586 research outputs found

    Signal validation in electroencephalography research

    Get PDF

    Development of a Group Dynamic Functional Connectivity Pipeline for Magnetoencephalography Data and its Application to the Human Face Processing Network

    Get PDF
    Since its inception, functional neuroimaging has focused on identifying sources of neural activity. Recently, interest has turned to the analysis of connectivity between neural sources in dynamic brain networks. This new interest calls for the development of appropriate investigative techniques. A problem occurs in connectivity studies when the differing networks of individually analyzed subjects must be reconciled. One solution, the estimation of group models, has become common in fMRI, but is largely untried with electromagnetic data. Additionally, the assumption of stationarity has crept into the field, precluding the analysis of dynamic systems. Group extensions are applied to the sparse irMxNE localizer of MNE-Python. Spectral estimation requires individual source trials, and a multivariate multiple regression procedure is established to accomplish this based on the irMxNE output. A program based on the Fieldtrip software is created to estimate conditional Granger causality spectra in the time-frequency domain based on these trials. End-to-end simulations support the correctness of the pipeline with single and multiple subjects. Group-irMxNE makes no attempt to generalize a solution between subjects with clearly distinct patterns of source connectivity, but shows signs of doing so when subjects patterns of activity are similar. The pipeline is applied to MEG data from the facial emotion protocol in an attempt to validate the Adolphs model. Both irMxNE and Group-irMxNE place numerous sources during post-stimulus periods of high evoked power but neglect those of low power. This identifies a conflict between power-based localizations and information-centric processing models. It is also noted that neural processing is more diffuse than the neatly specified Adolphs model indicates. Individual and group results generally support early processing in the occipital, parietal, and temporal regions, but later stage frontal localizations are missing. The morphing of individual subjects\u27 brain topology to a common source-space is currently inoperable in MNE. MEG data is therefore co-registered directly onto an average brain, resulting in loss of accuracy. For this as well as reasons related to uneven power and computational limitations, the early stages of the Adolphs model are only generally validated. Encouraging results indicate that actual non-stationary group connectivity estimates are produced however

    Detection of Auditory Brainstem Response Peaks Using Image Processing Techniques in Infants with Normal Hearing Sensitivity

    Full text link
    Introduction: The auditory brainstem response (ABR) is measured to find the brainstem-level peripheral auditory nerve system integrity in children having normal hearing. The Auditory Evoked Potential (AEP) is generated using acoustic stimuli. Interpreting these waves requires competence to avoid misdiagnosing hearing problems. Automating ABR test labeling with computer vision may reduce human error. Method: The ABR test results of 26 children aged 1 to 20 months with normal hearing in both ears were used. A new approach is suggested for automatically calculating the peaks of waves of different intensities (in decibels). The procedure entails acquiring wave images from an Audera device using the Color Thresholder method, segmenting each wave as a single wave image using the Image Region Analyzer application, converting all wave images into waves using Image Processing (IP) techniques, and finally calculating the latency of the peaks for each wave to be used by an audiologist for diagnosing the disease. Findings: Image processing techniques were able to detect 1, 3, and 5 waves in the diagnosis field with accuracy (0.82), (0.98), and (0.98), respectively, and its precision for waves 1, 3, and 5, were respectively (0.32), (0.97) and (0.87). This evaluation also worked well in the thresholding part and 82.7 % correctly detected the ABR waves. Conclusion: Our findings indicate that the audiology test battery suite can be made more accurate, quick, and error-free by using technology to automatically detect and label ABR waves

    A Brief Summary of EEG Artifact Handling

    Get PDF
    There are various obstacles in the way of use of EEG. Among these, the major obstacles are the artifacts. While some artifacts are avoidable, due to the nature of the EEG techniques there are inevitable artifacts as well. Artifacts can be categorized as internal/physiological or external/non-physiological. The most common internal artifacts are ocular or muscular origins. Internal artifacts are difficult to detect and remove, because they contain signal information as well. For both resting state EEG and ERP studies, artifact handling needs to be carefully carried out in order to retain the maximal signal. Therefore, an effective management of these inevitable artifacts is critical for the EEG based researches. Many researchers from various fields studied this challenging phenomenon and came up with some solutions. However, the developed methods are not well known by the real practitioners of EEG as a tool because of their limited knowledge about these engineering approaches. They still use the traditional visual inspection of the EEG. This work aims to inform the researchers working in the field of EEG about the artifacts and artifact management options available in order to increase the awareness of the available tools such as EEG preprocessing pipelines

    Multimodal Characterization of the Semantic N400 Response within a Rapid Evaluation Brain Vital Sign Framework

