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Introduction

ELECTROENCEPHALOGRAPHY RESEARCH

New inventions and technological innovations have been a driving force in
electroencephalography (EEG), from the early days of its discovery until today (Geddes,
1995). Where the early commercial machines were limited in application and rather
bulky, today’s EEG recorders can be pocketsize while incorporating high-quality
amplifiers and many channels.

From a clinician’s point of view, it can be surprising and maybe even startling to see
the impact of our technology-driven society, regardless of the ‘efficiency’ reasons for
installing new equipment. Surprising, because of the extent of procedural changes and
possibilities of new, additional recording settings. However, such changes can also be
startling, when the installed new technology appears to have an indirect, seemingly
degrading effect on the quality of procedures. For instance, simple (and fast) browsing
through EEG pages during computerised recordings is still a much-wanted feature.
Up-to-date digital EEG technology can be astounding also because of printing of EEGs in
the envisaged paperless EEG laboratory: printouts are often the only universal medium
when going to a meeting. Another example: since no consensus implementation of the
Rechtschaffen and Kales (1968) sleep staging procedures is available, the ‘established’
automatic assessment in one laboratory may lead to serious discussion in another.

What we have seen in the past 10 years is the gradual move towards all-digital EEG
laboratories. An average laboratory can save thousands of Euro’s per annum on paper
costs alone, apart from the cost of storage space and inefficient access to patient data.
Doctors and nursing staff are increasingly aware of computerisation, and are eager to use
tools that can reduce their workload. This is now within reach because of the increasing
power and availability of computers, which in the early digital years were busy doing the
data acquisition part, and now have processor-time to spare to perform additional
calculations.

However, before automatic interpretation can be used reliably in day-to-day clinical
practice, the process of scrutinising the data for contaminations should be performed.
Paper analysis does not allow for an easy separation of validation and interpretation. In
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principle, this process can be done in digitised recordings. Validation is an often
overlooked, seldom systematically addressed issue. In clinical practice, validation is
performed inherently at the time of reviewing the data. In scientific research, data sets are
often described as being pruned: by a neurologist at best, but still mostly based on
empirical knowledge. This introduces a rather high degree of subjectivity in data review
and subsequent processing. Repetition of experiments will then produce different results
even in the same data set, which invalidates the eventual incorporation of the
computerised methods.

EEG VALIDATION

The area in-between the actual recording and the interpretation (or advanced
processing) of neurophysiological signals is the main topic of this thesis. How well do we
measure what we want to measure?

Two different signals in EEG research are represented in the data sets that were used
to test various issues related to measurement validation: the electroencephalogram itself,
and evoked potentials.

Human experience of EEG analysis has taught us that it is difficult to separate
validation aspects from interpretation/diagnosis. Still, we have used human experts as a
reference for the performance of our automatic methods. Therefore, we have tried to
design objective evaluation procedures for the human assessment. Special focus is on the
aspects related to accuracy and signal context.

Evoked potentials (EPs) are deterministic signals that can be obtained from advanced
processing of the EEG, often recorded during a repeated task. An evoked potential
represents the electrophysiological behaviour of a specific neural pathway, as measured
on the scalp. We took the validation of EPs one step further than validation of EEGs: we
performed artefact detection, and especially focused on objective assessment of signal
quality.

Thesis outline

This thesis is subdivided into two major parts, preceded by this brief introduction and
followed by the final discussion.

Part I – Time-related aspects of EEG validation

Chapter I-1 is the introduction of Part I. This chapter provides an overview of the field
of EEG, describing the background of EEG research in general. Different types of artefacts
in the EEG are categorised by physiological source and external interference. A mostly
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technical point of view is taken in describing the literature on signal processing; this
chapter also describes some technical issues in relation to practical measurement
procedures.

Chapter I-2 describes a study that was performed at the Department of Clinical
Neurophysiology, Kempenhaeghe, Heeze, in twenty-one normal adult subjects. The
study was designed to test the performance and accuracy of muscle artefact detection.
Several (classical) detection parameters are compared in this chapter.

One of the optimal parameters in chapter I-2 is used again in Chapter I-3. Here, a large
clinical data set was used from the international European project “IMPROVE”, which
was recorded in the intensive care unit of Kuopio University Hospital, Finland. This data
set presents a very diverse set of patterns, including artefacts, comprising seven 24-hour
recordings in severely ill patients. Artefact detection is performed here by combining two
processing methods, based on statistical amplitude analysis and autoregressive modeling.

Part II – Quality estimation of evoked potentials

Chapter II-1 introduces Part II, describing the background of evoked potential
measurements. Artefacts and procedures specific to EPs are summarised. A brief
description of statistical methods for artefact detection is included from previous research
at the Department of Medical Electrical Engineering, Eindhoven University of
Technology (TUE/EME). The principles of quality assessment as used in the subsequent
chapters are introduced.

Chapter II-2 focuses on signal quality and recording time of auditory evoked
potentials as measured in a clinical study in forty-one patients undergoing cardiac
surgery. This data set was obtained from a previous study by the TUE/EME group,
which was performed at the Catharina Hospital Eindhoven. The EP waveforms were
scored independently by several researchers, providing an interesting data set for quality
assessment and EP validation. Chapter II-3 applies the findings from chapter II-2 in event
related (long-latency) evoked potentials, which have different characteristics and need
additional procedures for artefact detection and quality assessment. The data were taken
from an experiment in ten subjects at the Department of Physiological Psychology,
Tilburg University. Chapter II-4 concludes Part II, and constitutes an encore piece about
the application and optimisation of an alternative technique (Cluitmans, 1990) to
conventional evoked potential recording. This study was again performed at
Kempenhaeghe: the EEG and auditory evoked potentials were measured in fourteen
volunteers during sleep.

The overall discussion reiterates the major themes of this thesis and summarises the
principal findings of both EEG and EP studies.
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I-1. Neurophysiological Measurements:
Overview and Methods

Dealing with artefacts in recordings of physiological signals is an integral part of clinical

decision making. Of course, adequately trained staff must be involved in the acquisition and

interpretation of such signals. Especially in neurophysiological measurements, the validation

process is essential, as in general the recorded signals are of very low amplitude and are

therefore easily disturbed by other physiological signals or external sources. Interpretation and

analysis is extra complicated because some of the resulting artefacts in the electroencephalogram

(EEG) can adversely mimic ‘normal’ patterns. Different clinicians and EEG researchers also show

subjective differences in interpretation, and artefacts for one particular procedure can be the

signal of interest in another investigation. Effective and objective (computerised) detection of

artefacts is needed, not only because of the amounts of data that are acquired easily today, but

also for the improvement of the quality of clinical procedures.

This general overview first describes the background of neurophysiological signals. Next, the

(technical) requirements for recording of electroencephalographic data are described, focusing on

practical issues.

Artefacts in the EEG can be produced by different sources, and are categorised accordingly.

The various types of artefacts are described along with previous work in artefact processing.

Subsequently the research in EEG validation and artefact detection is reviewed in a section about

the different (existing) methods for signal processing, followed by a section that briefly

introduces technical issues in clinical EEG processing. The discussion at the end of this chapter

introduces the research paths taken in the next chapters of Part I of this thesis.

I-1.1. INTRODUCTION: EEG MEASUREMENTS

When Hans Berger conducted the first measurements of electrical activity from the
human brain (Berger, 1929), various critics opposed that the recorded signal was due to
other physiological or mechanical activity (e.g., blood pulsation, respiration, or skeletal
muscle), hence, from artefactual origin. At that time, the recording equipment consisted of
the string galvanometer as developed by Einthoven for recording of the
electrocardiogram. Apart from lack of sensitivity in this apparatus, Berger also had to
tackle the problems of electrodes, and, of course, of artefacts. Already then, he
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investigated different materials, electrode positioning and fixation, and electrode
impedance, providing guidelines that still relate to those of today. Quite accurately, he
described the “Elektroenkephalogramm” as oscillations with average duration of 90ms
(alpha waves) and 35ms (beta waves), and amplitudes of 70-150µV and 20-30µV
respectively (Geddes, 1995).

Since the days of Berger and the verification of his recordings by Jasper and
Carmichael (1935), electroencephalography has taken its place as a standard laboratory
investigation in clinical neurophysiology and neurology. It is used in the diagnosis of
brain pathology, e.g., epilepsy, sleep disorders, and disorders of the nervous system. EEG
recording is also used extensively in psychophysiological research and in the testing of
drugs (pharmacology) (Pryse-Phillips, 1997).

I-1.1.1. Neurophysiology

The origin of the EEG

The electrical activity elicited by single nerve cells stems from the electrochemical
processes underlying the generation of ‘action potentials’, essential for information
transfer between nerve cells. The neuron consists of a cell body, dendrites (receptor, or
afferent pathway) and axons (efferent pathway). A resting potential exists across the cell
membrane, at an intracellular level of approximately –70mV. Neurotransmitters can
change the permeability of the membrane mainly for sodium (Na+) and potassium (K+)

ions. An increased ion influx causes depolarisation of the membrane, resulting in a
further change in permeability (the Hodgkin cycle: Kandel et al., 1991). This process can
trigger an ‘action potential’ wave that travels along the axon towards other neurons. At
the ‘synapse’, the contact point between axon and dendrite, the transmission of the nerve
impulse occurs. Thus, processes in other cells are affected.

Postsynaptic potentials can be of excitatory or inhibitory nature, respectively causing a
reduction (depolarisation) or increase (hyperpolarisation) of the membrane potential.
These EPSPs and IPSPs are the primary origins for the EEG recorded from the scalp.
Because EEG recording electrodes are relatively far from the source of these neuron
potentials, the actual potentials of the EEG on the skull are approximately 100 to 1000
times smaller than intracellular levels. Moreover, the recorded activity on one electrode
on the scalp represents the averaged behaviour of about one million neurons in the cortex
(of the approximate 100 billion in the brain). Large amplitudes in the EEG therefore
require synchronous rhythmic activity in such neuronal populations. The rhythmic activity
(especially alpha rhythm) has its origin in the thalamus, a deep structure of the brain, and
is modified by dynamic feedback loops of inhibition and excitation (Schmidt, 1985; Lopes
da Silva, 1987a; Fischbach, 1992).
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EEG signal characteristics

The dynamic behaviour, or rhythms, of electrical activity recorded from the brain can
be classified by amplitude and frequency. Action potentials at the cellular level can be
recorded at amplitudes up to 100mV. EEG phenomena recorded on the scalp range in
amplitude between 1µV up to 200µV in features observed in sleep and epilepsy.

Table I-1.1 General characteristics of electrical brain activity: amplitude and frequency
dynamics (after Cohen, 1995).

Classification amplitude frequency specifics

Potentials at the cellular level:

Action potential 100mV 100Hz-2kHz transmembrane potentials

IPSP / EPSP 2-10mV 5-100Hz

Electroencephalographic activity (on the scalp):

delta (δ) 2-100µV 0.5-4Hz e.g., deep sleep

theta (θ)      80µV 4-8Hz

alpha (α)      50µV 8-13Hz awake, relaxed, closed eyes

E
E

G
 b

an
ds

beta (β)      20µV 13-30Hz

Special phenomena:

spindles 50-100µV 8-15Hz sinusoid waves during sleep

K-complexes 100-200µV 3-14Hz bi- or triphasic sleep phenomenon

seizures 100-200µV 2-50Hz ‘sharp wave’ activity (epilepsy)

The description of EEG activity in the frequency domain as above is sometimes
considered inadequate when non-linear dynamics in the signal are investigated. Non-
linear analysis techniques have been used for EEG simulation and for model-based EEG
interpretation. These studies mostly focus on discrimination between different ‘brain
states’, e.g., in sleep studies or drug therapy studies, or try to assess differences in
cognitive activity (Gallez and Babloyantz, 1991; Pradhan and Narayana Dutt, 1993; Fell et
al., 1996). However, non-linear dynamic features of the EEG or specific phenomena
should be related to certain events and/or compared to linear measures to assess their
value. Non-linear methods need not yield results significantly different from linear
processing methods (Blinowska and Malinowski, 1991), or may produce inconsistent
results (Palus, 1996).
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I-1.1.2. Technical aspects of EEG recording

Polygraphy

EEG registration generally consists of simultaneous measurement of multiple signals
(sometimes more than 100 in EEG topography research), mostly recorded on the scalp.
Electrocorticography (recorded directly from the exposed cortex) and in-depth
intracranial recordings using needle electrodes (e.g., in neurosurgery, epilepsy) are not
discussed in this overview.

Standardisation of all aspects of EEG recording is difficult because of the diversity in
illnesses and monitoring applications. Different protocols and different equipment
regulations exist between hospitals for similar investigations (also: different ‘schools’ of
EEG training). Entirely different procedures may be needed in one single patient (e.g.,
ambulant recording, laboratory recording, monitoring during surgery).
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Figure I-1.1 The 10-20 electrode system: lateral view of left hemisphere. Electrodes on
homologue positions over the right hemisphere are even-numbered: Fp2, F4, F8, C4, T4, P4,
T6, O2, and A2 on the earlobe (after Jasper, 1958).

The only readily accepted instrumentation standard is the international 10-20 system
for electrode positioning. The distance over the scalp at the midline between nasion and
inion is used to position prefrontal electrodes (10%), frontal (30%), central (50%), parietal
(70%) and occipital (90%) electrodes. Similar 10% and 20% inter-electrode distances are
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used for positioning in the lateral direction. Additional positions and more closely spaced
electrodes can be added if necessary (see Jasper, 1958; American Electroencephalographic
Society, 1994b).

Apart from EEG channels, polygraphic measurements in neurophysiology may
include other (electrical) signals. The EMG (electromyography, recording of muscle
potentials) is recorded mostly on the chin (musculus mentalis) during sleep. EOG
derivations (electro-oculogram, recording of eye movement potentials), horizontal and
vertical channels, are used to detect REM sleep (§ I-1.4.1) and to identify eye movement
artefact in EEG channels. Recording of the ECG (electrocardiogram, representing electrical
activity of the heart) is standard. Monitoring clinical signs of other physiologic systems
may be necessary during surgery, in intensive care, or for specific investigations.

Artefact prevention and event registration

An important issue for recording of high quality EEG signals is artefact prevention;
standardised EEG recording techniques should be used as a guideline (e.g., American
Electroencephalographic Society, 1986). Another obvious, but often overlooked approach
to identify contaminations in the EEG is the direct monitoring of the source or external
cause of the artefact. Separate recording devices may be needed to allow for retrospective
identification of artefacts, e.g., the switching of electrocautery during surgery, or the
sound levels of snoring during sleep. Proper annotation during the recording, or
registration of such signals by means of event recording should be incorporated in the
procedure (Lesser et al., 1992; see the appendix of this thesis for a related paper on this
subject).

I-1.1.3. Recording equipment

EEG electrodes

EEG recordings using scalp electrodes are most common. The skin below the electrode
acts as impedance during the measurement, and is higher for low frequencies. Electrode
impedance should be less than 5kΩ at 10Hz, and the EEG technician should strive
towards equal impedance on all electrodes. Skin impedance can be reduced by proper
preparation of the skin: scrubbing with a special paste or a blunt needle is common
practice. Electrode leads should be as short as practically possible.

Classical types of EEG electrodes are metal cup electrodes, of silver/silver-chloride or
gold, because of their favourable electrochemical properties. Newer self-adhesive
electrodes or needle electrodes still have practical disadvantages, e.g., lasting visible
marks on the skin, undesired sterilisation procedures (Neuman, 1995; Litscher et al., 1996).

Electrode fixation. Because of drying of electrode paste and conductive gel electrode
impedance will increase. Even worse, loose electrodes may result from patients moving
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their heads (e.g., during sleep). Firm fixation of electrodes is achieved using glue
(collodion) and adhesive pads. Especially in prolonged EEG monitoring, regular electrode
(impedance) checks should be part of the recording protocol.

Amplification, filtering and digitisation

A concise, but detailed report of international recommendations for instrumentation
standards can be found already in Barlow et al., 1978. Today’s standards mainly upgrade
these specifications because of technical improvements. Some of the requirements are
outlined below; more information is found in Spehlmann’s EEG primer (Fisch, 1998).

The system must be equipped with a sufficient number of input channels (dependent
on application, up to 64, or even 128 — Lesser et al., 1992), with high input impedance (at
least 10MΩ). Calibration pulses at microvoltage levels (e.g., 50µV) should be available to
check the voltage scaling on screen or paper.

Electrode impedance checks must be available for all electrode channels. This facility
must be highly accurate and allow for checks at different frequencies (0 to 1000Hz), at
very low electrical currents through the electrodes during this measurement (IEC 601
regulation: below 10µA).

