatment more feasible by strongly reducing the time required to segment multiple anatomic structures in CBCT scans

    Automated CNN-Based Tooth Segmentation in Cone-Beam CT for Dental Implant Planning

    No full text
    Accurate tooth segmentation is an essential step for reconstructing the three-dimensional tooth models used in various clinical applications. In this paper, we propose a convolutional neural network (CNN) based method for fully-automatic tooth segmentation with multi-phase training and preprocessing. For multi-phase training, we defined and used sub-volumes of different sizes to produce stable and fast convergence. To deal with the cone-beam computed tomography (CBCT) images from various CBCT scanners, we used a histogram-based method as a preprocessing step to estimate the average gray density level of the bone and tooth regions. Also, we developed a posterior probability function. Regularizing the CNN models with spatial dropout layers and replacing the convolutional layers with dense convolution blocks further improved the segmentation performance. Experimental results showed that the proposed method compared favorably with existing methods

    DEEP LEARNING IN COMPUTER-ASSISTED MAXILLOFACIAL SURGERY

    Get PDF

    Künstliche Intelligenz in der Zahnheilkunde: Scoping-Review und Schließung beobachteter Wissenslücken durch eine methodische und eine klinische Studie

    Get PDF
    Objectives: The aims of this dissertation were to (1) conduct a scoping review of stud-ies on machine learning (ML) in dentistry and appraise their robustness, (2) perform a benchmarking study to systematically compare various ML algorithms for a specific dental task, and (3) evaluate the influence of a ML-based caries detection software on diagnostic accuracy and decision-making in a randomized controlled trial. Methods: The scoping review included studies using ML in dentistry published between 1st January 2015 and 31st May 2021 on MEDLINE, IEEE Xplore, and arXiv. The risk of bias and reporting quality were assessed with the QUADAS‐2 and TRIPOD checklists, respectively. In the benchmarking study, 216 ML models were built using permutations of six ML model architectures (U-Net, U-Net++, Feature Pyramid Networks, LinkNet, Pyramid Scene Parsing Network, and Mask Attention Network), 12 model backbones of varying complexities (ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, VGG13, VGG16, VGG19, DenseNet121, DenseNet161, DenseNet169, and Dense-Net201), and three initialization strategies (random, ImageNet, and CheXpert weights). 1,625 dental bitewing radiographs were used for training and testing. Five-fold cross-validation was carried out and model performance assessed using F1-score. In the clin-ical trial, each one of 22 dentists examined 20 randomly selected bitewing images for proximal caries; 10 images were evaluated with ML and 10 images without ML. Accura-cy in lesion detection and the suggested treatment were evaluated. Results: The scoping review included 168 studies, describing different ML tasks, mod-els, input data, methods to generate reference tests, and performance metrics, imped-ing comparison across studies. The studies showed considerable risk of bias and mod-erate adherence to reporting standards. In the benchmarking study, more complex models only minimally outperformed their simpler counterparts, if at all. Models initial-ized by ImageNet or CheXpert weights outperformed those using random weights (p<0.05). The clinical trial demonstrated that dentists using ML showed increased accu-racy (area under the receiver operating characteristic [mean (95% confidence interval): 0.89 (0.87–0.90)]) compared with those not using ML [0.85 (0.83–0.86); p<0.05], pri-marily due to their higher sensitivity [0.81 (0.74–0.87) compared to 0.72 (0.64–0.79); p<0.05]. Notably, dentists using ML also showed a higher frequency of invasive treat-ment decisions than those not using it (p<0.05). Conclusion: To facilitate comparisons across ML studies in dentistry, a minimum (core) set of outcomes and metrics should be developed, and researchers should strive to improve robustness and reporting quality of their studies. ML model choice should be performed on an informed basis, and simpler models may often be similarly capable as more complex ones. ML can increase dentists’ diagnostic accuracy but also lead to more invasive treatment.Ziele: Die Ziele dieser Dissertation waren, (1) ein Scoping-Review von Studien über maschinelles Lernen (ML) in der Zahnmedizin, (2) eine Benchmarking-Studie zum systematischen Vergleich verschiedener ML-Algorithmen für eine bestimmte zahnmedizinische Aufgabe, und (3) eine randomisierte kontrollierte Studie zur Bewertung einer ML-basierten Karies-Erkennungssoftware bezüglich diagnostischer Genauigkeit und Einfluss auf den Entscheidungsprozess durchzuführen. Methoden: Das Scoping-Review umfasste Studien über ML in der Zahnmedizin, veröffentlicht vom 1. Januar 2015 bis 31. Mai 2021 auf MEDLINE, IEEE Xplore und arXiv. Bias-Risiko und Berichtsqualität wurden mit den Checklisten QUADAS-2 beziehungsweise TRIPOD bewertet. In der Benchmarking-Studie wurden 216 ML-Modelle durch Permutationen von sechs Architekturen (U-Net, U-Net++, Feature Pyramid Networks, LinkNet, Pyramid Scene Parsing Network und Mask Attention Network), 12 Backbones (Res-Net18, ResNet34, ResNet50, ResNet101, ResNet152, VGG13, VGG16, VGG19, DenseNet121, DenseNet161, DenseNet169 und DenseNet201) und drei Initialisierungsstrategien (zufällige-, ImageNet- und CheXpert-Gewichtungen) erstellt. Zum Training und Testen wurden 1.625 Bissflügel-Röntgenaufnahmen genutzt. Es wurde eine fünffache Kreuzvalidierung durchgeführt und die Modellleistung anhand des F1-Scores bewertet. In der klinischen Studie untersuchten 22 Zahnärzte jeweils 20 zufällig ausgewählte Bissflügelbilder auf Approximalkaries; 10 Bilder wurden mit und 10 Bilder ohne ML ausgewertet. Die Genauigkeit in der Erkennung von Läsionen sowie die abgeleitete Therapieempfehlung wurden bewertet. Ergebnisse: Das Scoping-Review schloss 168 Studien ein, in denen verschiedene ML-Aufgaben, Modelle, Eingabedaten, Methoden zur Generierung von Referenztests und Leistungsmetriken beschrieben wurden. Die Studien zeigten ein erhebliches Bias-Risiko und eine mäßige Einhaltung der Berichtsstandards. In der Benchmarking-Studie hatten komplexere Modelle gegenüber einfachen Modellen allenfalls geringe Vorteile. Mit ImageNet- oder CheXpert-Gewichtungen initialisierte Modelle übertrafen solche mit Zufallsgewichtungen (p<0,05). In der klinischen Studie erreichten Zahnärzte mit ML eine höhere Genauigkeit bei der Kariesdetektion (Receiver-Operating-Charakteristik [Mittelwert (95 % Konfidenzintervall) 0,89 (0,87–0,90)]) als ohne ML [0,85 (0,83–0,86); p<0,05], hauptsächlich aufgrund höherer Sensitivität [0,81 (0,74–0,87) verglichen mit 0,72 (0,64–0,79); p<0,05]. Zahnärzte mit ML wählten auffallend häufiger invasive Behandlungen als ohne ML (p<0,05). Schlussfolgerung: Zur besseren Vergleichbarkeit von ML-Studien in der Zahnmedizin, sollten Core Outcomes und Metriken definiert sowie Robustheit und Berichtsqualität verbessert werden. Die Entwicklung von ML-Modellen sollte auf informierter Basis erfolgen, bei oft ähnlicher Leistung von einfacheren und komplexeren Modellen. ML kann die diagnostische Genauigkeit erhöhen, aber auch zu mehr invasiven Behandlungen führen
    corecore