    Get PDF
    Background: For nearly four decades, the N400 has been an important brainwave marker of semantic processing. It can be recorded non-invasively from the scalp using electrical and/or magnetic sensors, but largely within the restricted domain of research laboratories specialized to run specifc N400 experiments. However, there is increasing evidence of signifcant clinical utility for the N400 in neurological evaluation, particularly at the individual level. To enable clinical applications, we recently reported a rapid evaluation framework known as “brain vital signs” that successfully incorporated the N400 response as one of the core components for cognitive function evaluation. The current study characterized the rapidly evoked N400 response to demonstrate that it shares consistent features with traditional N400 responses acquired in research laboratory settings—thereby enabling its translation into brain vital signs applications. Methods: Data were collected from 17 healthy individuals using magnetoencephalography (MEG) and electroencephalography (EEG), with analysis of sensor-level efects as well as evaluation of brain sources. Individual-level N400 responses were classifed using machine learning to determine the percentage of participants in whom the response was successfully detected. Results: The N400 response was observed in both M/EEG modalities showing signifcant diferences to incongruent versus congruent condition in the expected time range (p<0.05). Also as expected, N400-related brain activity was observed in the temporal and inferior frontal cortical regions, with typical left-hemispheric asymmetry. Classifcation robustly confrmed the N400 efect at the individual level with high accuracy (89%), sensitivity (0.88) and specifcity (0.90). Conclusion: The brain vital sign N400 characteristics were highly consistent with features of the previously reported N400 responses acquired using traditional laboratory-based experiments. These results provide important evidence supporting clinical translation of the rapidly acquired N400 response as a potential tool for assessments of higher cognitive functions

    Modified cyclic shift tree denoising technique with fewer number of sweep for wave V detection

    Get PDF
    Nowadays, in developing countries Newborn Hearing Screening (NHS) has become one of the most important recommendations in modern pediatric audiology due to the important of early detection for newborn as the first six month of age are the critical period for learning communication. Auditory Brainstem Response (ABR) is an electrophysiological response in the electroencephalography generated in the brainstem in response to the acoustical stimulus. The conventional method used previously was accurate, but it is time consuming especially with the presence of noise interference. The objective of this research is to reduce screening time by implementing enhanced signal processing method and also to reduce the influence of noise interference. This thesis applies Wavelet Kalman Filter (WKF), Cyclic Shift Tree Denoising (CSTD) and Modified Cyclic Shift Tree Denoising (MCSTD) to overcome these problems. The modified approach MSCTD is a modification from CSTD where it is a combination of the wavelet, KF and CSTD. The modified approach was compared to the averaging, WKF and CSTD to analyze an effective wavelet method for denoising that can give the rapid and accurate extraction of ABRs. Results show that the MCSTD outperform the other methods and giving the highest SNR value and able to detect wave V until reduce sweeps number of 512 and 1024 respectively for chirp and click stimulus

    Objectification of intracochlear electrocochleography using machine learning.

    Get PDF
    Introduction Electrocochleography (ECochG) measures inner ear potentials in response to acoustic stimulation. In patients with cochlear implant (CI), the technique is increasingly used to monitor residual inner ear function. So far, when analyzing ECochG potentials, the visual assessment has been the gold standard. However, visual assessment requires a high level of experience to interpret the signals. Furthermore, expert-dependent assessment leads to inconsistency and a lack of reproducibility. The aim of this study was to automate and objectify the analysis of cochlear microphonic (CM) signals in ECochG recordings. Methods Prospective cohort study including 41 implanted ears with residual hearing. We measured ECochG potentials at four different electrodes and only at stable electrode positions (after full insertion or postoperatively). When stimulating acoustically, depending on the individual residual hearing, we used three different intensity levels of pure tones (i.e., supra-, near-, and sub-threshold stimulation; 250-2,000 Hz). Our aim was to obtain ECochG potentials with differing SNRs. To objectify the detection of CM signals, we compared three different methods: correlation analysis, Hotelling's T2 test, and deep learning. We benchmarked these methods against the visual analysis of three ECochG experts. Results For the visual analysis of ECochG recordings, the Fleiss' kappa value demonstrated a substantial to almost perfect agreement among the three examiners. We used the labels as ground truth to train our objectification methods. Thereby, the deep learning algorithm performed best (area under curve = 0.97, accuracy = 0.92), closely followed by Hotelling's T2 test. The correlation method slightly underperformed due to its susceptibility to noise interference. Conclusions Objectification of ECochG signals is possible with the presented methods. Deep learning and Hotelling's T2 methods achieved excellent discrimination performance. Objective automatic analysis of CM signals enables standardized, fast, accurate, and examiner-independent evaluation of ECochG measurements

    Gaussian Processes for hearing threshold estimation using Auditory Brainstem Responses

    Get PDF
    The Auditory Brainstem Response (ABR) plays an important role in diagnosing and managing hearing loss, but can be challenging and time-consuming to measure. Test times are especially long when multiple ABR measurements are needed, e.g., when estimating hearing threshold at a range of frequencies. While many detection methods have been developed to reduce ABR test times, the majority were designed to detect the ABR at a single stimulus level and do not consider correlations in ABR waveforms across levels. These correlations hold valuable information, and can be exploited for more efficient hearing threshold estimation. This was achieved in the current work using a Gaussian Process (GP), i.e., a Bayesian approach method for non-linear regression. The function to estimate with the GP was the ABR's amplitude across stimulus levels, from which hearing threshold was ultimately inferred. Active learning rules were also designed to automatically adjust the stimulus level and efficiently locate hearing threshold. Simulation results show test time reductions of up to \sim50% for the GP compared to a sequentially applied Hotelling's T2 test, which does not consider correlations across ABR waveforms. A case study was also included to briefly assess the GP approach in ABR data from an adult volunteer

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks
    corecore