The common-mode rejection ratio of the amplifier must be sufficient to suppress noise
and interfering signals synchronised at different electrode positions. At all possible input
frequencies a rejection ratio of 1/10,000 or better is preferred. The common-mode
rejection is altered when electrode impedances are not equal, which notably affects a
bipolar recording. In this type of recording, the EEG is measured as the potential
difference between the signal electrode and a ‘reference’ electrode with reference to a
third electrode: the ground electrode (connected to the signal ground on the amplifier). In
a true unipolar recording, the reference electrode and ground electrode are one. In practice,
a virtual reference electrode may be obtained by deriving the ‘common average’ of all
electrodes (e.g., Goldman, 1949). The difference in noise between signal electrode and
reference electrode will be amplified in unipolar recordings, whereas ‘common noise’ at
bipolar recording positions is not measured, provided that the amplification is equal at
both signal and reference electrode.

Sample frequency. Several aspects are related to digitisation of the EEG. First of all, the
sampling frequency (fs) should be at least 100Hz for normal EEG recordings. An anti-
aliasing low pass filter must be applied with a cut-off frequency well below the Nyquist
frequency (half of the sample frequency), and a decay of 6 or 12dB/octave. A steeper
decay can result in distortion of spikes and sharp waves near the cut-off frequency, and is
therefore not advised (Spehlmann, 1981). Aliasing is the effect that occurs when
bandlimiting was inadequate, e.g., a 50Hz noise component can corrupt the spectrum at a
lower frequency of 30Hz for fs = 80Hz (Mainardi et al., 1995).

A low sampling rate of 100Hz may be chosen because of hardware constraints (e.g.,
Holter recording). In sleep recordings, and especially in epilepsy monitoring, the
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investigated frequency range extends to 70Hz or higher, therefore requiring a sample
frequency of at least 140Hz (but preferably higher, e.g., 200Hz). Very high sample
frequencies of 5kHz up to 10kHz are required for instance in the recording of brainstem
evoked potentials (see Part II).

AC-coupling. The characteristics for filtering of the lowest frequencies are usually given
as the time constant, defining the time required for a return to 37% (1/e) of the DC
baseline on square pulse input (DC/AC: direct/alternating current). The time constant
TC corresponds to the low frequency cut-off point f by TC = 1/(2πf). The most common
time constants are between 0.05s and 1s; the effect of different settings is illustrated in
Figure I-1.2, where low frequency artefact is completely abolished by TC=0.05s. When
required, preservation of slow potentials can be controlled accordingly.

Figure I-1.2 Influence of filter settings: step-response and EEG example. Low frequency
activity is suppressed by using shorter time constants (after Spehlmann, 1981).

The input range of the amplifier must be sufficient to record the normal amplitude
range of the EEG. However, the amplifier’s range should not be too small as it is often
desirable to identify high amplitude artefact. In this respect, the sensitivity or signal
resolution must be adequately chosen for the application. In the 1980’s, 12-bit sample
resolution was used in most research, whereas modern digital EEG equipment commonly
uses 16-bit precision. For an input range of 2mV (i.e., –1000µV to +1000µV), 12-bit
samples can represent the EEG at approximately 0.5µV resolution (72dB), versus 0.03µV
resolution in 16-bits (96dB).
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I-1.1.4. Practical issues in digital EEG

Standardisation. Digital EEGs are still relatively new for most neurophysiological
laboratories. Standardisation is extremely important to exploit fully all advantages of the
new technology. Standardisation of storage formats will greatly facilitate the exchange of
EEG data (see e.g., Kemp et al., 1992), which will advance the development and testing of
(new) algorithms. An outline of practical design principles for digital EEG can be found in
Lesser et al., 1992 (but also in: Gorney, 1992; Burgess, 1993). Some of these issues will be
highlighted below.

Archive issues

Apart from using a standard data format, the amount of data acquired during the
recording must not be overlooked. A one-hour recording of 2 channels, 16-bit EEG at
100Hz sampling rate already results in 1.4 MB of data. A sleep investigation of 10
channels of 250Hz over a 10-hour period yields approximately 175MB. The archive
systems (e.g., digital archive tape or a compact disk production unit) and infrastructure
(computer network) must be dimensioned appropriately to handle these data streams.

Although the cost of archiving is ever decreasing per unit of storage space, data
compression may be needed for economic use of available capacity in a specific
environment. An excellent comparison of compression techniques by Antoniol and
Tonella (1997), shows that in a 20 channel 8-bit 128Hz EEG recording a reduction of up to
58% is possible. This compression allowed them to send the data in real-time over a
relatively low-performance telephone line, thus reducing cost of transmission time.

Visualisation of the EEG

The convenience of paper is often overlooked in the transition of EEG ink-writer
recorders to a paperless, digital computer system. As obvious as it may seem, paper is
one universal medium, allowing for high contrast, high resolution viewing. Display
resolution on the computer screen should be as high as possible (e.g., at least 1280x1024
pixels for simultaneous display of ±10 channels) to approach paper resolution (Risk,
1993). Of course, paperless EEG has major advantages over paper because the user can
zoom in on the data both in time and resolution. Display programs should at least allow
for this horizontal and vertical zooming.

Reduced display resolution clearly affects the visibility of high frequencies in the EEG
(Hirshkowitz and Moore, 1994). The display routine may need an anti-aliasing filter for
proper data display; otherwise condensed display of data may result in spurious ‘down-
sampling’ errors because of reduced pixel resolution.

Facilities such as automatic paging (forwards and backwards in time) are highly
recommended for convenient browsing through the data (see e.g., Collura et al., 1993;
Thomsen et al., 1997). Preferably, these facilities should be available in real time during
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the recording. To overcome computational overload and to reduce the risk of data loss,
most recording systems dedicate one computer to the on-line display of data while using
another for signal manipulation (menu/algorithm selection; Lesser et al., 1992). A useful
feature of digital EEG is that it allows for redefinition of the electrode derivations. For
instance, storing all channels with respect to a common average reference (discussed on p.
12) allows for recalculation of any derivation in retrospective analysis. This can be used to
enhance certain characteristics in the EEG or to reduce the visual effects in the display of
some artefacts, e.g., in topographic mapping of the EEG (Duffy et al., 1994).

I-1.2. EEG ARTEFACTS

In this section, the different types of EEG artefacts are classified by their source of
origin. Although in general we can recognise and distinguish artefacts of physiological
origin, one should keep in mind the possibility of artefact mimicking EEG activity. For
instance, part of the frequency characteristics of muscle artefact lie within normal EEG
frequency range. Conversely, in electrocorticography, true brain activity on the cortex
may seem artefactual (Barlow, 1986b).

I-1.2.1. Artefacts of non-physiological origin

Electrode artefacts

Electrode artefacts are more frequent when the electrode impedance increases during
the recording of the EEG. Therefore, electrode impedance must be kept low throughout
the measurement (p. 11). Electrode attachment, conductive gel and glue are always first to
be checked when artefacts occur. But also the electrode head box (or jack box) and
electrode leads are possible sources of artefact. Leads should not be curled and not be
touched during the recording. Artefacts from poor connections are observed more
frequently in ambulatory ‘cassette’ EEGs (Jayakar et al., 1985).

Electrodes (leads) may pick up 50Hz (or 60Hz) sine wave patterns from the main
power supply or other equipment, thus obscuring the EEG. Somewhat less severe mains
interference is often caused by unequal electrode impedance at different positions, or by
improper grounding of patients (Spehlmann, 1981). However, correct grounding may
conflict with electrical safety regulations in some situations, e.g., in the operating room.

A characteristic artefact is the ‘electrode pop’, which is due to a sudden change in
electrode contact resulting in a sharp spike in the recorded signal. A special filter can be
developed to eliminate these artefacts, which resemble the calibration pulse of the EEG
amplifier (Barlow, 1986a; see Figure I-1.3). This involves detection of the sharp leading
edge, measurement of its amplitude, and subsequent subtraction of a generated
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waveform of equal amplitude. However, the correction circuitry could trigger also at
other spike-type EEG activity, introducing spurious new ‘pops’ in the signal (Barlow,
1986b).

DC drift, or base-line swaying artefact, is either related to changing electrode
impedance or caused by movement of leads. Most often this causes very low frequency
patterns in the recorded EEG, and therefore may be adjusted by (temporarily) decreasing
the time constant of the recording equipment (when other adjustments failed). This is not
an option of course, when focusing on slow potentials in the EEG.
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Figure I-1.3 Example of electrode ‘pop’-artefact: a sudden sharp edge in the recorded
signal, followed by an exponential decay, obscuring the EEG.

Equipment artefacts

A whole range of electrical apparatus can cause mains interference when electrical
shielding or grounding is insufficient. Care has to be taken in the placement of patient
and equipment, shielding for existing and possible electrical fields. Notorious are
fluorescent lights, even worse when under variable intensity control. The electrical field
around power cables, transformers, and antenna-equipped devices can possibly be picked
up on electrode leads. During surgery, electrocautery by the surgeon generally causes
high amplitude, high-frequency artefact in the EEG, rendering the signal useless for
interpretation. Special cables, leads and filters can be used to reduce (50/60Hz)
interference artefact, especially when wires must be placed in the vicinity of other
equipment (Straw et al., 1967; Van der Weide and Pronk, 1979; Ferdjallay and Barr, 1994;
Stecker and Patterson, 1996).

Other machinery, e.g., respirators, perfusion pumps, and other (mechanical) actuators
such as flush devices, cutting, drilling, suctioning, rubbing and washing can cause
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(rhythmic) artefacts. Sims and colleagues (1973) already demonstrated that artefact from
the respirator can be extremely variable in form, and can mimic for instance EEG ‘burst’
activity in a pattern called ‘burst-suppression’ (also see Klass, 1995).

In an intensive care environment EEG recordings can be troubled by the intravenous
(i.v.) line, or by recurring measurements such as regular blood pressure checks. An
intravenous infusion bottle can cause ‘drip’ artefact in the form of spikes in the EEG. This
is most probably caused by a static charge on the i.v. fluid, resulting in a (small) electrical
vibration upon each drop of the liquid. Grounding of the metal i.v. needle may diminish
this artefact (Barlow, 1986b), however, as mentioned above, this may conflict with safety
regulations.

Interference artefact can also be caused by mobile phones near the EEG recording
equipment. Increased transmission power (e.g., phones of 5 Watt) necessitates a safe
distance of at least 2 meters (Robinson et al., 1997).

Spikes may be introduced by malfunctioning recording equipment, especially when
high sample frequencies are used and data acquisition boards have to operate at
performance limits. Usually such spikes are relatively easy to detect, and can be
eliminated from the recording by interpolation of the signal values immediately
preceding and following the spike (Cluitmans et al., 1993).

I-1.2.2. Artefacts of physiological origin

As a general observation, physiological artefacts are greatly reduced in relaxed
subjects. Proper patient information and a comfortable environment help to reduce
muscle tension and anxiety.

Muscle artefact

Large signal disturbances can occur in the EEG from muscle activity, i.e., movement of
the head, body and limbs, or from tension in the facial muscles, or from the tongue or jaw
(e.g., clenched teeth, Keeney, 1981). While undesired movement of a subject in an
experimental setting can be prevented mostly by clear instructions, involuntary
movements or anxiety are often difficult to suppress (e.g., muscle tremor, shivering).
Sustained muscle artefacts are caused by muscle tension in the face (e.g., frowning), neck,
and also on the scalp (smaller in amplitude), or by repetitive actions such as talking, or
chewing and swallowing while eating (large amplitudes).

Artefact caused by voluntary movement of the tongue (glossokinetic artefact) can
generate a negative shift at the vertex of the scalp of 100µV. Brief muscle artefacts are
caused by muscle twitches or brisk movements (Barlow, 1986b; Klass, 1995).
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Figure I-1.4 Example of muscle artefact: chewing.

Eye movement

The eye acts like an electrical dipole in EEG recordings, being positive at the cornea,
negative at the retina. Eye-artefacts are most prominent during REM sleep (§ I-1.4.1), but
can also contaminate the EEG during drowsiness or light sleep. In awake state, blinks of
the eye consist primarily of eyelid movement, which causes less significant artefact than
movement of the eyeball. However, rhythmic activity (alpha range) can be observed in
the EEG because of fluttering of the eyelid.

Eye movements cause a characteristic pattern in the EEG (see Figure I-1.5), consisting
mostly of low frequency activity, and is distinctly observed in the EEG recorded from
anterior (especially prefrontal) positions on the scalp. Recording of the EOG (electro-
oculogram) using electrodes close to the
eyes can be used as a reference, or,
when not available, electrode positions
F7, F8 may be used to ascertain
detection of suspected eye artefact
(Klass, 1995).
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1 secondFigure I-1.5 Eye movement artefact in the
EEG (position F7, common average reference).
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Cardiovascular activity

Electrical activity from the heart can appear in the EEG, especially during recordings
of very low voltage. Simultaneous recording of the electrocardiogram allows for the
recognition of cardiac artefact in the EEG. Very sharp spikes can be observed from
stimulation pulses generated by cardiac pacemakers (Brittenham, 1990).

Artefacts originating from the heart or circulatory system are sometimes caused by
inadequate electrode placement. It is picked up more easily in the EEG recorded from
wide inter-electrode distances, especially across the head to the left ear, and in subjects
with short necks. Alternative reference electrode placement can be used to reduce this
type of artefact (Barlow, 1986b; Spehlmann, 1981).

Respiration effects

The actions of the respiratory system can also cause some low frequency artefact in the
EEG signals as recorded on the scalp because of the rhythmic movement of the chest,
neck, and head. When using nasopharyngeal electrodes (inserted through the nasal
cavities, for the localisation of an epileptic focus), rhythmic, fast activity artefact can be a
major problem because of vibrations in the soft tissues near the electrode  (Barlow, 1986b).
The influence of respiration on the EEG is larger in small children. Excessive artefact from
respiration effects may be observed during snoring.

An unusual, respiration related artefact was observed by Sahota et al. (1993) in the
recording of a comatose child: semi-rhythmic activity of 5-7Hz occurred because of
vibrations in the endotracheal tube of the ventilator system attached to the patient.

Skin impedance

Sweating is the main cause of the artefacts in the EEG originating from changes in skin
impedance (electrodermal artefact). Sweat can also affect the conductive properties of
electrodes through dissolving of the electrode gel. In the recorded signal on the scalp this
will cause lasting effects when the electrode impedance eventually becomes too high (e.g.,
interference artefact, or slow rhythmic swaying of the base-line DC levels).

The effects of sweating can be reduced by adequate preparation of the skin before the
procedure, and by recording in a comfortable position, in a cool environment (not too
cool, because of risk of shivering). During sleep, ‘base-line shift’ artefact can also be
associated with arousal (Barlow, 1986b).
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I-1.3. EXISTING METHODS FOR ARTEFACT DETECTION

I-1.3.1. Time domain analysis of the EEG

Amplitude histograms of the EEG often show a symmetrical, essentially Gaussian
distribution. The characteristics of Gaussian distribution can be summarised by
calculating the amplitude mean and variance, and skewness (characterising symmetry) or
curtosis (‘flatness’) measures, which can be used to detect different types of EEG or
artefacts (Bronzino et al., 1980). Rules for artefact detection are often based on amplitude
thresholds that have been determined empirically. For instance, in the research by Flooh
et al. (1982) an artefact was defined as the EEG amplitude exceeding a threshold six times
the average amplitude of the preceding 10 seconds. This was combined with a minimal
duration criterion for detected artefacts to ensure that an artefact was detected in its
entirety. Arvidsson et al. (1977) reached 80% correct detection of artefacts based on 10
EEG features in the time domain. The detection rules were also determined empirically,
and were mainly based on covariances between the calculated features and those
obtained in a previous visual evaluation.

Although fixed amplitude thresholds may be used as a basic procedure, they can be
very unspecific in the identification of certain artefacts (e.g., missed eye artefact at a 50µV
detection threshold: Verleger, 1993). Still, max-min amplitude criteria are often selected
because of simplicity (e.g., Kirkup et al., 1997). Another very basic time domain procedure
for correction of artefacts is subtraction of the average amplitude to correct for DC offset
(at the output of the EEG amplifier) or base line swaying. This must be applied with care
when investigating low frequency phenomena, e.g., in some evoked potential
investigations (see part II of this thesis, § II-1.1.2).

Slope thresholds. Several successful studies were mentioned by Barlow (1979, 1986b) in
which the first derivative or slope, as well as the second derivative was applied in the
detection of fast activity. A slope (also called ‘steepness’) threshold was shown to be
useful in the detection of (muscle) spike artefact (Scherg, 1982b; Cluitmans et al., 1993).
This has been implemented as a simple differentiator circuit (Barlow, 1983), where
filtering of muscle spikes was achieved using a sample-and-hold circuit. This performed
poorly on continuous muscle interference patterns, but its corrective properties could be
improved by using an adaptive algorithm (Panych et al., 1989). A danger of significant
non-linear distortion exists in this method because of excessive ‘hold’ operations.

Other time domain parameters have been defined to capture frequency-related
characteristics of the EEG. For instance, Hjorth’s normalised slope descriptor ‘mobility’ is
calculated as the standard deviation of the first derivative divided by the amplitude
standard deviation. The first and second derivatives are used to calculate a ‘complexity’
measure, which can be interpreted as an estimate of signal bandwidth (Hjorth, 1970). The
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descriptors are also related to the technique of computing and analysing the ‘zero-
crossing’ frequency of the EEG (Saltzberg and Burch, 1971). In spite of their relative
simplicity, Hjorth’s and zero-crossing parameters have been useful in the exploration of
prolonged EEG recordings in sleep, critical care and surgery, and can discriminate
between normal and abnormal EEGs (see e.g., Pronk, 1982).

