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Introduction
Cone beam computed tomography (CBCT) is being increas-
ingly used in orthodontics because of its low cost and low 
radiation dose (Carter et al. 2016). The 3-dimensional (3D) 
information embedded in CBCT scans allows orthodontists to 
accurately assess complex dental and skeletal malocclusions, 
which helps to substantially improve diagnosis and treatment 
planning (Kapila and Nervina 2015; Abdelkarim 2019). An 
essential step in the diagnosis of dentofacial abnormalities and 
deformities is the conversion of CBCT scans into virtual 3D 
models of relevant anatomic regions of interest, such as the 
mandible, the maxilla, and the teeth. Orthodontic changes can 
be visually and quantitatively assessed by superimposing 3D 
models of a patient at different time points. Moreover, these 3D 
models can be used to simulate stress distribution in alveolar 
bone via finite element analysis (Likitmongkolsakul et al. 
2018).

Currently, the most challenging step in creating 3D models 
for orthodontics is CBCT image segmentation—that is, the 
partitioning of CBCT scans into various anatomic regions of 
interest. For example, it is laborious to segment the teeth due to 
the similar intensity of tooth roots and their surrounding alveo-
lar bone. In addition, because of high noise levels, limited 
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Abstract
Accurate segmentation of the jaw (i.e., mandible and maxilla) and the teeth in cone beam computed tomography (CBCT) scans is essential 
for orthodontic diagnosis and treatment planning. Although various (semi)automated methods have been proposed to segment the jaw 
or the teeth, there is still a lack of fully automated segmentation methods that can simultaneously segment both anatomic structures 
in CBCT scans (i.e., multiclass segmentation). In this study, we aimed to train and validate a mixed-scale dense (MS-D) convolutional 
neural network for multiclass segmentation of the jaw, the teeth, and the background in CBCT scans. Thirty CBCT scans were obtained 
from patients who had undergone orthodontic treatment. Gold standard segmentation labels were manually created by 4 dentists. As 
a benchmark, we also evaluated MS-D networks that segmented the jaw or the teeth (i.e., binary segmentation). All segmented CBCT 
scans were converted to virtual 3-dimensional (3D) models. The segmentation performance of all trained MS-D networks was assessed 
by the Dice similarity coefficient and surface deviation. The CBCT scans segmented by the MS-D network demonstrated a large overlap 
with the gold standard segmentations (Dice similarity coefficient: 0.934 ± 0.019, jaw; 0.945 ± 0.021, teeth). The MS-D network–based 
3D models of the jaw and the teeth showed minor surface deviations when compared with the corresponding gold standard 3D models 
(0.390 ± 0.093 mm, jaw; 0.204 ± 0.061 mm, teeth). The MS-D network took approximately 25 s to segment 1 CBCT scan, whereas 
manual segmentation took about 5 h. This study showed that multiclass segmentation of jaw and teeth was accurate and its performance 
was comparable to binary segmentation. The MS-D network trained for multiclass segmentation would therefore make patient-specific 
orthodontic treatment more feasible by strongly reducing the time required to segment multiple anatomic structures in CBCT scans.
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image resolution, and cone beam artifacts (Schulze et al. 2011), 
it is difficult to accurately segment bony structures—for exam-
ple, the condyle and the ramus. Consequently, bony structures 
are often erroneously labeled, which leads to cavities and gaps 
when converted into 3D models, subsequently compromising 
the quality of the treatment planning and finite element 
analysis.

In the last decades, several methods have been proposed to 
(semi)automatically segment various anatomic structures in 
CBCT scans. Such automatic approaches include edge detec-
tion, watershed segmentation, region seed growing, clustering 
methods, morphologic snakes, random forests, and statistical 
shape models (Khan 2014; Mustafa et al. 2016; van Eijnatten 
et al. 2018). Although these methods are capable of segment-
ing CBCT scans, accurate segmentation of the mandible, the 
maxilla, and the teeth remains challenging. Therefore, labori-
ous manual correction remains necessary in clinical settings to 
achieve accurate segmentation. Hence, new methods for auto-
matic image segmentation are sought.