I-1.3.2. Frequency domain processing

Hans Berger already started description of EEG features in terms of rhythmic activity
and frequency. The frequency spectrum of the EEG has been easy to compute since the
publication of the Fast-Fourier Transformation (Cooley and Tukey, 1958; implementation
issues described in Bracewell, 1986, after Hartley, 1942).

Frequency parameters were employed for rejection of artefacts in normal and
abnormal EEGs by Gevins et al. in 1977. Individual algorithms (described in Gevins et al.,
1975) were used to detect head and body movements, large muscle potentials and eye-
movement potentials. The system correctly detected only 65% of the artefacts identified
by the consensus of three experts, versus 85% consensus between experts. The false
positive rate for the computer system was rather high: 44%; however, no statistical
difference was indicated. The investigators considered the algorithms inadequate for
routine application in clinical EEG (Barlow, 1986b).

As shown by Levy (1980b) power spectrum information can be indispensable for the
identification of artefacts: a rhythmic equipment artefact did not reveal itself clearly in
unprocessed EEG traces, but did present a distinct regular pattern of higher harmonics in
the spectrum.

Characteristic frequencies. A parameter that quantifies one aspect of frequency
characteristics is the ‘spectral edge frequency’ or SEF (Rampil et al., 1980), used in
assessment of anaesthesia levels. SEF is defined as the highest frequency at which a
significant amount of energy is present in the EEG (usually calculated at 90-95% of total
power contents). Accordingly, the ‘median peak frequency’ (MPF) is located at the 50%
energy level (see Figure I-1.6). However, the calculation of SEF is insensitive to changes in
lower frequency bands and too sensitive to high-frequency spike activity; hence, it is not
per se a reliable parameter. Both MPF and SEF can show large variances and inconsistent
results (Thomsen et al., 1991; Van de Velde and Cluitmans, 1991; De Beer et al., 1992).
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Figure I-1.6 EEG spectrum characteristics: median power frequency (MPF) and spectral
edge frequency (SEF), at 50% and 95% of the power contents.

Short-time frequency analysis. The EEG power spectrum is usually calculated by
applying frequency transformation to successive epochs of data. Longer epochs provide
better frequency resolution, but then restrict time resolution; and too lengthy epochs may
not be stationary (§ I-1.3.3). An improved time resolution can be obtained by using
alternative short-time calculations, e.g. by shifting epochs forwards in time over short
intervals (Kawabata, 1973: 0.5s). Very short-time shifts (e.g., 10ms) provide improved
recognition in fast changing signals such as EMG (electromyogram) or speech signals
(Hannaford and Lehman, 1986), or in epileptic seizure analysis (Williams et al., 1995;
Shamsollahi et al., 1996).

Filtering

Filtering specific frequency bands from the EEG can be used to reduce muscle activity
or mains interference. Muscle artefact is generally characterised as a (relatively) high-
frequency phenomenon. However, heavy low pass filtering, using a cut-off frequency as
low as 12.5Hz, is necessary to make sure that residual muscle activity can not resemble
EEG beta activity. Obviously, this is not desirable in most recordings, because true beta
activity and spike-type activity will be attenuated or even obscured. Modern adaptive
algorithms can demonstrate very efficient artefact filtering while leaving intact important
EEG features (Panych et al., 1989; Neejärvi et al., 1993; Roessgen et al., 1993). Still,
simultaneous display of unfiltered and filtered signal is always the safest solution for
human interpretation (Barlow, 1986b; Klass, 1995).
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Reduction of mains interference artefact (50/60Hz) by means of filtering should be
used only if other corrective measures have failed. When the interference is persistent and
significantly obtrusive, filtering must be applied. For this purpose, the use of an adaptive
digital notch filter (rather than a fixed notch filter) can be advantageous (Ferdjallay and
Barr, 1994).

Higher order spectra

Deviations from Gaussianity are characterised in the frequency domain by phase
coupling of different frequencies, which can not be detected in the normal frequency
transform (based on the autocorrelation, a second order function). Therefore, the
calculation of higher order spectra is applied for investigation of non-linear behaviour in
the EEG, of which especially the Fourier transform of the third-order correlation function
has received much attention. This transformation is known as the ‘bispectrum’ (Bronzino,
1995).

Higher order spectra have been studied extensively for the identification of non-
linearities in various signals (Cho et al., 1992; Dalle Molle and Hinich, 1995), and can be
useful for the detection of EEG of a transitional nature. For instance, a burst-suppression
pattern in the EEG (see Figure I-1.11, p. 33) is characterised by non-linear phase coupling
of frequencies (Muthuswamy et al., 1999). Also for intraoperative monitoring of the level
of anaesthetic suppression the bispectrum contains useful information. In a comparison
study of a conventional spectrum and the bispectrum of the EEG recorded at three
anaesthetic levels, the latter resulted in better detection of an intermediate level (Watt et
al., 1995: 83% versus 67% correct detection). However, a reliable measure of ‘adequacy of
anaesthesia’ must include a combination of techniques (De Beer, 1996), and in this respect
the bispectrum alone does not provide enough information. This is also illustrated in a
measure known as the ‘bispectral index’, which uses the bispectrum, normal spectrum
and time-domain EEG descriptors, and is correlated with data from a large database (Sigl
and Chamoun, 1994; Todd, 1998).

I-1.3.3. Stationarity analysis

Stationarity

Statistics. Almost all EEG processing is based on parametric modeling of periods in the
EEG time series. The investigated periods should more or less have constant statistical
properties to validate such ‘epoch based’ parameter extraction. We have already seen that
derived features of EEG epochs are often hypothesised to follow a Gaussian, or normal
distribution; this is usually taken as a requirement for stationarity. Different statistics
have been developed to test the hypothesis theoretically, both in the frequency domain
and in the time domain  (Moulines et al., 1993). The latter domain is preferred for
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stationarity testing of short epochs, because of reduced frequency resolution in small
sample sizes.

Testing can be performed by using the Chi-square test, or better, by using a
Kolmogorov-Smirnov test (Lilliefors, 1967). The Shapiro-Wilk statistic (1965) provides
even stricter testing of normality (Shapiro et al., 1968; Gasser, 1975). Weiss (1986) again
modifies and advocates a test procedure using Kolmogorov-Smirnov.

In signal theory, stationary stochastic processes are defined as processes whose
statistics do not change in time (Cohen, 1995). Theoretically this can only be tested in an
‘ensemble of (multiple) realisations’ of the same process, and can therefore not be
implemented in a real-life signal. In order to overcome the impossibility of ensemble
testing, the signal is often assumed to be ‘ergodic’. Ergodicity relates to processes in
which every sequence or sizeable sample is equally representative of the whole. In
practical terms, we can say that a stationary signal must have several time-invariant
properties, requiring explicitly more than just one feature to describe the EEG signal
(Salden, 1997). Apart from the standard statistical tests, the use of customised signal
features provides a more pragmatic approach towards stationarity testing. We will
further investigate this approach in chapter I-3.

Epoch length. An important issue is the choice of epoch length for appropriate
processing of the EEG signal. The number of samples available in an epoch is of influence
on the test for stationarity, because of varying interdependence between adjacent
samples. Increased independence among cortical neural generators (less synchronous
activity) may be related to increased Gaussian ‘noise-like’ EEG as recorded on the scalp
(Elul, 1969).

Short epochs (1-2 seconds) are advised for EEG processing as best guarantee for ‘wide-
sense stationarity’ (McEwen and Anderson, 1975), especially when using low sample
frequencies (Persson, 1974, 1977; Fang et al., 1987).

Autoregressive modeling

Autoregressive (AR) based modeling estimates the linear correlation to preceding
samples of a discrete time series st which can be expressed as:

st  =  ( a0 + a1st-1 + a2st-2 + … + apst-p ) + et (I-1.1)

(a0: DC-offset; a1 .. ap: AR coefficients; et: residual error at time t)

Zetterberg (1969) was the first to introduce AR models for EEG representation, and
indicated that a model of order p=5 is already sufficient to give an accuracy of 5% in the
AR parameters. Gersch (1970) showed that AR modeling can be used to obtain the
frequency spectrum, providing improved resolution over other frequency transforms
(Fenwick et al., 1971), where higher orders (p=10) should be used for optimal accuracy
(Jansen et al., 1981a). Prefiltering of specific bands can further enhance peaks in the AR
spectrum estimation (Narayana Dutt, 1994).
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Normality of the EEG signal can be investigated from the residual errors already when
using first or second order AR estimation (Pierce, 1985). Testing of residuals of a (very)
high order AR model (p=30) was used in a more recent study to verify normality in EEGs
obtained during anaesthesia (Bender et al., 1992: using the Shapiro-Wilk statistic).

AR models describe the EEG at least as good as non-linear methods (Blinowska and
Malinowski, 1991). Already a few spectral estimates or simple distance measures,
calculated from successive AR estimations, can be sufficient for the detection of EEG
changes (Goel et al., 1994; Kong et al., 1997, 1999). AR methods are very good at detection
as well as simulation of non-stationarities (Vachon et al., 1978; Kaipio and Karjalainen,
1997), and are therefore appealing for use in EEG validation studies.

Algorithms using autoregressive modeling can be implemented in numerous ways.
This includes the generalised moving averaging (ARMA) model, where the error term et

is also included in subsequent estimations:

st  =  ( a0 + a1st-1 + … + apst-p ) + ( b1et-1 + … + bqet-q + et ) (I-1.2)

Adaptive AR models such as the Kalman filter update the coefficients for every sample
and are therefore also applicable to non-stationary data; this method is computationally
more expensive and produces more data than consumed (Pardey et al., 1996).

I-1.3.4. Other artefact detection techniques

EEG classification

An adaptive segmentation of the EEG into ‘elementary patterns’ can be achieved using
a spectral error measure (SEM) derived from an AR model (Praetorius et al., 1977). This
was later extended into a complete clinical system that graphically summarised
characteristics of EEG activity based on clustering of segments (Bodenstein et al., 1985).
The SEM method was not designed to indicate artefacts directly, but it can be used to
detect for instance eye artefact (Dunstan and Marshall, 1991). A useful complementary
screening program was developed by Krajca et al. (1991), which conveniently assists in the
visual inspection of (over-)detected features.

Artificial intelligence (AI) and neural networks. The method used by Krajca included a
fuzzy algorithm, allowing imprecise class descriptions, to obtain improved clustering of
segments. An AI approach using fuzzy rules was already suggested by Jagannathan et al.
(1982). Earlier, his group obtained an 80% agreement with visual classification in sleep
EEG using AR modeling on 1s segments (Jansen et al., 1981b). They added an artefact
detection step (heuristic rules) that was quite successful in recognising ‘low frequency’
artefacts (Jansen et al., 1982).

Another classification method is modeling through artificial neural networks (ANN).
In ANNs, non-linear processing elements (PEs) are interconnected with weight factors in
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different (hidden) layers. The application of ANNs is foremost in pattern recognition or
prediction tasks, and in process control. When well managed, and by exploring the inner
structures, they can also be applied to gain insight in multivariate data (Van Gils et al.,
1997a). ANN methods are often computation intense, and extensive training is needed in
order to provide robust results. However, ANN structures can be used to simulate EEG
waveforms, where up to thousands of PEs are needed to simulate epilepsy or awake
EEGs (Mukesh and Nadkar, 1997). One particular system used ANNs for identification of
artefacts (Wu et al., 1997). However, this system was not tested on clinical EEG.

Wavelets. Wavelet analysis is successful where the time-frequency relationship is
critical for optimal characterisation of waveforms. Where conventional Fourier
transformation decomposes a signal in a sum of sine and cosine functions, a family of
orthogonal Wavelet templates can focus on specific transient features (Thakor and
Sherman, 1995; Bruce et al., 1996). For example, Wavelet analysis has been successful in
the detection of epileptic spikes (Clark et al., 1995). Wavelet techniques are mostly used
for detection of known waveforms in a noisy background signal.

Multichannel correlation analysis

Simple computerised correction of eye artefacts can be performed by subtraction of
special EOG channels in other channels (see e.g., Barlow, 1986b). However, one must
recognise the fact that the EOG reference signals can contain different types of eye
artefacts (vertical, horizontal movement, blinks), or an EEG component that can be
subtracted inadvertently from correlated EEG activity in other channels. Low pass pre-
filtering of the EOG trace may enhance the robustness of these methods.

Successful correction of characteristic eye artefacts requires synchronous recording of
multiple EOG channels, sometimes combined with a calibration phase (Van den Berg-
Lenssen et al., 1989; Brunia et al., 1989). Other interesting techniques include ANN
estimation of filter coefficients (Sadasivan and Narayana Dutt, 1994), eye source-
waveform estimation from the EEG and subsequent subtraction (Berg and Scherg, 1994),
or extraction of EEG components by independent component analysis (Vigário, 1997).

Multichannel signal processing has been found especially useful in epilepsy, for
background EEG cancellation (James et al., 1997), or to improve detection of characteristic
spikes (see e.g., Glover et al., 1989). This will be discussed in the next section, § I-1.4.2.

Reference signals

A subtraction method can be applied to reduce ECG artefact, similar to EOG
subtraction as mentioned above. The relatively regular occurrence of the heart signal, as
well as its more consistent waveform, makes it easier in principle to correct this artefact in
the EEG. However, artefacts in the ECG recording can dramatically alter the EEG during
‘correction’. Subtraction of a template ECG-complex (or average of preceding waves),
using correlation analysis is preferable (Barlow, 1986b). This method was particularly
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successful when processing all signals in digital instead of analogue form (Nakamura et
al., 1990).

Subject behaviour and environment. Other artefacts may be detected outside the realm of
(EEG) signal processing. Practical solutions may be found from less than obvious sources.

In sleep recordings, the simplest form of artefact recognition (and ‘elimination’:
Barlow, 1985) is the detection of excessive movement by means of an accelerometer. Such
a device is also recommended for monitoring of body position in the investigation of
snoring (Bloch, 1997), where sound analysis can identify the different types of snoring
(Fiz et al., 1996). When respiration monitoring is not possible or less reliable, a procedure
using a microphone could possibly help to pick out these artefact-prone periods.

Diverse types of artefacts have been reported from diverse causes: e.g., sobbing,
nystagmus (oscillation of the eyeballs) causing saw-tooth waves, etc., even lightning and
earthquake artefacts (Keeney, 1981; Klass, 1995).

I-1.4. ISSUES IN CLINICAL EEG PROCESSING

The field of clinical EEG is too broad for a comprehensive review of all related data
processing. Selected issues are briefly discussed below, focusing on general procedures
and techniques that are relevant to signal validation or artefact detection.

I-1.4.1. Sleep research

Polysomnography is usually performed over the duration of an entire night, or at least
6.5 hours, in order to investigate normal and disturbed sleep or vigilance (Bloch, 1997).
The most widely used standard for terminology and scoring of sleep stages is the manual
by Rechtschaffen and Kales (1968), that facilitates the comparison of data among centres.
A standard summary method is the hypnogram that graphically represents sleep stages
in 20-30s epochs. Distinct signal characteristics define the different stages: awake, light to
deep sleep (NREM1-4), and REM sleep (‘rapid eye movements’, associated with
dreaming). Apart from the EEG channels, recording typically includes the EOG, EMG
(chin), ECG, temperature, SpO2 (oxygen saturation of the blood, recorded on the finger),
respiration signals, as well as movement or body position.

Processing of sleep recordings requires elaborate training and is time consuming and
expensive. No generally accepted standard exists for automatic sleep staging, but
computerisation can improve efficiency and reduce cost when the entire laboratory is
well organised and well geared towards the procedures involved (Doman et al., 1995;
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Kemp and De Weerd, 1996). International standards may be developed through intense
collaboration between laboratories (Kemp, 1993; Dorffner, 1997).
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Figure I-1.7 Hypnogram: graphical display of sleep stages, based on manual EEG scoring
in pages of 30 seconds (approximately 1,000 pages in this hypnogram).

The procedures and diagnosis involved in sleep disorders are very diverse. One of the
most common and alarming disorders is obstructive sleep apnea (OSA), where breathing
can stop for lengthy periods of time, and then recommences abruptly. Disturbances in the
quality of the EEG channels can be observed in snoring, during periodic leg movements
(restless leg syndrome), grinding of the teeth (bruxism), or caused by other physical
spasms. However, as these are the phenomena under investigation in the first place,
investigators speak of sleep ‘events’ rather than ‘artefacts’. This indicates that a
computerised validation method will probably also detect both artefacts and ‘events’,
therefore requiring additional (human) evaluation to discriminate between the two.

Objective detection of subtle EEG changes caused by drowsiness is the subject of
studies on vigilance levels. Several methods use human EEG inspection as a starting point
to define wakefulness and drowsiness in terms of amplitude and frequency features. Such
systems have reached adequate detection performance (90% correct classification of
vigilance level), and have been suggested as computerised assistant tool (Värri et al., 1992;
Nakamura et al., 1996). However, the detection of artefacts or a specific type of activity is
still more difficult. For instance, the agreement between computer and human scores for
prominent alpha activity reached only 79% (Hasan et al., 1993).

Development of automated processing methods in sleep may be complicated because
of non-linear characteristics of the EEG, as some researchers have indicated (Pradhan et
al., 1995). Non-linear methods are possible, and have physiological meaning, e.g., when
studying the macroscopic aspects of sleep using Markov models (Kemp and Kamphuisen,
1986). Others have found non-linear effects to be significant only when investigating
relatively long EEG segments (e.g., >20s, Fell et al., 1996). Linear prediction schemes have
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been used successfully in short epochs to investigate sleep EEG. For example, Aufrichtig
and Pedersen (1992) used AR models for the characterisation of different types of sleep
EEG, using an optimal model order p of 14 in 5s epochs. They also indicated that a lower
order would be sufficient for shorter epoch lengths. In different states of sleep, optimal
model orders have been found as p=6 for wakefulness, p=5 in REM sleep, p=3 in deep
sleep, using 1s epochs (Pardey et al., 1996). So although EEG processing during sleep is
difficult, the use of short epochs may reduce the need for all too complex models.

Figure I-1.8 Typical computerised processing of sleep signals consists of automatic
detection of ‘candidate’ sleep events and artefacts (e.g., upper channel), requiring subsequent
manual identification to improve the reliability of results (from Kemp and De Weerd, 1996).
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I-1.4.2. Epilepsy: spike detection

Epilepsy is a neurological disorder in which epileptic seizures recur because of a lasting
cerebral abnormality. During a seizure, motor control and mental capacity is disturbed.
In patients suffering from epilepsy, diagnosis is based on analysis of epileptiform
discharges (EDs) in the EEG. The type, location, and frequency of occurrence of ED
waveforms are of primary concern in the clinical investigation.

Figure I-1.9 Epileptic seizure activity: synchronous spike and wave complexes in the EEG
(from Spehlmann, 1981).

Lengthy recordings and relatively few seizures are typical of epilepsy monitoring. As a
consequent, a major interest in computerisation is data reduction and automatic detection
of epileptiform discharges, in order to speed up the clinical process of data reviewing.
The practical issues in the implementation of such visualisation tools are discussed in
Collura et al. (1993), and also in Park et al. (1990), focusing especially on easy comparison
of algorithms.

Time domain processing. Gotman (1982) was among the first to implement a system for
the automatic recognition of spike-and-wave activity in the frequency range of 3-20/sec.
Sixteen channels of EEG were cut into 2s-epochs, in which “half-waves” were identified
from extrema in the signal in order to eliminate small amplitude superimposed on fast
activity. Subsequent classification was based on average and variability of half-wave
duration. The system showed a relatively large number of false detections, which was
partly due to artefacts, but already detected an important proportion of the epileptic
seizures.

Detection of epileptic activity can be improved by more detailed definition of
waveform morphology in terms of amplitudes and durations for spike-and-sharp-wave
complexes (SSWs). An example parameter-set is depicted in Figure I-1.10. A multichannel
approach can combine spatial and temporal information and identify the most likely
SSWs from multiple candidate-SSW detections in more than one channel. False detections
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can then be recognised from a too dense
occurrence of candidate SSWs (Glover et al.,
1986). Additional context information can be
incorporated through detection of synchronous
SSW, EOG or ECG activity, which further
reduces the number of false detections (Glover
et al., 1989).

A computer system by Pietilä et al. (1994)
classified segments of epilepsy-EEG based on a
large set of amplitude and frequency features.
This system showed a higher sensitivity than the
original Gotman system: 31% versus 17% correct
detection, but specificity was generally poorer.
Here, the overall low performance (of both
systems) was mainly due to artefacts and the

occurrence of a lot of small amplitude spikes in some of the patients. Context based
processing of spikes and artefacts, i.e., detection relative to the state of the EEG, has been
incorporated in a more recent version of the Gotman system. For instance, the occurrence
of eye blinks is typical for wakefulness (Gotman and Wang, 1991). The number of true
detections was raised to 67% (was 41%), and the number of false detections was reduced
to 27% (was 56%) (Gotman and Wang, 1992).

Successful incorporation of spatial and temporal information has been shown in an
expert system approach by Dingle et al. (1993). The system’s performance was evaluated
versus only one human expert, but yielded 95% true detection at 59% false detection,
showing a very low rate of 0.29 falsely detected EDs per hour (Jones et al., 1996). Further
improvements are investigated by using artificial neural networks (ANNs), for both
filtering of EEG background (James et al., 1997) and spike classification (James et al., 1996).
Enhancement of epileptiform activity from deep sources may be incorporated in the
system through an advanced spatial filtering technique (Ward et al., 1999).

Subjective clinical classification. A problem in the evaluation of different approaches is
the inter-expert variability. Different styles for human scoring of EDs may be modeled in
a computer program using ANNs (Webber et al., 1994). However, this does not advance
the objective detection of spikes, since human experts perform far from perfect. For
instance, around 80% inter-expert correlation is prevalent in most studies (e.g., Wilson et
al., 1996); but an intra-expert reproducibility as low as 53% has been observed (one expert,
two scoring sessions of identical data: Hostetler et al., 1992). And in a study for
classification of different types of seizures, three experts agreed on only 37% of cases, and
disagreed on 17%. Processing of these seizures by an expert system resulted in correct
classification of approximately 80% of consensus cases (Korpinen et al., 1994; Benlamri et
al., 1997).

       A1
A2

T1

T2

T(A1) T(A2)

Figure I-1.10    Spike characterisation:
amplitude and duration parameters
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Alternative assessment techniques. Generalised investigation of seizures and outcome
prediction of surgery may be performed by monitoring of intracranial EEG. Display of
spectral parameters (including Hjorth’s) during the surgical procedure can be effective,
however, still requiring expert assessment (Alarcon et al., 1995).

An interesting method for separating slow activity and spike-type activity is the use of
Principal Components Analysis, where different ‘PCA states’ are obtained from the EEG
signal (Vaz and Principe, 1995). Alternative frequency domain detection of spike activity
can be performed by means of Wavelet analysis (Clark et al., 1995). Other time-frequency
techniques are discussed in Williams et al. (1995); some nice examples during seizures are
also shown in Shamsollahi et al. (1996). However, analysis of the highly graphical time-
frequency plots calls for new skills in display interpretation; studies are still mostly
explorative.

I-1.4.3. EEG monitoring in critical care

Patient monitoring in the operating room (OR) or intensive care unit (ICU) involves
many other clinical procedures, affecting the quality of EEG recording. Specialised topics
like neurosurgery are beyond the scope of the current text.

Procedures for recording and processing

EEG monitoring during surgery or in ICU monitoring must follow regulations for
electrical safety (discussed in Hull, 1994). Also from a recording perspective, demands on
equipment and artefact processing are more strict in critical care environments. For
instance, during electrocerebral inactivity, voltages can be as low as noise levels (Barlow,
1986b; Spencer, 1994).

Precautions for the prevention of electrode lead artefacts have been mentioned earlier
(§ I-1.2.1), and are also important here in view of increased staff mobility near the patient.
However, it is impossible to prevent all artefacts during the time of patient preparation,
intubation or extubation. Electrode-to-scalp contact is affected when exposed to skin
preparatives or other solutions used on the patient; using a plastic wrap over the
electrodes can prevent this (Hanley and Charlton, 1982). Other effects are mostly due to
specialised procedures or equipment interference.

Even more than in other applications of EEG monitoring, one must be aware of the fact
that on-line monitoring of the patient’s state in critical care environments cannot be
performed using one single method or parameter. Because of interaction between
different physiologic systems, methods, signals and other clinical data should be
integrated (Van Gils et al., 1997a, 1997b; Mainardi et al., 1997).

The usefulness of EEG monitoring, in addition to routine monitoring of vital signs, has
been shown during cardiac surgery, carotid endarterectomy, neurosurgery, spinal
surgery and intensive care. When the number of EEG channels is restricted by practical
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constraints, at least two channels at symmetrical positions near centre and middle of the
scalp should be included. Apart from providing relevant EEG information, these
positions show the least number of artefacts (e.g., bipolar channels C3-P3 and C4-P4,
Schultz et al., 1992). Evoked potentials (EPs) can be recorded in combination with EEG for
monitoring of specific nerve pathways at risk, and are increasingly important for clinical
patient monitoring (Pronk, 1986; De Beer, 1996). Evoked potentials will be discussed
further in part II of this thesis.

Any (display) technique should allow for EEG characteristics to be compared over
relatively long periods of time, e.g., 5 minutes, while keeping good time resolution (Levy,
1984). Constant monitoring of electrode impedance will help in the prevention and
identification of artefacts (e.g., Levy et al., 1980a).

Monitoring applications

Although anaesthetic and analgesic drugs are aimed at functional depression of the
nervous system, patient monitoring in anaesthesia and critical care still does not routinely
include the EEG! However, the use of different drugs is a major difficulty in the general
applicability of EEG monitoring, since all drugs act differently on the nervous system and
result in different changes in the EEG (Romer, 1986; Spencer, 1994). The quality of EEG
monitoring and its interpretation heavily depends on the experience of dedicated staff
members, who should be trained in both anaesthesia and clinical EEG (Williams et al.,
1985).

Unusual patterns in the EEG can be observed, often related to the ongoing clinical
procedure. General slowing of EEG activity is observed during hypothermia below 35°
centigrade, hypoxia (low O2), or hypocapnia (low CO2). EEG depression can also occur as
a result of extreme hypercapnia, whereas just a slight CO2 increase can excite the EEG.
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Figure I-1.11 Example of burst-suppression: alternating periods of activity and ‘electrical
silence’ in the EEG. Either period can occur as a few seconds up to several minutes.

An alternating pattern of (relatively normal) EEG activity and ‘flat’ EEG is known as
burst-suppression (Figure I-1.11). Burst-suppression is considered to represent reduced
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cortical neuronal metabolic function, and has been observed in failure of oxygen supply
to the brain and in (dose-related changes of) various anaesthetic drugs (Spencer, 1994;
Prior, 1996). A burst-suppression pattern may be recognised easily from a (processed)
EEG display, and can be detected for instance by tracking the inverse of signal variance
(Van Gils et al., 1997b). However, robustness in automatic detection is difficult to achieve
because of the diversity of different manifestations of burst-suppression (Akrawi et al.,
1996; Litscher and Schwartz, 1997).

Spectral analysis. EEG monitoring of patient status in the OR or ICU has focused on the
investigation of EEG spectral features. This can be accomplished using a cascaded
(‘waterfall’) spectrum display called compressed spectral array (CSA, by Bickford, 1950;
Bickford et al., 1972), where spectra are plotted behind one another to allow for tracking of
spectra in time. An alternative display was designed for better time resolution in the form
of the density spectral array (DSA, by Fleming and Smith, 1979), but neither CSA or DSA is
favourite (comparison in Levy et al., 1980a). These techniques can be useful in the
identification of major changes of the state of the patient (Young and Ornstein, 1985), but
are less suited for the detection of important EEG features of short duration. Moreover,
the CSA or DSA introduce an additional display that requires a great deal of attention in
an already intense monitoring environment. In comparison, the cerebral function analysing
monitor (CFAM) shows a processed trend display that compactly summarises the most
important, clinically relevant information. The CFAM display is optimised for
comparison of channels, amplitude and frequency information, and better suited for
detection of periods of EEG suppression (Sebel et al., 1983; Prior, 1996).

Autoregressive (AR) spectral measures have also been found useful, e.g., during
neurosurgery, and should be considered as a potential application for long term
monitoring to detect EEG changes, including transients and non-stationarity (Cerutti et
al., 1986). For instance, a fifth order AR model could reliably discriminate between levels
of thiopental/enflurane anaesthesia in a study by Bender et al. (1991). EEG monitoring of
more subtle changes in anaesthesia levels proved successful both in the CFAM system
and in an AR-based hierarchical clustering system (Thomsen et al., 1991; Thomsen and
Prior, 1996). Further quantitative evaluation of these, and other studies of ‘anaesthesia
levels’ is complicated because of the use of different drugs, and because of disagreement
between neurologists even in the interpretation of ‘stable/unstable’ EEG during
anaesthesia (Hinrichs et al., 1996).
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I-1.5. DISCUSSION

I-1.5.1. General considerations

This chapter described the many aspects of artefact prevention and detection in the
EEG. Above all, artefacts should be prevented by high quality standards in both equipment
and recording procedures. Removal, i.e., correction by filtering, of artefacts may be
applied only for artefacts having frequency components outside the frequency range of
the EEG. Specific artefacts and those that can be monitored on a separate channel (eye
artefact, or electrical heart signals) may be removed from the EEG successfully. However,
most artefacts present themselves within the same frequency range and some can even
mimic EEG activity. Therefore, artefact removal should be considered only in situations
where rejection is no option. Moreover, the occurrence of artefacts can reveal useful
clinical information (Barlow, 1986b). For example, movement/muscle activity or eye
artefacts in the EEG of a critically ill patient can actually indicate an improvement in the
status of the patient.

I-1.5.2. Current approach

Proper comparison of different EEG validation methods is difficult because of several
methodological problems. For a start, objective EEG evaluation is hindered by the
subjective interpretation of human experts. Next, different studies use different
definitions, and often consist of incongruent procedures resulting in incomparable results.

Furthermore, the variety of investigations, neurological phenomena, processing
methods, analyses and diagnoses, hampers the design of a universal method for EEG
validation.

From these observations, we cannot expect to reach 100% reliability in the detection of
all EEG artefacts. However, we can investigate the use of several objective methods, and
try to establish some common guidelines. We will strive for objectivity by using statistical
methods for detection and evaluation, while focusing on the accuracy (time resolution) at
which artefact detection should be performed.

Selected methods

Time domain methods seem to be most suitable for the detection of high amplitude
artefact and for the detection of fast activity. Such processing is often based on simple
amplitude thresholds, first and second derivatives. Nevertheless, time domain features
are easy to implement and have been very successful in the detection of artefacts.

Another successful method is AR modeling, which has been shown useful for the
detection of ‘non-stationary’ signals. The AR model parameters contain information about
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the identity of the investigated EEG (or disturbance). Through ‘within model’ inspection
of AR features, objective detection of deviating phenomena may be achieved. As a
supporting fact, in the literature AR methods are often preferred over other (frequency
domain) methods, being applied especially in classification of phenomena that lie within
the frequency range of the EEG.

Focus: time related aspects of EEG validation

Epoch length has not been studied extensively in relation to detection performance of
any method. We will investigate this aspect of signal validation for time domain and
frequency domain detection of muscle artefact. This is one of the most frequent and
obtrusive EEG contaminations. In this study (chapter I-2), we will objectively evaluate the
performance of all processing methods.

Most automatic detection methods try to model the way human experts perform their
visual EEG analysis, i.e., analysis of features/artefacts relative to the current state of the
EEG, the signal context. The selected methods will be investigated in relation to signal
context with special focus on the length of the EEG period that needs to be incorporated
as context (chapter I-3).
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II-1. Evoked Potential Measurements:
Overview and Methods

Evoked potentials are signals that are derived from the EEG. Therefore, disturbances in the

EEG (Part I) can affect the quality of the recorded evoked potential signal. Additionally, the

detection and processing of artefacts in evoked potential measurements have some new aspects

when compared to ‘standard’ EEG measurements. The measurement itself, e.g., the stimulation

technique, may induce artefacts in the evoked potential, or the repetitive character of an

otherwise minor EEG artefact may contaminate the evoked potential signal.

The different types of ‘evoked potentials’ and ‘event related potentials’ are described.

Measurement requirements follow, and some clinical applications are presented. Artefacts and

procedures specific to evoked potential recordings are then summarised, highlighting the

intricacies of recording and processing. The overview continues with signal processing

techniques, mostly related to evoked potential signal quality. The last section describes methods

for correction of eye artefacts, feature recognition and non-linear analysis in evoked potential

research.

II-1.1. EVOKED POTENTIAL MEASUREMENTS

The term ‘evoked potential’ (EP) is used as a general term for an electrical response of
the nervous system that is associated with a sensory stimulus. The signal is usually
recorded to quantify the response of a specific sensory pathway to one particular stimulus
type. ‘Event related potential’ (ERP) is another general name, and is used here to indicate
experiments of a psychophysiological character. ‘Event’ refers to any type of sensory
stimulus, motor action, or cognitive task. Various stimulation schemes are used in ERP
investigations of higher order processing in the brain. Such extended paradigms are used
in fundamental research in cognitive psychology, whereas straightforward stimulation of
one sensory modality is typical for clinical measurements.



Part II - 1

76

II-1.1.1. Inventory of evoked potentials

EP investigations are used to assess conductive properties of sensory and motor
pathways at various locations within the nervous system. In ERP investigations, sensory
perception and cognitive processes are addressed. The investigations often focus on the
measurement of (changes in) characteristic components; these are usually named after the
polarity (Positive, Negative) and latency (ms) of the investigated peak (e.g., N100, P300).