Deep convolutional neural networks (CNNs) have recently 
become increasingly utilized in medical image segmentation 
(Litjens et al. 2017; Altaf et al. 2019) and have achieved state-
of-the-art performances (Minnema et al. 2018; Casalegno et al. 
2019; Nguyen et al. 2020). The success of CNNs can be mainly 
attributed to their ability of learning nonlinear spatial features 
in input images. Several research groups have used CNNs to 
segment the mandible or the teeth (i.e., binary segmentation) 
and demonstrated that CNNs were able to perform accurate 
segmentation tasks (Egger et al. 2018; Qiu et al. 2018; Cui  
et al. 2019; Lee et al. 2020). However, no studies have been 
published in which CNNs were applied to simultaneously seg-
ment the jaw (i.e., mandible and maxilla) and the teeth in 
CBCT scans, also known as multiclass segmentation. As com-
pared with binary segmentation, multiclass segmentation 
approaches require training only a single network to segment 
jaw and teeth, thus reducing the overall training time. 
Furthermore, multiclass segmentation does not suffer from 
conflicting segmentation labels. Such conflicting labels are 
caused when 1 binary segmentation network classifies a pixel 
as jaw and the other classifies it as teeth.

A novel CNN architecture, namely the mixed-scale dense 
(MS-D) CNN, has recently shown promising segmentation 
performances (Pelt and Sethian 2018; Minnema et al. 2019). 
This MS-D network allows for accurate and automatic seg-
mentation of different bony structures. To reduce the time- 
consuming and costly manual labor required to create 3D mod-
els for patient-specific orthodontic treatment, our aim was to 
train the MS-D network to simultaneously segment the jaw and 
the teeth in CBCT scans.

Materials and Methods
CBCT scan information, CNN architecture, implementation 
and training details, and CNN performance evaluation are pro-
vided in the Appendix.

Data Acquisition and Preprocessing

Thirty dental CBCT scans were acquired from patients (age, 11 
to 24 y; mean ± SD, 14.2 ± 3.4 y; 19 females and 11 males) 
who previously underwent orthodontic treatment at the 
Shanghai Xuhui Dental Center. The CBCT scans used in this 
study were obtained before the orthodontic treatment, and 
none of the patients had fillings, dental implants, or crowns. 
Thus, the CBCT scans were free of metal artifacts. Moreover, 
no patients had missing teeth, and wisdom teeth were not yet 
erupted in most patients (n = 22). Informed consent was signed 
by each patient and at least 1 parent. The use of patient data 
was approved by the medical ethics committee of the Shanghai 
Xuhui Dental Center (No. 20193).

Since this study focused on segmenting the jaw and the 
teeth, we cropped all CBCT scans to those anatomic regions, 
resulting in scans with axial dimensions ranging between 255 
to 384. In total, 9507 slices were obtained from the 30 CBCT 
scans.

To acquire gold standard labels, all 30 CBCT scans were 
segmented into 3 classes: jaw, teeth, and background. The 
manual segmentation was carried out by 4 dentists with at least 
2 y of working experience in dental clinics. The 4 dentists were 
well instructed and practiced extensively until they could accu-
rately annotate jaw and teeth in CBCT scans. After that, the 30 
CBCT scans were distributed among the 4 annotators, and each 
CBCT scan was segmented only once by a single annotator. 
This segmentation was performed with global thresholding, 
followed by manual correction—that is, removing noise, arti-
facts, and unrelated parts, as well as adding missing thin bony 
structures and filling erroneous cavities in the segmented scans 
through Mimics 21.0 software (Materialise). The resulting seg-
mentation labels were used as the gold standard.

CNN Architecture

In this study, we employed an MS-D network that was devel-
oped by Pelt and Sethian (2018). A schematic overview of an 
MS-D network with a depth of 3 and a width of 1 is presented 
in Figure 1A.