Stimulation modalities

Below, the modalities of the main clinical application areas in EP research are
introduced. Apart from these, other modalities can be stimulated; EPs based on olfactory
(smell), gustatory (taste), and pain stimulation have been reported (Regan, 1989).

Auditory pathways. EPs from the auditory system can be recorded from the scalp by
using clicks, tone pips, or bursts of mixed frequencies. Broadband clicks (wide frequency
range) stimulate a large part of the cochlea, resulting in activation of a large number of
nerve fibres in the acoustic nerve. The frequency characteristics of tone stimuli usually
reflect the optimal hearing range of 300-4000Hz.

Auditory evoked potentials (AEPs) are classified by the investigated post-stimulus time
window, distinguishing short latency (brainstem) components (BAEP: 0-10ms), middle
latency components (MLAEP: 10-50ms) and long latency components (LLAEP: 100-
500ms). BAEP and MLAEP measurements require very short stimuli (e.g., 100µs
duration): when using monaural clicks, masking noise may be presented at the
contralateral ear to reduce the influence of cross-stimulation by skull conduction of the
ipsilateral stimuli. Condensation or rarefaction clicks (auditory stimulation starting
respectively inwards or outwards the eardrum), or different types of earphones can
slightly influence the brainstem response (Deltenre and Mansbach, 1993). LLAEP
measurements are usually recorded using click or tone stimulation. Sound levels are set
usually at approximately 70dB above hearing thresholds for short clicks (Stockard et al.,
1978; Regan, 1989, p. 150-151).

The middle latency components are generated in the medial geniculate body and
primary auditory cortex. Later components are generated in brain areas related to (early)
cognitive processing: the temporal and frontal cortex (Thornton and Sharpe, 1998).

Somatosensory pathways. Somatosensory evoked potentials (SEPs) are obtained by
applying an electrical current to the arm or leg via skin electrodes or needle electrodes
(but can be measured also through natural tactile stimulation). Electrical shocks have a
typical duration between 100µs and 1ms, using lower current levels at longer durations,
e.g., 25mA at 1ms. The response signal passes through the peripheral nerves and the
spinal cord, propagating up to the sensory cortex (mid-central areas). The SEP
components show longer delay times and altered characteristics when recorded farther
from the stimulation site. Such changes can also be caused by nerve lesions. When
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recorded on the scalp, the signal comprises early components from peripheral nerves and
brainstem (<20ms), short- and medium-latency cortical components (20-100ms), the
vertex potential (100-200ms), and an after-discharge. Most common SEP stimulation sites
are the median and ulnar nerves in the arm, the peroneal nerve at the knee, or the tibial
nerve at the ankle.

Early SEP components stem from the dorsal column and medial lemniscus deep in the
brain. Medium-latency components are generated in the thalamus regions and primary
somatosensory cortex; later components originate in the post-central gyrus and frontal
cortex (Thornton and Sharpe, 1998).

Visual pathways. Visual evoked potentials (VEPs) are recorded during visual
stimulation of a subject, using alternating checkerboard patterns, flashes or other
light/intensity patterns. Stimulation is usually presented by means of a television screen,
a panel of light emitting diodes or flash bulbs. Specification and standardisation of visual
stimuli involves a great number of variables, e.g., colour, light-intensity, eye-fixation,
pupil-diameter, distance of light-source, infrared filtering to prevent damage to the
cornea (Regan, 1989).

Even more than in other EP measurements, a large number of different VEP types are
known because of the diversity in stimulation modes. General observations of VEP
signals when compared to other types of scalp evoked potentials are: higher amplitudes
and relatively slow components. A common type of VEPs uses alternating checkerboard
patterns, resulting in a characteristic positive peak at approximately 100ms after the
stimulus (Spehlmann, 1985).

VEP measurements and related functional assessment can focus on different
subsystems in visual processing, including luminance changes, colour vision, and spatial
or motion perception. The corresponding perceptual pathways and neuronal areas have
been studied in great detail. The principal sub-cortical region that processes visual
information is the lateral geniculate nucleus (Kandel et al., 1991). The primary visual
cortex is located in the occipital area at the back of the head, but other regions in the brain
are equally important in visual perception processes (Zeki, 1992).

Event related potentials

ERP measurements are used in the investigation of neurophysiologic correlates of
cognition and attention. This vast topic is beyond the scope of the current introduction;
only a few aspects of higher order processing are highlighted here (after Regan, 1989;
McCallum, 1988, 1997).

ERP measurements are also used to investigate the presence or absence of specific
components or patterns, and are characterised by amplitude and latency. For instance, a
prominent negative peak at about 100ms (N100) is produced after presentation of a sound
stimulus, even when repeated numerous times. Novel and deviant stimuli produce
enlarged amplitudes. A related phenomenon, associated with attentional processes in the
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brain, may be measured when the incoming stimulus and the expectation of the
(preconditioned) subject are mismatched. The resulting ERP shows a more negative
component around 200ms, hence the name mismatch negativity (MMN). Another positive
peak at approximately 300ms can be found in an auditory oddball task, when a subject
listens to a sequence of monotonous tones, randomly replaced by a deviant tone, which
causes a pronounced ‘P300’ component. This can also be measured when the deviant
stimulus is a memorised word in a sequence of words (Van Hooff et al., 1996).

Slower reproducible potential changes can be measured in ERP paradigms designed
for investigation of preparatory and anticipatory processes in the brain. For example, a
slow negative going readiness potential (RP) can be measured prior to (self-paced)
movements and the contingent negative variation (CNV) preceding a signalled
movement. The latter ERP signal is measured in a warned reaction-time task, and may be
related to priming of the brain (in the cortical areas) by the preparation between a
warning stimulus and an imperative stimulus. We will revisit this last example from ERP
research in chapter II-3.

Signal properties

Most of the activity recorded in a typical EP is generally of very small amplitude.
However, EPs recorded within the brain near a neuronal generator site (involved in the
early responses, <40ms) typically result in higher amplitudes (1-2mV) (Jellema, 1993;
Rosenfalck, 1969). The table below does not list the properties of these ‘in-depth’
potentials, but mainly characterises non-invasive (scalp) EPs.

Table II-1.1 General characteristics of evoked potentials: amplitude and frequency
dynamics (after Cohen, 1995).

Type amplitude frequency specifics

Auditory evoked potentials 0.5-10µV 100Hz-3kHz recorded on vertex

Somatosensory

evoked potentials
1-10µV 2Hz-3kHz somatosensory cortex

Visual evoked potential 1-20µV 1-300Hz occipital cortex

Event related potential

(general)
1-50µV 0.2-100Hz

(e.g., P300, CNV*, in
psychophysiology)

* Contingent Negative Variation: see text above

II-1.1.2. General recording methods

In all EP measurements, the signal of interest is superimposed on the ongoing EEG
activity recorded at the electrodes. Therefore, the EP is usually enhanced by averaging a
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number of responses, thus cancelling the ‘background’ EEG that is not correlated to the
stimulus presentation. Averaging and other EP signal processing will be discussed in
detail in § II-1.3; recording procedures specific to EPs are summarised below (also see:
American Electroencephalographic Society, 1984; Spehlmann, 1985; Regan, 1989; general
EEG procedures have been discussed in chapter I-1).

Electrode positioning

The voltage and waveform of an EP depends on the locations of the electrodes, which
are positioned according to the international 10-20 system, or closely related to these
standard positions (example in chapter II-3, p. 118). A widely separated electrode pair is
relatively insensitive to source location, whereas a closely spaced pair is sensitive to both
location and orientation of nearby source(s), and can be used to isolate the contribution of
a weak source. The location of the neuronal generators is also important for the choice of
the reference electrode. A referential average over (all) electrodes can be used only if the
EEG-activity is ‘pseudo-random’ (uncorrelated) over the included positions, which is
often untrue during EP measurements (e.g., Tomberg et al., 1990). When EP activity is
widespread over the scalp, e.g., in short-latency EPs, a non-cephalic reference can be
used. For sources in the outer cortex, bipolar recording from closely spaced electrodes
(using a ground electrode at a distant, neutral position on the scalp) may be preferred.

Amplification, filtering and digitisation

Normal EEG recording uses time constants between 0.05s and 1s (i.e., filtering of DC
components and low frequencies). In the recording of some slow changing potentials as
the contingent negative variation (CNV) true DC recording has been advocated (Regan,
1989).

In equipment for general EP recording, the noise level of the amplifier must not exceed
3µV in the required frequency band of 0.1-5,000Hz. Sampling frequency and filter settings
should take into account the frequency range of the EP under investigation. The dynamic
ranges of Table II-1.1 are only a starting point; when focusing for instance on the brainstem
part of an AEP, high-pass filtering is set at 100-500Hz, and low-pass filtering at 1,600-
3,600Hz (Thornton, 1990), using a minimal sampling frequency of 10kHz (Grönfors and
Juhola, 1995). Digital filters are preferred over analogue filters, because analogue filters
can distort EP components (Spehlmann, 1985; Thornton, 1990; Grönfors and Juhola, 1993).

Equipment for on-line averaging and display should be able to show the ongoing
background EEG together with the averaged waveforms. Where EP measurements in a
difficult clinical setting have minimal requirements of only two channels, topographic
ERP measurements may require up to 128 channels. Sufficient memory and processing
resolution should be available to allow for the averaging of 4,000 trials in BAEP
measurements (American Electroencephalographic Society, 1984). This number is often
much lower in ERP research: e.g., approximately 60-100 trials constitute a CNV average.
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Accurate event recording is important in EP measurements, especially for off-line
processing. An example for encoding the stimulus and event information, correctly
synchronised with the EEG measurement, can be found in the appendix of this thesis.

Stimulus presentation rate

Stimulation order and presentation rate in an ERP task is determined by the protocol
of the experiment (e.g., tone, delay, flashes 2s later, etc.). In functional EP measurements
stimulus presentation is applied at regular intervals long enough to record the response
signal under investigation (e.g., 10/s for 100ms response). Faster stimulation will result in
overlapping response intervals, introducing higher order effects through non-linear
interaction of stimuli/responses (see also § II-1.4.3).

Steady-state potentials. Specific EP components — with sufficiently large amplitude —
can be investigated in a steady-state evoked potential measurement. This is a repetitive EP
waveform whose constituent discrete frequency components remain constant in
amplitude and phase over a prolonged period. During the measurement, a selected peak
is enhanced by accurately synchronising the periodic stimuli with the periodic interval of
one harmonic frequency in the EP. Steady-state AEPs, SEPs, VEPs can be used in
fundamental research of cognition and neuronal processing (Basar et al., 1987; Regan,
1989).

II-1.1.3. Clinical applications of evoked potentials

Guidelines for recording of EPs are very helpful in selection of equipment settings and
techniques. Clinical EEG/EP recording requires the highest quality standards, especially
in surgery and critical care (Levy et al., 1984; American Electroencephalographic Society,
1994a; Prior, 1996). Equipment safety regulations must be checked at all times, in
particular when nerve stimulation is used (Hull, 1994).

One of the main applications of EPs for clinical diagnosis is the objective evaluation of
the functioning of a sensory pathway. A very useful application for instance in audiology
studies is the assessment of hearing loss by examination of stimulus intensity versus
observed peaks in the auditory brainstem response (e.g., Özdamar et al., 1990). Lesions in
a neural pathway can be detected from diminished peak amplitudes, increased latencies,
or even absence of a normal EP component; monitoring for such changes is useful during
surgery where a sensory pathway is at risk. For example, the recording of BAEPs during
resection of an acoustic neuroma is crucial to the success of the operation, and is often
combined with facial nerve monitoring (Schwartz et al., 1985). BAEPs can also help in the
diagnosis of vascular lesions, tumors or demyelination (Grundy et al., 1982; Spehlmann,
1985). Recording of SEPs and subsequent evaluation of conduction velocities in the spinal
cord is used during scoliosis correction, and SEPs are also an indicator of multiple
sclerosis or spinal cord injury (Regan, 1989).
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Monitoring during anaesthesia. Objective assessment of anaesthesia levels using EPs has
been suggested by many authors (Raudzens, 1982; Grundy, 1985; Spencer, 1994). Changes
in VEPs, SEPs and AEPs have been used to detect inadequate cerebral perfusion during
cardiopulmonary bypass. A major problem in VEP measurements however, is the large
inter- and intra-subject variability, which makes this modality less suited for
intraoperative monitoring (Grundy, 1982; Levy et al., 1984).

The relatively easy installation of AEP recording during surgery, and the sensitivity of
its middle latency components to metabolic changes make this signal the first choice as an
on-line monitor of anaesthesia levels (Thornton, 1991). A combination of EP and ERP
techniques can be used to investigate the ability of the brain to process information
during anaesthesia. For instance, in an auditory processing task, the P100-N100-P200
complex was found to be delayed and more positive going during anaesthesia when
compared to the preoperative recordings (Van Hooff et al., 1995, 1997). AEP monitoring
during anaesthesia is promising, but careful evaluation of AEP features in relation to
different aspects of anaesthesia is imperative. For instance, evidence suggests that AEP
latencies are related to a hypnotic effect, while AEP amplitudes seem to correlate with
analgesia (pain related effect) (De Beer, 1996; De Beer et al., 1996).

II-1.2. SPECIFIC ARTEFACTS IN EP MEASUREMENTS

II-1.2.1. Muscle activity

As in EEG measurements, muscle artefact can be obtrusive in EP recording. Muscle
artefacts notably affect the quality of later EP components starting at latency 10ms. This is
mostly due to flexing of the muscles in the neck or jaw, and can be reduced by supporting
the neck and head with a pillow, or by asking the subject to slightly drop the jaw.

Activity of muscles on the scalp can influence the signal, especially when related to the
stimulation (§ II-1.2.2). For this reason, electrode positions on the mastoid bone just
behind the ear are less suitable in AEP recording. Scalp muscle activity is not a serious
problem in relaxed subjects, but is a possible source of artefact when recording from tense
individuals (Regan, 1989).

The application of filters to eliminate muscle artefact is not a solution, because the
frequency range of muscle artefact (20-300Hz) and the investigated EP waveforms are
highly overlapping (see Table II-1.1). Contamination by muscle activity normally
disappears during sleep, and is usually not a problem when muscle relaxants are used,
e.g., in EP monitoring during surgery. However, drugs can also affect EPs.
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II-1.2.2. Stimulus related artefacts

Stimulus-locked activity that originates in scalp muscles can contaminate SEPs
recorded from scalp electrodes. These artefacts are called ‘somatomotor’ potentials
(Regan, 1989, p. 292), sometimes having similar latencies and larger components than the
neuronal SEP. Other stimulus-locked artefacts can be a major problem in ERP
measurements where a subject has to make some kind of motor action (e.g., button-
pressing) in response to stimuli. Even in preparing for this action, the subject’s heightened
alertness may contaminate the recording. Some stimulation can also cause an unwanted
eye (blink) reflex, because of the startling effect of stimuli. Randomisation of stimuli is
sometimes a solution, but may not completely abolish all stimulus related subject
behaviour. Unconscious subject activity such as finger counting or (silent) ‘talking’ can
cause unwanted readiness and motor potentials.

Stimulation artefact can also be caused by too loud auditory clicks or tones in AEP
recording. Stimulus intensities over 70dB can induce muscle artefacts from the stapedius,
which may obscure short-latency and early components in the AEP. Stimulus artefacts in
BAEP recording may be observed in patients with hypoxic encephalopathy, and in (near)
brain death subjects. Changing the polarity of the auditory stimuli, e.g., from rarefaction
to condensation clicks, can diminish the artefact (Brittenham, 1990; Litscher et al., 1995).

In clinical SEP measurements, a relatively large voltage is applied as stimulus. This
typically results in a sharp and large artefact in the averaged SEP waveform, larger near
the stimulus location. Adequate skin preparation and shielded leads are imperative to
reduce electromagnetic coupling of stimulus and recording electrodes. The electrodes are
best placed along equipotential lines (McLean et al., 1996; Scott et al., 1997). This artefact
can also be minimised by post-processing, using special filters or neural network pattern
correction (Grieve et al., 1996).

II-1.2.3. Ocular artefacts

Artefacts caused by eye rotation are of serious concern in EP recording, because of the
constant (DC) potential of several millivolts over the eyeball. A downward rotation of 10°
already results in a negative shift of 50µV at the vertex on the scalp. This can be a major
problem in ERP paradigms, where subject may systematically move or blink their eyes in
relation to the stimulus sequence. For example, in CNV experiments, large involuntary
eye movements are commonly synchronised with the preparatory interval, especially
when the eyes are closed (Regan, 1989). In recordings of short-latency EPs, usually of very
small amplitude, pre-filtering of the low frequency components (including the slow eye
potentials) will effectively improve the EP quality. Fast eye activity may still be a problem
during sleep recordings.

Special techniques to reduce the influence of eye artefacts in ERP measurements are
discussed in a separate paragraph, § II-1.4.1.