Implementation and Training Details

Three experiments were designed to evaluate the MS-D net-
work’s segmentation performance. The first experiment was 
multiclass segmentation, in which the MS-D network was 
trained to simultaneously segment 3 labels: jaw, teeth, and 
background. The second and third experiments were binary 
segmentation, where the MS-D network segmented jaw or 
teeth, respectively.

Twenty-eight CBCT scans were divided into 4 subsets (S1, 
S2, S3, and S4), each containing 7 scans. Each experiment fol-
lowed a 4-fold cross-validation scheme (Anguita et al. 2012), 
which means that 3 subsets were used for training and 1 for 
testing. This process was repeated 4 times such that each 
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CBCT scan was used for testing exactly once (Fig. 
1B). The 2 CBCT scans that were not included in 
the 4-fold cross-validation scheme were used to 
determine the optimal number of epochs for 
training.

CNN Performance Evaluation

The segmentation performance of the MS-D  
network was evaluated with the Dice similarity 
coefficient (DSC; Zou et al. 2004). DSCs were 
calculated on the patient level, which means that a 
single DSC was calculated for each segmented 
CBCT volume.

Surface deviations between the MS-D  
network–based 3D models and the gold standards 
were calculated to evaluate the accuracy of the 
MS-D segmentation around the edges of bony 
structures. Additionally, mean absolute deviations 
(MADs) were calculated between the MS-D net-
work–based 3D models and the gold standards.

After the 4 iterations of the cross-validation 
scheme, the performance of the MS-D network 
was averaged over the 28 CBCT scans.

Results
The multiclass and binary segmentation approaches 
achieved similar segmentation accuracies (Fig. 2A, 
B). The former approach resulted in DSCs of jaw 
between 0.901 (patient 3) and 0.968 (patient 28), 
with a mean of 0.934 ± 0.019. The DSCs of teeth 
ranged between 0.881 (patient 2) and 0.971 (patient 
28), with a mean of 0.945 ± 0.021. For the binary 
segmentation, the DSCs of jaw ranged from 0.892 
(patient 3) to 0.966 (patient 28), with a mean of 
0.933 ± 0.020. The DSCs of teeth ranged from 
0.889 (patient 2) to 0.973 (patient 28), with a mean 
of 0.948 ± 0.021. The lowest DSC of jaw from 
patient 3 was due to the larger excluded region of 
maxilla in its gold standard while this excluded 
region was segmented by the MS-D (Fig. 2C). The 
lowest DSC of teeth from patient 2 was attributed 
to the unerupted teeth not being included in the 
gold standard while the MS-D segmented these 
teeth (Fig. 2D). Comparison of the DSCs obtained 
with the multiclass and binary segmentation 
approaches showed 90% CIs of difference of 
−0.001 to 0.003 for jaw segmentation and −0.004 
to −0.001 for teeth segmentation, which indicated 
that the 2 approaches resulted in equivalent seg-
mentation performances with a confidence of 95%.

Examples of the multiclass segmentation of the 
CBCT scan from patient 9 are presented in Figure 
3. Five axial CBCT slices representing different skull anato-
mies were selected. The difference maps show that the errors 
mainly occurred at the edges with deviations around 1 pixel 

(Fig. 3A, B). Some thin bony structures around the maxillary 
sinus were not segmented by the MS-D network as compared 
with the gold standard (Fig. 3E).

Figure 1. MS-D network architecture and 4-fold cross-validation scheme. (A) 
Schematic representation of an MS-D network with 3 convolutional layers and a 
width of 1; (B) 28 CBCT scans were divided into 4 subsets (S1, S2, S3, and S4), each 
containing 7 CBCT scans. For each iteration, 3 subsets were used for training and 1 for 
testing. CBCT, cone beam computed tomography; MS-D, mixed-scale dense.