EP validation: overview and methods EP processing and signal validation

83

II-1.2.4. Other artefacts

Mains interference artefact. Braiding of lead wires is advised to reduce 50/60Hz
interference during EP monitoring (Stecker and Patterson, 1996). Phase synchronised
triggering can effectively eliminate 50/60Hz artefact, and is recommended in recording
settings such as the ICU or the operation theatre (Emerson and Sgro, 1985). Averaging in
the alternating opposite phases of the sinusoidal signal will cancel out the interference. If
this cannot be used, at least the inter-stimulus interval must be chosen unsynchronised to
the mains period.

ECG artefact. Artefacts from the electrical activity of the heart can be minimised by
choosing a symmetrical point for the ground electrode, e.g., on the forehead. When the
ECG interference still presents problems, a procedure by Nakamura et al. (1990) can
effectively eliminate the artefact before averaging the EP trials. They obtained an ECG
average from a concurrent ECG recording, which after subtraction from the EEG still
resulted in an R-top artefact in the EEG. With the exclusion of these remaining artefact
periods, the authors demonstrated in an example that reliable short-latency SEPs could be
obtained.

II-1.3. EP PROCESSING AND SIGNAL VALIDATION

II-1.3.1. Time domain processing

The averaging process

A computational procedure is needed to extract an evoked potential signal from the
recorded EEG. The initial signal-to-noise power ratio (SNR), i.e., the ratio of EP (1-20µV,
typically <5µV) versus background EEG (10-100µV) can be –20dB or even lower in single
trials. By averaging the single trials (sweeps) in the EP measurement, the SNR is
increased, under the assumptions that:

1) the response signal does not vary with time, i.e., the EP components have identical
amplitude, latency, phase, and shape for all sweeps;

2) the noise (background EEG) is a random, zero-mean signal with constant stochastic
properties during the measurement;

3) the noise/interference is not correlated to the stimuli (also see previous section).

When we define )(tsi  as the EP response after the ith stimulus, and )(tni  as the EEG

background signal that is uncorrelated to the stimulus, we can describe the recorded
signal )(txi  as:
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The SE as given by this formula represents the residual noise amplitude that is
proportional to the amplitude level in the background EEG. SE diminishes proportionally
to the square root of the number of sweeps N included in the EP. The noise power (SE2)
diminishes proportionally to N. Theoretically, we can reduce this noise component to any
desired level. However, in practical measurements the recording time is limited (e.g.,
constrained by protocol: limited attention span of subjects during ERP tasks, limited time
during surgical procedures, etc.). Furthermore, a too lengthy measurement will result in
invalid EP recording conditions (assumptions 1 and 2).

Amplitude analysis

Enhancement of the SNR can be achieved by exclusion of large EEG amplitudes. This
can be performed by clipping of the EEG amplitude, where the analogue-to-digital
conversion saturates at a pre-set level, or by rejection of individual trials (sweeps). Picton
et al. (1984) concluded that clipping was more efficient than rejection, but, from a
theoretical point of view this is not advised (2nd assumption above), because clipping
alters the measured signal and significantly disturbs its stochastic properties.

In EP measurements with relatively large numbers of stimuli, rejection of sweeps can
be implemented. Reduction of too large amplitudes in the background EEG is of major
influence on the noise level in the EP waveform. Most commercial averagers have
standard threshold borders for too high amplitudes to exclude the corresponding sweeps
from the averaging process.
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Figure II-1.1 Amplitude parameters: maximum value (Smax), minimum value (Smin),
difference in amplitude (Sdif), the maximum of absolute slope values (Slope) in an epoch
or sweep.

Advanced amplitude detection and rejection of sweeps is beneficial for improved EP
quality. Amplitudes can be investigated in the distributions of maximum, minimum, and
their difference, as well as for the differential (slope) amplitude between two data
samples (Figure II-1.1). The histogram’s observations are taken from a large number of
sweeps in a reference measurement, that were visually selected as artefact-free.
Thresholds are calculated at µ±3σ for the different signal parameters (µ, σ for mean,
standard deviation; Cluitmans et al., 1993; also see Oken, 1989). This results in the
exclusion of only 1% of sweeps in artefact-free measurements (assuming a ‘normal’
reference distribution), while detecting artefactual sweeps when parameters fall outside
of the histogram thresholds.

The effectiveness of artefact rejection by using this semi-automatic method was
investigated in a study of AEP data obtained during surgery. The effectiveness, defined as
the percentage of improved EP waveforms (visual assessment), was as high as 97%.
Moreover, the effectiveness was substantially improved by the use of the non-standard
borders for low maximum (LBSmax), and high minimum (UBSmin) amplitudes in sweeps.
The slope threshold was not needed in this study, because muscle-relaxant drugs were
administered (De Beer et al., 1995); however, slope detection can be particularly useful for
detection of fast activity such as muscle artefact (Scherg, 1982b; Cluitmans et al., 1993).
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Figure II-1.2 Examples of amplitude histograms in auditory evoked potentials:
(upper row) histograms for maximum, minimum and difference for artefact-free data,
(bottom row) histograms during electrosurgery (from De Beer, Van de Velde and Cluitmans,
1995).

II-1.3.2. Frequency domain processing

Spectral analysis

Some evoked response signals in the EEG do not show clear phase- or time-locked
features in relation to applied stimuli. A phenomenon called ‘event related
desynchronisation’ (ERD) results in changes in the spectral intensity of different EEG
bands, and is often studied for the alpha range (8-13Hz) in topographic distributions on
the scalp. The ERD can be useful for identifying modality-specific (especially visual)
attention processes (Bastiaansen et al., 1999). These effects cannot be quantified through
time averaging; the calculation is performed through spectrum-based statistical testing
whether or not the changes are of a random nature.

Another signal that can be analysed favourably in the frequency domain is the steady-
state evoked potential. This type of EP may be described by measuring its amplitude and
phase as function of the intensity of the stimuli, or as a function of the stimulus rate
(Lopes da Silva, 1987c). In addition, the variability of the frequency components can be
investigated (Victor and Mast, 1991). Bispectrum analysis, i.e., detection of coupled
harmonics, can be used for early detection of the response in steady-state VEP
measurements (Husar and Henning, 1997).

Filtering

Specific peaks can be enhanced when the frequency range of the investigated EP is
known and confined to a frequency band with limited activity of the background EEG.
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Narrowband frequency filtering is commonly used in steady-state EPs to enhance the
signal-to-noise ratio, because the recording focuses on known harmonics of the
stimulation frequency.

Filtering of bands has been studied for optimal waveform morphology especially in
the auditory evoked response because it includes a wide range of frequencies. Bandpass
filtering of 200-1500Hz is suitable for the early components in brainstem AEPs (<10ms),
and increases the reliability of latency assessment (Boston, 1981; Spivak and Malinoff,
1991). Digital filtering of frequencies below 15Hz effectively enhances middle latency
components, as shown in MLAEPs in a study by Kraus et al. (1987). High-pass analogue
filtering however, using steep filter settings (24-48dB/octave) may distort EP peaks
(Scherg, 1982a), and is not advised (Sgro et al., 1989b).

II-1.3.3. Waveform variability

We tend to interpret the averaged EP waveform as the representation of the neural
pathway’s typical response to one stimulus. However, single responses can be dissimilar:
the first assumption in EP averaging (p. 83) may not hold. For instance, fatigue and
habituation can produce large variability in some (e.g., olfactory) EPs. Variability is
negligibly small in short-latency (brainstem) EP measurements, but changes can occur in
specific procedures (see § II-1.1.3). For instance, changes in body temperature of 1°C
result in 0.2ms latency shift in BAEP, or up to 2ms in MLAEP recording (Spehlmann,
1985; De Beer, 1996).

Single trial analysis is important in psychophysiological ERP research; variability in
the response might be caused by diminished attention during the measurement. Trial-to-
trial analysis can be used to investigate a possible temporal correlation between the
‘background’ EEG and the single response signal (Intriligator and Polich, 1995). For
example, Gordon et al. (1994) indicated that only 40% of single-trial ERPs showed
waveform morphology resembling the averaged ERP. Single trial latency variability in a
P300 experiment for example, has been observed to vary between 200-600ms (Hansson et
al., 1996), clearly demonstrating the difference between the theoretical nomenclature
‘P300’ (at 300 ms) and actual observation.

Latency jitter can result in reduced EP amplitudes and unclear EP latencies because of
waveform smoothing. The phenomenon may present some problems for instance in
patients with multiple sclerosis (Regan, 1989). Prior knowledge can be used to filter
latency jitter. For example, changes in brainstem EPs occur only over half a minute or
longer (Paige et al., 1996). Latency jitter can be corrected by using a correlation technique
that aligns single sweeps (determination of optimal τi) to an EP template, also known as
Woody filtering (Woody, 1967):

)()()( tntstx iii +τ−= (II-1.5)
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However, the underlying model still assumes some invariance of the EP properties,
e.g., inter-peak latencies. To overcome this problem, the method can be extended by
calculating cross-correlations for specific peaks, and aligning these peaks of the EP in each
single sweep (McGillem and Aunon, 1977; Aunon, 1983). Still, it must be applied with
care for the investigation of high-frequency phenomena embedded in low-frequency
components (Challis and Kitney, 1990), and cross-correlation calculation is not
particularly suitable for single sweeps with very low SNR, e.g., AEPs during anaesthesia.

Weighted averaging

Low SNR’s (e.g., –20dB) are also a problem for the weighted-averaging method
(Miskiel and Özdamar, 1987; Davila and Mobin, 1992). This method tries to optimise the
contribution of single sweeps to the average EP; sweeps are weighted according to the
presence of noise. A dynamic template tracking technique may optimise the correlation
calculation (Jansen and Yeh, 1986; Picton et al., 1988; Chan et al., 1995; Gupta et al., 1996).
Implementation in hardware can overcome the extra computational demands of such
adaptive techniques (MacLennan and Lovely, 1995). However, absolute amplitude
information in the weighted-average can be maintained only when the background EEG
is stationary (Hoke et al., 1984), which is a rather strict requirement. Another practical
disadvantage is encountered for instance in BAEP measurements, where a large set of
reference templates may be needed (Özdamar et al., 1990).

Autoregressive estimation

Cerutti et al. (1987, 1988) used an autoregressive (AR) modeling approach to obtain
estimates for single trial EPs. The AR process characterises the background EEG and a
‘template’ of the expected EP waveform is used as the exogenous input process (ARX
model). The template is obtained by the normal averaging method (as described in § II-
1.3.1), but can consist of a limited amount of sweeps. In order to support single trial
estimation under poor SNR conditions, filtering (Nishida et al., 1993), pre-whitening of the
template (Lange and Inbar, 1996), or continuous updating of the averaged template
(Jensen et al., 1996) can be used. Estimation of individual (statistical) components in the
obtained EP can be performed by principal component analysis (Elkfafi et al., 1997; Lange
et al., 1997).

Time-frequency analysis

Wavelet analysis (introduced in § I-1.3.4) can be used successfully for detection of SEP
changes, where onset of hypoxia in brain injury was detected a few minutes earlier when
compared to conventional averaging (Braun et al., 1996). Other studies describe its use to
record single trial P300 or CNV measurements (Geva et al., 1997; Saatchi et al., 1997), or
use Wavelet decomposition to enhance late components (Hoppe et al., 1996). The
usefulness of time-frequency analysis depends heavily on the selected distribution
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(Boudreaux-Bartels and Murray, 1995), and is reliable only in relatively favourable SNR
conditions.

II-1.3.4. Quality estimation

Quantification of the signal-to-noise power ratio in evoked potentials is needed for
objective assessment of the residual noise power in the (averaged) resulting waveform.
We will now discuss quality estimation for the conventional averaging methods, as it is
still the most important processing technique; even in alternative calculation methods as
described in the previous paragraph, a conventional average is often used as a reference.

Quantitative SNR assessment

As we have seen, the noise amplitude (background EEG) is reduced proportional to
the square root of the number of trials. Ergo, doubling of recording time increases the
signal-to-noise power ratio only by 3dB. Let us consider an EP of intrinsic SNR of -20dB:
using a stimulation rate of six per second (inter-trial-interval 167ms) we already need
close to 3 minutes to arrive at an SNR of 10dB. Such long measurements are not desired,
and may not even result in increased SNR because of habituation effects or adaptation of
the sensory channel (Regan, 1989).

Two principal questions arise in practical averaging: (a) how to decide when a true EP
signal is present; (b) how to compare averages measured at different times or from
different sources. To deal with these questions, an early computer-program by Lowy and
Weiss (1968) displayed two EP waveforms from different recording positions or from odd
and even sweeps. However, they did not quantitatively estimate the signal-to-noise
power.

The (±) -reference. The (±)-reference is the average signal that results from alternate
addition and subtraction of sweeps, and division by N (the number of trials). By this
process, the EP signal is eliminated, thus providing an estimate of the noise (Schimmel,
1967). When )(txN  (formula II-1.2) represents the normal ‘added’ average after N trials,

i.e., the summation of evoked response and residual noise, the (±)-reference )(tx N′  can

be calculated for even numbers of trials N:
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If no time-locked response is averaged, the variance ratio of II-1.7 will converge to 1,
because both nominator and denominator are the result of an identical process. Therefore,
formula II-1.8 only holds when a response signal is measured (Schimmel et al., 1974). P
factors larger than 1 (0 dB) represent a true signal-to-noise power ratio, increasing
proportional to N.

An alternative implementation of the (±)-reference, inspired by the Lowy and Weiss
approach, calculates the ‘odd’ and ‘even’ averages (see Figure II-1.3). Apart from SNR
calculation, this procedure allows for visual comparison of sub-averages S1 and S2.

   EEG

evoked
response

noise estimateAEP average

S1

stimulus

50 µV

1 µV

S2
S1+S2 S1–S2

Figure II-1.3 Schematic diagram of a slightly modified implementation of the (±)-reference
method. A noise estimate is obtained by subtraction of odd (S1) and even (S2) averages.
Addition of S1 and S2 produces the AEP average resulting from the measurement.
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Single point reference. A method derived from the previous procedure was developed
by Elberling and Don (1984). They calculated a ratio of variances Fsp based on a single
point reference in the evoked potential:

2
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where 2
sσ : variance of the averaged response s(t), divided by

2
spσ : variance of the background ‘noise’, estimated at t = (sp)

The Fsp statistic is also akin to signal-to-noise power ratio, and is a good alternative to the
(±)-reference (Özdamar et al., 1990). The time point sp can be arbitrarily chosen, and
although it is thereby sensitive to time-locked artefacts (§ II-1.2.2), this allows for the
investigation of the reproducibility of individual EP features.
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Figure II-1.4 Schematic explanation of the Fsp statistic calculation in a brainstem auditory
evoked potential. The averaged signal converges to the indicated EP signal, and the

calculated variance 2
sσ  converges accordingly. The variance 2

spσ  will diminish during the

recording, hence, the ratio 2
sσ / 2

spσ  will increase.

Application in BAEP investigations. The mean power ratio P was investigated by Wong
and Bickford (1980) in brainstem evoked potentials. They concluded that already for
P > 2, there is a high likelihood that )(tx  contains a non-random wave form, i.e., a

physiological signal with a significant peak component. They also concluded that BAEP
waveforms of P > 30 were associated with highly reproducible BAEPs, and low values
(P < 20) were indicative of dissimilar BAEPs, or sources of noise.
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In a BAEP study by Don et al. (1984), the Fsp statistic was concluded to have better
precision than the (±)-reference for prediction of an adequate response. Here, the

response signal was in the interval 4-14ms, and 2
spσ  was calculated at sp = 6ms, using

Fsp > 3.1 as detection criterion (see Figure II-1.4). The statistic was recalculated for every
250 sweeps during the measurement. In another study, very similar to BAEP recording,
Fsp values larger than 2.0 were found to reliably indicate the presence of an oto-acoustic
ear response (‘cochlear echo’ — Lutman and Sheppard, 1990).

Related processing issues

Phase synchronised triggering. Careful implementation of a SNR calculation method is
needed when EP triggering is synchronised with the mains signal. Alternated addition
and subtraction (as in the (±)-reference) must not fall in opposite phases; alternating every
two sweeps will solve this problem. The same applies to noise that is coherent at other
frequencies (Emerson and Sgro, 1985; Sgro et al., 1989b).

In median averaging of EP trials, the median value at each sample point over all trials is
used instead of the mean value (Sgro et al., 1989b). This is useful to filter outliers in the
data, for example due to noise or other transient activity, and has been successful in the
recording of motor unit action potentials (Nandekar and Sanders, 1989). A technical and
practical disadvantage of this method is that it requires large amounts of computer
memory, as all single sweeps must be stored during the measurement. The waveform
itself may be reliable only when large numbers of trials are averaged. Statistical outlier
detection may be preferred then (e.g., p. 84).