Figure 2. Comparison of DSCs obtained using the multiclass and binary segmentation 
approaches. For jaw segmentation (A) and teeth segmentation (B), the multiclass 
segmentation and the binary segmentation were equivalent. In addition, 3D models 
of the jaw (C) and the teeth (D) are presented, which were acquired by using the 
CBCT scans that resulted in the lowest DSCs. 3D, 3-dimensional; CBCT, cone beam 
computed tomography; DSC, Dice similarity coefficient.
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Figure 4A shows the surface deviations of all 3D jaw mod-
els obtained from the multiclass and binary segmentations. 
Figure 4B illustrates 3 jaw models from the multiclass segmen-
tation. Patient 28 and 12 corresponded to the minimum and 
maximum MADs, respectively. Patient 25 had an MAD close 
to the mean MAD. All MAD values of jaw models are pre-
sented in the Appendix Table. When analyzing jaw models, the 
multiclass segmentation resulted in surface deviations from 
−0.191 ± 1.095 mm (patient 14) to 0.185 ± 1.011 mm (patient 
3) and a mean MAD of 0.390 ± 0.093 mm. The binary segmen-
tation resulted in surface deviations from −0.180  ± 1.069 mm 
(patient 14) to 0.252 ± 1.058 mm (patient 3) and a mean MAD 
of 0.410 ± 0.103 mm.

Figure 5A shows the surface deviations of all 3D teeth mod-
els obtained from the multiclass and binary segmentations. 
Figure 5B presents 3 teeth models from the multiclass segmen-
tation. Patients 28 and 23 corresponded to the minimum and 
maximum MADs, respectively. Patient 14 had an MAD close 
to the mean MAD. All MAD values of teeth models are pre-
sented in the Appendix Table. When analyzing teeth models, the 
multiclass segmentation resulted in surface deviations from 
−0.107 ± 0.546 mm (patient 5) to 0.318 ± 0.347 mm (patient 23) 
and a mean MAD of 0.204 ± 0.061 mm. The binary segmentation 

resulted in surface deviations from −0.116 ± 0.534 mm (patient 
12) to 0.290 ± 0.272 mm (patient 23) and a mean MAD of 
0.163 ± 0.051 mm.

Discussion
CBCT is increasingly utilized to create virtual 3D models for 
quantitative evaluation of orthodontic changes such as tooth 
resorption, condyle growth, and movement of the chin and 
teeth. Creating these 3D models requires accurate segmenta-
tion of jaw (i.e., mandible and maxilla) and teeth. However, 
manually segmenting these 2 anatomies is time-consuming, 
laborious, and expensive. In this study, we trained a novel 
MS-D network to simultaneously segment jaw and teeth in 
CBCT scans (i.e., multiclass segmentation). The jaw and teeth 
segmented by the MS-D network demonstrated high DSCs, 
and their 3D models showed minor surface deviations as com-
pared with the gold standard. The MS-D network took approxi-
mately 25 s to segment jaw and teeth in 1 CBCT scan, thus 
markedly reducing the time required for segmentation. 
Therefore, the MS-D network trained for multiclass segmenta-
tion has promising potential to accurately and automatically 
segment multiple anatomies of interest for orthodontic diagno-
sis and treatment.

Multiclass segmentation has been considered challenging 
since it faces class data imbalance and interclass feature simi-
larity problems (Chen et al. 2018; Novikov et al. 2018; Jafari  
et al. 2019). As compared with multiclass strategies, binary 
strategies are generally more robust and achieve higher accu-
racy but come at the cost of increased training time (Berstad  
et al. 2018; Gómez et al. 2020). In this study, the MS-D net-
work trained for multiclass segmentation was able to accu-
rately segment jaw and teeth in CBCT scans, achieving 
comparable accuracy as binary segmentation. This indicates 
that the MS-D network can be trained with 3 classes without 
losing segmentation accuracy as compared with binary seg-
mentation. Moreover, multiclass segmentation has 2 important 
advantages over binary segmentation. The first is that multi-
class segmentation requires training only a single CNN for 
segmentation of jaw and teeth, which was twice as fast as train-
ing the 2 CNNs needed for binary segmentation. Specifically, 
training an MS-D network took about 20 h (1 h per epoch), and 
segmentation of 1 CBCT scan took approximately 25 s. 
Nevertheless, it must be noted that the segmentation time of 
both deep learning approaches is still significantly less than 
that of manual segmentation, which took around 5 h per CBCT 
scan. The second advantage is that multiclass segmentation 
does not generate conflicting labels, as opposed to binary seg-
mentation. These conflicting labels are caused when 1 binary 
segmentation network classifies a pixel as jaw and the other 
classifies it as teeth (Appendix Figure).

The MS-D networks trained in this study resulted in DSCs 
that are comparable to those presented in literature. For man-
dible segmentation, Qiu et al. (2018) obtained a mean DSC of 
0.896 by training 3 CNNs using CBCT slices from axial, sagit-
tal, or coronal planes and then combining the segmentation 
results from all 3 CNNs. For maxilla segmentation, a lower 

Figure 3. Example of jaw and teeth segmentation from 5 axial CBCT 
slices of patient 9 with the multiclass segmentation approach. The first 
column contains 5 axial CBCT slices, which represent different skull 
anatomies. The second and third columns show the gold standard 
segmentation and the MS-D segmentation, respectively. The last column 
indicates the difference between the gold standard and the MS-D 
segmentations. False negatives of the jaw are marked in fuchsia, and false 
positives are marked in ultra pink and gamboge. False negatives of the 
teeth are marked in pink, and false positives are marked in wheat and 
yellow. CBCT, cone beam computed tomography; MS-D, mixed-scale 
dense.
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mean DSC of 0.800 ± 0.029 was found by S. Chen 
et al. (2020), who used a learning-based multi-
source integration framework. For teeth segmenta-
tion, Lee et al. (2020) applied a multiphase strategy 
to train a U-Net–based architecture, which resulted 
in DSCs ranging from 0.910 to 0.918. Furthermore, 
Cui et al. (2019) employed a 2-stage network con-
sisting of a tooth edge map extraction network and 
a region proposal network and reported a mean 
DSC of 0.926. In comparison with the aforemen-
tioned studies, the MS-D network employed in this 
study achieved comparable DSCs. However, the 
reviewed studies used different data sets to evalu-
ate their methods, which means that differences 
among the DSCs should be interpreted with 
caution.

All MS-D network–based 3D models closely 
resembled the corresponding gold standard 3D 
models. The surface deviations found in our study 
were generally lower than those obtained by Wang 
et al. (2016), who developed a random forest 
method to segment the mandible and the teeth in 
CBCT scans. When segmenting the mandible, their 
method resulted in a surface deviation of 0.420 ± 
0.150 mm, whereas the segmentation of the upper 
and lower teeth resulted in surface deviations of 
0.312 ± 0.103 mm and 0.346 ± 0.154 mm, respec-
tively. Our MS-D network segmentation also 
resulted in lower surface deviations of teeth than 
the multitask fully CNN developed by Y. Chen et 
al. (2020). Their network was trained for individual 
tooth segmentation, which resulted in an average 
surface deviation of 0.363 ± 0.145 mm.

The segmentation errors of the MS-D network 
trained in this study mainly occurred at the edges 
of the bony structures (Fig. 3). These segmentation 
errors are likely due to the partial volume effect. 
This occurs when tissues with different densities 
are encompassed within the same voxel, which is 
typically the case at the border of 2 anatomic regions (e.g., 
bone and soft tissue). As a consequence, it is extremely hard to 
exactly define the edge regions of bony structures. This phe-
nomenon might also explain why some thin bony structures in 
the maxillae were not correctly segmented by the MS-D net-
work (Fig. 3E). The quality of CBCT scans also affects the 
accuracy of segmentation. For example, the ramus and the con-
dyle were poorly segmented in the CBCT scan of patient 12 
(Fig. 4B) because these regions were affected by movement 
artifacts.