II-1.4. SPECIAL TOPICS IN EP PROCESSING

II-1.4.1. EOG detection and correction

As described before, eye movement and blinks cause low-frequency, high-amplitude
artefact in the EEG, and can affect the potentials recorded anywhere on the scalp. Because
of overlapping frequency ranges, this type of artefact is notably a problem in the
recording of ‘late’ ERPs (P300, CNV). Although amplitude thresholds may be used for
rejection of contaminated trials, this can be unspecific, especially when channels from
anterior scalp positions are unavailable (Verleger, 1993). Rejection is undesirable, because
it may result in a significant loss of data. Eye fixation methods, used to prevent eye
artefacts, can introduce unwanted effects in cognitive ERP research (Weerts and Lang,
1973; Verleger, 1991). Therefore, correction of eye artefacts is advised. Various methods
have been reviewed by Brunia et al. (1989).
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A parametric method may be employed in ERP experiments, using three EOG
derivations and incorporating the EEG activity through AR modeling. The estimated
parameters can be used for proportional subtraction of the EOG influence in the target
EEG/ERP channels. Parameters are preferably estimated from a calibration trial, but may
be obtained directly from the measurement in off-line processing (Van den Berg-Lenssen
et al., 1989, 1994). Only one proportional coefficient per EEG channel is sufficient since
different types of eye artefact propagate equally from the EOG to the EEG, as indicated
again in a recent study by Croft and Barry (1998a,b).

Berg and Scherg (1994) used a model based on multiple source eye analysis. In their
correction method, the artefactual EOG influence was calculated from the EEG, using the
estimated spatial distribution of eye activity (dipole modeling). The method enhanced the
precision of topographical EEG analysis. Calibration of the model was obtained from data
containing systematic eye movements and blinks. In order to overcome the (theoretical)
constraint of orthogonality of the model’s source vectors, Vigário (1997) proposed a
statistical method called independent component analysis as a tool to separate eye activity
from EEG activity. Although its discriminative abilities were shown, a possible drawback
of this method may be that it introduces a new set of traces for each electrode that need
additional interpretation. In theory, the method could be used without any EOG channel,
however, the use of simultaneous EOG recording was still advised for referential
purposes.

II-1.4.2. Feature detection and classification

Clinical applications of EPs investigate the amplitude and location of characteristic
peaks in the recorded waveforms. Techniques that use template matching may have no
difficulty in tracking EP latencies (see § II-1.3.3). However, caution is advised when
individual peaks are not always ‘dominantly’ present in the measurement. This was a
problem for instance in an expert system by Boston (1989), which heavily relied on the
consistency of amplitude parameters and correlation coefficients between intervals.

A rule-based expert system can favourably be extended by applying matched filtering
pre-processing of the EP signal (Delgado, 1993). For instance, convolution of primary
frequency components in BAEPs can ‘roughly’ estimate the important peak V (at 5-6ms).
Followed by rule-based determination of peak and inter-peak latencies, over 80% correct
localisation of peaks was reported. Performance was less in BAEP assessment of
neurological abnormalities, and in noisy recordings (Delgado and Özdamar, 1994).

Artificial neural networks (ANN) have been shown as a useful means to identify
peaks. Robust detection by ANNs may depend on adequately fitted bandpass filtering in
the pre-processing step (Tian et al., 1997), or can be accomplished by cascaded classification
and subsequent detection of peaks (Van Gils, 1995). The methods employed by Van Gils
reached expert performance for automatic recognition of BAEP peak V (around 90%
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correct within 0.2ms), but assessment of middle-latency peaks (MLAEP) showed
relatively large variations in latency (6-11ms). The data were obtained in noisy clinical
conditions, and human consensus about latencies was low as well (5-9ms difference).
Nevertheless, the system was very useful as an aid to reduce the time for human scoring.

For the detection of long-latency peaks (P300) low-pass filtering (<3.4Hz) was favoured
over template matching (Smulders et al., 1994). The latency was reliably calculated as the
largest local maximum in the expected peak range (300-1000ms). The authors concluded
that the method still had to be improved for automatic discrimination between presence
and absence of the P300 component. This classification can be performed by using ANN-
based pattern recognition, as shown in study by Gupta et al. (1995). Their method
correctly classified around 80% of P300 ERPs in a patient suffering from head-injury.

II-1.4.3. Non-linear characteristics

The nervous system is known to exhibit non-linear behaviour. When a nerve cell is
excited, an action potential can occur (see § I-1.1.1 — the mechanism leading to the action
potential itself is non-linear). In a short period (a few milliseconds), just after its start,
additional stimulation will not result in a new action potential. This period is called the
refractory period.

From the above, we can expect changes in the character of the evoked electrical activity
due to previously applied stimuli. This can be investigated by using random trains of
stimuli where the inter-stimulus intervals are taken from a Poisson distribution (Krausz,
1975). The technique estimates a set of kernels h1 .. hN , where the first order kernel h1

resembles the conventional averaged response (Cluitmans and Beneken, 1991). Higher
order kernels describe the evoked response under the condition of prior stimuli. For
example, the 2nd order h2(δ) is related to the difference between the expected (linear)
response and the true (non-linear) response of the system on a stimulus, as a function of
the inter-stimulus interval δ. Because of the random inter-stimulus intervals, we can
significantly increase the presentation rate. The interference effect of overlapping
responses will average out, because of the lack of synchronicity between responses. The
quality of EP signals may thus be enhanced when more responses are averaged in shorter
recordings.

Sclabassi et al. (1977, 1982) have calculated the second order kernel h2 in the
somatosensory system of cats and humans, and clearly demonstrated a pattern that
included inverted h1 components. Further research by Cluitmans has indicated the
usefulness of h1 and h2 of auditory evoked potentials obtained during anaesthesia. Non-
linear effects were larger and better quantifiable in middle latency components
(Cluitmans, 1990; Cerutti et al., 1996).
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II-1.5. DISCUSSION

Most of the aspects related to the recording and processing of evoked potentials were
reviewed. When compared to the EEG, several things can be observed:

• Amplitudes in EPs are generally (very) low, but the frequency range extends to
much higher frequencies (kHz) than in EEG.

• EPs are of deterministic nature. Waveforms are of expected morphology, and
usually show relatively small variations over time.

Artefact detection. Amplitude criteria for rejection of trials during EP measurements are
useful by virtue of the first observation above. The occurrence of high-amplitude artefacts
is disastrous for EPs. Therefore, max-min controls are available in most commercial EP
equipment. Further exploration of (statistical) amplitude thresholds is advantageous (De
Beer et al., 1995), and can be implemented as a well-structured and workable approach to
artefact detection in the recording of EPs.

Validation by means of frequency analysis is difficult because of overlapping spectra of
EEGs and EPs. Only at the ends of the frequency scale, high-pass filtering may be applied
in Brainstem EPs (10ms), and low-pass filtering is useful in ERPs (1s). Other correction
procedures are successful only a when a reference of the interfering artefact can be
recorded and/or modeled. For instance, eye artefacts can be filtered reliably by
proportional subtraction of pre-frontal EOG channels.

Quality assessment. The commonly applied procedure for recording EPs is averaging of
single trials, thus cancelling non-stimulus related ‘background EEG’. Although successful
attempts have been reported for extraction of single trial EP signals, reference templates
are still based on averaged responses. The averaging process requires a sufficient number
of trials, but both from a theoretical point (response variability) as well as a practical point
(limited time) the recording should be as short as possible. Surprisingly, the actual quality
is seldom assessed nor discussed quantitatively.

Quantitative quality assessment is well possible by means of signal-to-noise ratio
assessment. For this purpose, we need to calculate the (enhanced) power in the EP and
estimate the (reduced) power in the background EEG. Several methods have been
described in the literature, of which the (±)-reference and Fsp ratio have been most useful.

Promoting objective EP validation methods is one overall aim of Part II of this thesis.
Therefore, the remaining chapters of this thesis will focus on quantitative quality
assessment and improvement of EPs, in relation to clinical judgement, recording length
and stimulation frequency.
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II-3. Quality Assessment in
Event Related Potential

Measurements:
an explorative study of

CNV lateralization

Abstract — Event related potentials are signals that can be evoked from the nervous system,

and measured at the (human) scalp through methodical stimulation of one or more sensory

modalities. The actual response signal is always deeply embedded in the background EEG

activity, where signal-to-noise power ratio (SNR) for a single response can be as low as -20dB.

Therefore, additional processing is needed to extract the evoked response signal from the

measurement. The most common processing method is averaging of single trials (sweeps), by

which the event related (time-locked to the stimulus) signal is enhanced and the unlocked signal

is cancelled out. However, while this, or any other, processing technique is meant to improve the

signal-to-noise ratio of the response signal, it is still uncommon to indicate the quality of the

resulting waveform.

The current study explores a previously acquired data set, consisting of ‘Contingent Negative

Variation’ (CNV) waveforms. This signal is measured in a task where a warning-stimulus and a

subsequent response-stimulus are presented to a subject, which is to be followed by a prompt

button-press action. This data set provides an interesting starting-point to investigate the

usefulness of SNR assessment in event related potentials, because of the effect of response

lateralization: the amplitudes of the (various parts of) waveforms are dependent on the limb

used in the response action. This effect was found in the original study, and is indicated here also

from the evaluation of the SNR. Several other statistical significant differences were found in the
analyses, leading to the overall conclusion that the (±)-reference method provides useful

information, corroborating the findings from other amplitude based analyses.
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II-3.1. INTRODUCTION

The ‘contingent negative variation’ (CNV) can be measured at the scalp of a subject
involved in a repeated task where first an auditory warning stimulus (WS) is presented,
and after a short period a visual response-stimulus (RS) is presented, to be acted upon by
immediate button-pressing. The interesting effect present in the CNV waveform, is the
slowly increasing negative potential that appears before the response stimulus (see Figure
II-3.1). The processes involved in between the WS and RS are related to anticipatory
attention to the RS, and to motor preparation and execution of the response (Brunia and
Damen, 1988; Brunia, 1993).
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Figure II-3.1 The Contingent Negative Variation (CNV) occurs just before the response
stimulus, after an initial auditory warning stimulus and a four second inter-stimulus-
interval (ISI). Vertical markings indicate the timing of the warning stimulus (WS), response
stimulus (RS), and average response (R) respectively. Note: negativity plotted upwards.

The data of the current study were obtained at the Department of Physiological
Psychology, Tilburg University, where they have been used to investigate the described
effects by dipole modeling from the recorded signals (Böcker, 1994). The experiments
involved the use of different ISI lengths (1 and 4 seconds), in order to try to separate the
different psycho-physiological processes. Specifically, the CNVs of 4s ISI allowed for
discriminative analyses on the parts of the CNV defined as the early wave and the late
wave (in the interval between WS and RS). One of the main conclusions of this research
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was the fact that no likely sources for stimulus anticipation were found for the paradigm
used in this study (Böcker, 1994).

In ERP research like this, inferences are made by comparing two or more signals,
without having quantitative knowledge about the quality of the signals. There is a risk
that the matched waveforms appear to have comparable quality when observed visually,
and include approximately the same number of responses, but in fact have signal-to-noise
ratios of different magnitude, therefore invalidating the conclusions. Still, even in recent
publications focusing on measurement techniques, the SNR is not indicated as a standard
measure of quality (e.g., Cohen and Polich, 1997; Saatchi et al., 1997).

For the current study the CNV data of the study by Böcker (1994) have been processed
anew, but now including SNR calculation. This investigation serves two purposes. First,
we will explore the quality of CNV averages, using a method for SNR assessment known
as the (±)-reference (Schimmel, 1967). The use of this method has been restricted mainly to
short-latency potentials, but it is equally suited for calculation of the quality of middle-
latency and long-latency waveforms (chapter II-2). Second, we will show that this
quantitative analysis can be used to investigate CNV characteristics. Specifically, the
current study investigates the effect of lateralization: cerebral dominance caused by the
response action from a left or right limb. The CNV late wave is more dominant on the
contra-lateral hemisphere for finger responses; a counteracting paradoxical lateralization
effect can be observed for foot responses.

We will test the hypothesis that signals obtained at the dominant side will also result in
a higher signal-to-noise ratio. The electrodes over the non-dominant hemisphere will be
farther away from the source of the response activity, hence will pick up more EEG
background activity (‘noise’) that is unrelated to the stimuli.

II-3.2. METHODS

II-3.2.1. Calculation of signal-to-noise power ratio

The signal-to-noise power ratio (SNR) is calculated here through the (±)-reference
method, which can be implemented by using two separate CNV averages during the
averaging process. If all single responses are identical, the two averages will be alike, and
differ only because of the non-normality of the background EEG. In the formulas below,

1x  and 2x  represent the summations of odd-numbered and even-numbered trials,

consisting of respectively 1N  and 2N  trials. 1N  and 2N  will differ at most by one trial .

The summation of 1x  and 2x  represents the end-result of the CNV average, the

subtraction represents the (±)-reference. The variance of the summation, divided by the
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variance of the difference signal results in a true signal-to-noise power ratio (Schimmel et
al., 1974) denoted by P, which we expressed in Decibels. In the original (±)-reference only

even numbers of trials are allowed, resulting in NNN 2
1

21 ==  where N  represents the

total number of trials. However, in a typical CNV average N  is relatively low (between
50 to 150), and in order to use all trials — including any incidental odd-numbered last
trials — we used the following formula:
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The dBP -factor was calculated in different post-stimulus intervals of the CNV signals,

in order to investigate separately the SNR and lateralization effects of the stimulus, the
CNV and the response components. A typical value for the P-factor in evoked potential
waveforms of good quality is 13dB or higher (see Wong and Bickford, 1980; chapter II-2).

II-3.2.2. Subjects & recordings

The study included 10 right-handed subjects, 4 male and 6 female (age 20-31 years).
The subjects were paid volunteers. During the experiments, the subjects were seated
comfortably in a slightly reclining chair, which was placed in a sound attenuating,
electrically shielded cubicle. A recording consisted of a series of trials, where each trial
started with the presentation of an auditory warning-stimulus (WS) through a
loudspeaker mounted on the wall 1m behind the subject (a 70 dB(A), 1000Hz tone of 45
ms duration). Either one or four seconds later a visual response-stimulus (RS) was
presented by illumination (60ms duration) of four bright red LED’s, placed 1.5m in front
of the subject, in the centre of the visual field. The subjects were instructed to react as fast
as possible to the presentation of the RS by flexing a pre-assigned finger or foot. They
were also instructed to fix their gaze on the box containing the LED’s (to preclude eye
movements and blinks) and to prevent excessive body-movement, sneezing or
swallowing except for a short period starting approximately 3s after a response.

Determination of reaction time. The subject rested his/her arms on the adjustable arms of
the chair, holding a small cylinder (length 5.5cm) between thumb and index finger of each
hand. The cylinders were mounted on top of the chair’s arms. A switch at the end of each
cylinder was operated by flexion of the two fingers, from which the reaction time was
determined for a given trial. The feet rested on two separate foot-plates, elevated 30
degrees from the horizontal. The force needed to depress the plates until closure of the
switch was adjusted by a spring to be subjectively equal on both sides. A small foot
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flexion produced closure of the switch and stopped the reaction timer. Trials with
reaction times outside the 100-500ms range were excluded from further processing.

A single registration consisted of 6 blocks of 25 trials, resulting in a CNV average of
maximum 150 trials. Eight different CNV signals were obtained, for four limbs and for
both CNV1 and CNV4, which were recorded on 2 separate days, about one week apart.
Half the subjects reacted with finger responses on the first day and with foot responses on
the second day; this was reversed in the other subjects. After each fourth block, the
experiment changed from CNV1 to CNV4, or vice versa. This was counter-balanced
between subjects as well as within subjects between both recording sessions. The
response side was varied pseudo-randomly between blocks. A block, which took 3’45’’
and 5’50’’ for CNV1 and CNV4 respectively, was followed by a 1 to 2 minutes break.
Individual trials were separated by intervals ranging from 6-10s, or 8-12s (steps of 0.5s)
for CNV1 and CNV4 respectively.

After each fourth block, a longer break allowed for the recording of calibration pulses,
and for the recording of eye movements for parameterisation of the EOG signals. The
latter procedure was used in a method for off-line correction of eye movement artefacts in
the EEG derivations. The horizontal EOG from the outer canthi and the vertical EOGs of
both eyes were used for this procedure. This method is based on maximum likelihood
parameter estimation of the propagation of the EOG into the different EEG channels. The
background EEG activity in the EOG channels is modeled using an autoregressive
function of order 3. Possible delays between EOG and EEG positions are also taken into
account but are neglegibly small (Van den Berg-Lenssen et al., 1989).

Additional off-line artefact rejection was based on the detection of high-amplitude
peaks (>100µV), scanning the EEG for drift. Drift was detected on the basis of two criteria,
one maximum threshold of 70µV for individual EEG samples, and another threshold
(>30µV) for drift in 4 successive intervals after the baseline period of each trial
(amplitudes with respect to the baseline level). These specifications describe the most
liberal thresholds, and were manually optimised for individual measurements (Böcker,
1994).

The EEG was recorded from 26 electrodes at scalp-positions (see Figure II-3.2), centred
on vertex position Cz’. The recordings obtained at the electrode positions as indicated in
the figure were referenced to the average of left and right mastoid electrodes, thus
allowing for the investigation of lateralization effects. The EEG was digitised at 128 Hz
sample frequence, using a 7th order Butterworth low-pass filter at 30Hz (-42dB/octave)
and a 30s time-constant. Recording of trials started one second before WS (baseline
period) and lasted until 2.5 second after the response.