One challenge for deep learning in medicine and dentistry is 
to obtain an accurate gold standard (Schwendicke et al. 2020). 
The gold standard is usually created by human annotators, 
which contains intrinsic inter- and intraobserver variability. 
However, deep learning can learn from large training data sets 
and therefore is able to overcome this variability (Naylor 
2018). In this study, the gold standard segmentation labels 

were annotated by 4 dentists, which introduced subjective vari-
ability in the gold standard. For example, the unerupted teeth 
from 1 patient were not included in the gold standard. Because 
the MS-D network was able to learn from all segmented CBCT 
images, the unerupted teeth in the CBCT scans were all cor-
rectly segmented by the MS-D network. These findings indi-
cate that the MS-D network can reduce the influence of 
subjective variability. If the inaccurate gold standard labels are 
included in the test set, this can affect the evaluation of the 
network, particularly for small data sets. However, since the 
performance of the MS-D network was evaluated on the 28 
CBCT scans, the influence of 1 inaccurate gold standard scan 
in the test set can be minimized.

In the present study, the MS-D network was adopted to 
evaluate the multiclass segmentation performance. This net-
work was chosen because it has relatively few parameters, 
making it easier to train and apply than other CNNs (Pelt and 

Figure 4. Surface deviations between the MS-D network–based 3D models of the jaw 
and the corresponding gold standard 3D models. The CBCT scans from patients 15 
and 16 were used for validation and therefore not included in the analysis. (A) Box and 
whisker plot of the surface deviations. The boxes represent the interquartile range, and 
the whiskers represent the 10th and 90th percentiles of the surface deviations. (B) The 
front, back, and isotropic views of color maps of surface deviations are presented for 
3 jaw models. Patients 28 and 12 corresponded to the minimum and maximum MADs, 
respectively. Patient 25 had an MAD close to the mean MAD. 3D, 3-dimensional; 
CBCT, cone beam computed tomography; MAD, mean absolute deviation.
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Sethian 2018). The multiclass segmentation performance of 
the MS-D network was compared with that of the U-Net, dem-
onstrating that it was able to achieve similar segmentation 
accuracy as the U-Net (Pelt and Sethian 2018). Nevertheless, 
the MS-D network is not the only CNN architecture capable of 
performing multiclass segmentation. Several other CNN archi-
tectures have been implemented to perform multiclass seg-
mentation of anatomies in brain (Chen et al. 2018; Jafari et al. 
2019) and lung (Novikov et al. 2018; Saood and Hatem 2020).

In this study, all CBCT scans were obtained from patients 
without dental fillings, implants, or orthodontic devices to avoid 
the influence of metal artifacts. In daily clinical practice, there 
may be such artifacts, so caution should be taken to apply the 
current findings in clinics. Further studies shall be performed for 
CBCT image segmentation with complicated dental status.

To facilitate CNN training, the maxilla and 
mandible were considered a single class, and the 
upper and lower teeth were considered another 
class. However, one may wish to automatically 
separate the mandible from the maxilla and clas-
sify individual teeth during segmentation. The 
mandible and the maxilla can be easily separated 
by using region growing methods available in 
most image processing software, but individual 
teeth segmentation still requires postprocessing. 
To make the automatic segmentation of individ-
ual teeth possible, we aim to include individual 
labels of different teeth during the training of the 
MS-D network in future work.

Conclusion
This study applied a novel MS-D network to seg-
ment CBCT scans into jaw, teeth, and back-
ground. Multiclass segmentation achieved 
comparable segmentation accuracy as binary 
segmentation. In addition, the MS-D network–
based 3D models closely resembled the gold 
standard 3D models. These results demonstrate 
that deep learning has the potential to accurately 
and simultaneously segment jaw and teeth in 
CBCT scans. This will substantially reduce the 
amount of time and effort spent in clinical set-
tings, thereby facilitating patient-specific orth-
odontic treatment.
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