After the described pre-processing of the data the signals were converted from the
local Tilburg file-format to the extended European Data Format (see appendix), which
was used in the current study.
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Cz’ C2’ C4’ TC4’C1’C3’TC3’

FCz’ FC2’ FC4’FC1’FC3’

Fz’ F2’F1’

FPz’ FP4’FP3’

Cz’’ C2’’ C4’’C1’’C3’’

FPz’’ PC2’’PC1’’

Figure II-3.2 Electrode scheme as used during the experiments: nomenclature is derived
from the International 10-20 system. Primes (’) denote positions one cm anterior and double
primes (’’) two cm posterior to the standard coordinates. Inter-electrode distances measure
10% of the nasion-inion distance.

II-3.3. RESULTS

On average, 102 trials were included in the intra-individual CNV waveforms (N=80,
standard deviation 20, minimum 45, maximum 137). Apart from the different types of
CNV (1s, 4s) and different limbs involved, the data set was processed twice: once
averaged time-locked to the stimulus pattern (WS and RS, constant ISI within one type of
CNV), and once averaged time-locked to each response (R) in individual trials.

Statistical significance between SNR factors between identical electrode positions in
CNV1 and CNV4 , and between opposite positions within one type of CNV was
determined by the one-sided t-test for paired observations and complemented by
calculating the non-parametric Wilcoxon ranked-sum statistic. These two complementary
tests were used because of the relatively low number of observations (N=10), which
prevents reliable testing of the form of the distributions. In a normal distribution, the
Wilcoxon statistic is less powerful than the t-test, but it is more stable when the normality
assumption is incorrect (Montgomery and Runger, 1994). Therefore, we used the
significance of the Wilcoxon test to substantiate the significance of the t-test.

In general, the signal quality reached acceptable levels when calculating the SNR over
the entire CNV signal, from WS to RS+1000ms. This resulted in an average SNR value of
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approximately 15dB for CNV1 signals. The SNR factors for the CNV4 waves were
approximately 4dB lower, which is mainly influenced by a relatively long interval of low
amplitude signal in-between the WS and RS (see Figure II-3.1). Because of the different ISI
lengths, these initial SNR factors were not compared statistically. We calculated the
statistics of the SNR in different CNV components, using only equal intervals in CNV1

and CNV4 for the evaluations.

The period in between the WS and RS, the actual ‘negative variation’, showed very low
SNR values (<5dB) using the current methods. As indicated before, the small amplitude
fluctuations in this period result in an unpronounced waveform in 1x  and 2x , which

invalidates the assumptions of the (±)-reference and produces unacceptably low P values
(equation II-3.1, also see § II-1.3.4, p. 90). The effects of absolute amplitude measures in
the ISI of the CNVs have been studied by Böcker (1994), and are not part of the current
investigation.

SNR evaluation of the WS component

We found that the SNR for finger responses is higher in CNV1 than in CNV4 for the WS
component from t(WS) to t(WS+500ms) of the signal. A significant difference of
approximately 2dB was found for the central positions in the left finger response (see
Table II-3.1), and not in the right finger response. The average quality of the WS of the
‘left finger’ CNV4 signals still reached an acceptable 15dB.

Table II-3.1 CNV1 (left finger response) from t(WS) .. t(WS+500ms): signal-to-noise
power ratios, averages and standard devations over 10 subjects. The presented averages were
approximately 2dB higher than at identical positions in CNV4 , significant in the central
region (shaded): *) t-test (α=0.05), **) both t-test and Wilcoxon ranked-sum (α=0.05).

FP3’ FPz’ FP4’

11.5 (3.1) 13.3 (2.9) 11.5 (3.0)

F1’ Fz’ F2’

14.9 (2.4) 15.6 (2.3) 15.1 (2.2)

FC3’ FC1’    ** FCz’    ** FC2’    ** FC4’

15.9 (2.6) 16.6 (2.2) 17.0 (2.0) 16.8 (2.1) 16.1 (2.9)

TC3’ C3’    ** C1’    ** Cz’ C2’    * C4’    * TC4’

15.4 (3.4) 17.6 (2.9) 17.9 (2.4) 17.6 (2.3) 17.6 (2.4) 17.5 (2.9) 15.8 (3.1)

C3’’    ** C1’’    * Cz’’ C2’’    * C4’’

17.7 (2.9) 17.7 (2.6) 17.3 (2.5) 17.4 (2.7) 17.0 (2.9)

PC1’’ PCz’’ PC2’’

16.1 (2.9) 16.0 (2.8) 15.7 (3.0)

When comparing the WS component for the foot responses between CNV1 and CNV4

in the same interval as above, we found that the SNR was higher in the CNV4 . This
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difference (approximately 0.5µV at the vertex, to 3µV at pre-frontal positions) was
significant only for the pre-frontal and parietal positions in the ‘left foot’ CNV4 (t-test,
α=0.02). This points to a larger spread over the scalp of the WS component in this type of
CNV.

Testing for SNR differences between hemispheres within CNV1 or within CNV4 did
not reveal any lateralization in the WS component.

SNR evaluation of the (stimulus-locked) RS component

We found some interesting effects when focusing on the CNV activity around the RS,
from 100ms before RS to the early part of the response t(RS+200ms). In the original study,
this was the interval nearest to the response that still showed a significant amplitude
effect for different ISIs (1s, 4s). In the current study, we found that the SNR factors for
CNV1 ‘left foot’ (see Table II-3.2 and Figure II-3.3) and for CNV4 ‘left finger’ are
significantly lateralized in the expected direction. In the CNV4 finger responses, this effect
was not clearly observed in the original study. A statistically insignificant, but similar
lateralization pattern toward the right central and parietal positions was also observed in
the other finger and foot responses for CNV1 and CNV4 .

Table II-3.2 CNV1 (left foot response) from t(RS-100ms) .. t(RS+200ms): signal-to-noise
power ratios, averages and standard deviations over 10 subjects. Significant higher values
(tested versus homologue location on opposite hemisphere) are indicated by shading:
t-test *) α=0.05, **) α=0.01.

FP3’ FPz’ FP4’

6.3 (2.7) 7.3 (3.1) 7.0 (3.0)

F1’ Fz’ F2’

7.2 (3.0) 7.4 (2.9) 7.6 (2.8)

FC3’ FC1’ FCz’ FC2’ FC4’

7.1 (2.6) 7.3 (2.6) 7.3 (2.1) 7.6 (2.2) 7.8 (2.8)

TC3’ C3’ C1’ Cz’ C2’    * C4’    ** TC4’    **

5.8 (3.4) 7.1 (2.7) 7.4 (2.1) 7.6 (2.7) 8.2 (2.4) 8.6 (3.1) 8.3 (3.3)

C3’’ C1’’ Cz’’ C2’’    * C4’’    **

7.2 (3.6) 8.0 (2.7) 8.6 (3.3) 9.0 (3.4) 9.1 (3.5)

PC1’’ PCz’’ PC2’’    *

8.3 (4.4) 8.8 (4.3) 9.6 (4.9)
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Figure II-3.3 Grand averages of the CNV1 ‘left foot’ waveforms: stimulus-locked average
waveforms of 10 subjects. The signal-to-noise power ratios P were calculated in the interval
t(RS-100ms) .. t(RS+200ms) (indicated in legend: averages and standard deviations over
subjects). The differences were significant between electrodes positions C1’, C2’, and between
C3’, C4’. Negativity plotted upwards.

SNR evaluation of the (response-locked) R component

The largest effect of SNR and dominance occurs within the ‘left finger’ CNVs that were
averaged time-locked to the responses. Here, we focused on the response component
only, for the interval t(R) to t(R+500ms), which presents a motor component at the
contralateral side that does not occur ipsilaterally. This effect is significant for CNV1 , and
highly significant for CNV4 signals (see Table II-3.3).

In both CNV1 and CNV4 , a small paradoxical lateralization effect for foot responses was
found (higher SNR over the ipsilateral hemisphere). This effect was most clearly observed
in the SNR values of the CNV1 ‘right foot’ responses (Table II-3.4). No clear statistical
pattern was found. Only when comparing the left foot response between CNV1 and
CNV4 , we found that the SNR was significantly higher in the CNV1 for the ipsilateral
positions FC1p, C3p, (t-test, α=0.05), and FC3p, TC3p (α=0.02). These SNR values in
CNV1  showed  a  remarkable   symmetrical   pattern,   whereas   the   CNV4   SNR  values
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Table II-3.3 CNV4 (left finger response) from t(R) .. t(R+500ms): signal-to-noise power
ratios, averages and standard deviations over 10 subjects. Significant higher values (tested
versus homologue location on opposite hemisphere) are indicated by shading: *) t-test
(α=0.02), **) both t-test and Wilcoxon ranked-sum (α=0.05), and ***) Wilcoxon (α=0.01).

FP3’ FPz’ FP4’

9.7 (3.4) 11.0 (2.9) 10.1 (2.1)

F1’ Fz’ F2’    *

10.3 (2.5) 11.0 (2.6) 11.2 (2.2)

FC3’ FC1’ FCz’ FC2’    ** FC4’    ***

8.6 (2.3) 9.8 (2.6) 11.8 (2.6) 12.5 (2.0) 11.3 (1.6)

TC3’ C3’ C1’ Cz’ C2’    ** C4’    *** TC4’    ***

8.7 (2.6) 9.3 (2.5) 10.6 (2.8) 13.2 (3.0) 13.8 (2.2) 13.1 (2.4) 12.0 (2.1)

C3’’ C1’’ Cz’’ C2’’    * C4’’    **

10.1 (3.1) 10.6 (3.5) 12.2 (3.3) 12.8 (2.8) 13.1 (2.1)

PC1’’ PCz’’ PC2’’    *

9.7 (3.6) 10.0 (3.6) 11.0 (2.9)

500 ms-5

0

5

10 R

µV

C1’ P=10.6dB (2.8)

C2’ P=13.8dB (2.2)

C4’ P=13.1dB (2.4)

C3’ P= 9.3dB  (2.5)RS

Figure II-3.4 Grand averages of the response component of the CNV4 ‘left finger’
waveforms: response-locked average waveforms of 10 subjects. The marker ‘R’ indicates the
average response time, following directly after the RS (approximate position indicated), 4
seconds after the initial warning stimulus. The signal-to-noise power ratios P were
calculated in the interval t(R) .. t(R+500ms) (indicated in legend: averages and standard
deviations over subjects). The P values on right-side positions C2’ and C4’ were significantly
higher than corresponding electrodes C1’ and C3’ on the left hemisphere. Negativity plotted
upwards.
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were lower on the left hemisphere. Therefore, we can only conclude that a small
paradoxical lateralization exists in the CNV1 foot responses, observed most clearly for
right foot movements.

Table II-3.4 CNV1 (right foot response) from t(R) .. t(R+500ms): signal-to-noise power
ratios, averages and standard deviations over 10 subjects. This response-locked average
shows a tendency (bold typeface) toward paradoxical lateralization in the right frontal and
central regions (** only significant for FP4’ versus FP3’, t-test, α=0.01).

FP3’ FPz’ FP4’    **

8.5 (4.0) 10.5 (4.4) 10.3 (3.8)

F1’ Fz’ F2’

10.9 (4.1) 11.4 (3.0) 11.2 (3.6)

FC3’ FC1’ FCz’ FC2’ FC4’

10.3 (3.8) 11.9 (3.7) 13.1 (3.3) 12.5 (3.3) 10.8 (3.8)

TC3’ C3’ C1’ Cz’ C2’ C4’ TC4’

10.5 (3.2) 12.0 (3.0) 13.3 (3.9) 15.3 (4.1) 14.0 (3.2) 12.3 (2.9) 10.1 (3.8)

C3’’ C1’’ Cz’’ C2’’ C4’’

12.1 (3.3) 13.6 (3.8) 15.4 (4.3) 13.6 (3.7) 12.2 (3.4)

PC1’’ PCz’’ PC2’’

12.3 (3.5) 12.6 (4.1) 11.9 (4.1)

II-3.4. CONCLUSIONS

In general, the signal-to-noise ratio is reasonably high: dependent on the investigated
component, the SNR is approximately 15dB, but reaches up to 20dB for individual
measurements. The highest SNRs were mostly located at or near the central electrode
positions.

The significant difference between the stimulus components of CNV1 and CNV4 is
probably related to the effect of overlapping ‘early’ and ‘late’ wave within the 1-second
ISI of the CNV1 response. The early wave of CNV4 is much lower in amplitude, whereas
the same interval after the WS in CNV1 contains more reproducible signal components.
This results in a higher SNR. However, for right side response signals, this effect was not
significant. The conclusions regarding lateralization of the response component
complement some of the findings from the original study by Böcker (1994):
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1) We found a small paradoxical lateralization effect for SNR of the reponse
component related to foot responses, which is slightly more pronounced for right
responses in CNV1.

2) In the current study a large significant lateralization effect for SNR values occurs in
the interval 100ms prior to the RS, to RS+200ms: for CNV1 left foot responses, and
for CNV4 left finger responses (contra-lateral dominance in the central, parietal and
temporal regions).

The paradoxical lateralization effect relates to the original observations in the CNV late
wave. The source activity for finger responses can be explained by a deep dipole below
the vertex, and a symmetrical pair of dipoles at lateral positions. For foot responses
source activity is significant only in the central region, and shows a tendency toward
largest lateralization at medial positions for left foot responses, and lateral positions for
right foot responses (Böcker, 1994).

Most of the significant effects seem to be related to the ‘left response’ signals. Because
all subjects were right-handed, probably the effort for initiating and physically executing
the response was easier for the right-sided response trials. The data on reaction times
versus response-side did not reveal a significant effect (Böcker, 1994), indicating an
insignificant physical effect. If we conclude from this that the tasks must have presented a
more ‘difficult’ cognitive task for left responses, the significance found is probably mostly
related to the motor preparations of the left responses. Of course, this effect would have
to be investigated using a dedicated paradigm where the anticipatory and preparatory
processes are manipulated.

The current method for SNR assessment is less suited for evaluation of the interval
between warning stimulus and response stimulus in the CNVs. This slow negative slope
has been investigated by comparing the average amplitude values (with respect to the
baseline level) in the 1000ms interval prior to the RS, in intervals of 100ms (see Böcker,
1994). Still, for convincing inferences about the amplitude changes in these intervals the
validity of the waveforms should be assessed. The current study has produced this
reassuring evidence: the SNR of the entire CNV4 wave was approximately 11dB, despite
the long low amplitude ISI, and SNR was approximately 15dB for the entire CNV1 wave.

Overall, we come to the conclusion that SNR assessment using the (±)-reference
method provides useful measures that corroborate the findings from other amplitude
based analyses, and complement these results by quantifying the signal quality. For this
reason, and to facilitate better comparison among experiments, we must strongly
advocate the use of these objective, quantitative signal descriptors.
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Discussion & Conclusions

The studies presented in this thesis focus on generally applicable methods for the
validation of electroencephalographic measurements: the electroencephalogram itself
(EEG), and evoked potential (EP) measurements. Validation is the process of scrutinising
the signals for undesired disturbances. Especially when subsequent analyses are going to
be performed automatically, reliable results are only obtained when the validation step is
integrated in the overall processing scheme.

EEG VALIDATION

Context related ‘event’ detection

Most of the tools for (semi-automated) EEG analysis described in the literature are
aimed at detection of specific EEG phenomena (e.g., Nakamura et al., 1996; Pietilä et al.,
1994). No software tool specifically targets validation of the EEG; pruning of EEG data is
often implied, or based on heuristics. An example of a (detailed) description of an
artefact detection step, using empirical rules for amplitude and frequency parameters, is
found in Jansen et al. (1982).

Because of the diversity of EEG investigations we chose to restrict our research to the
detection of muscle artefact and to the detection of ‘events’ in prolonged EEG recordings
in ICU patients. Muscle artefact presents one of the most frequent and obtrusive
contaminations of the EEG, and the ICU study consisted of a relatively large data set
incorporating diverse patterns of EEG. Therefore, the investigated methods are
potentially useful in other EEG investigations.

Current approach: time-related aspects of EEG validation

In the study of muscle artefact detection (chapter I-2) we did not use a segmentation
procedure to obtain stationary periods of EEG (e.g., as performed by Krajca et al., 1991).
Rather, we processed the EEG based on fixed epoch lengths of short duration, which
may be considered stationary (Jansen, 1991). The expert’s scoring was not restricted to
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fixed epochs. In each epoch, we calculated several amplitude and frequency domain
parameters. Per subject we used constant thresholds and statistical thresholds based on
the parameter histograms of an artefact-free reference measurement. The statistical
approach also required the use of fixed epoch lengths. Not studied before, was the
relation between epoch length and detection performance. Based on the criteria of
‘scattering’ (short periods useless for subsequent analysis) and overall detection
performance we found that the optimal epoch length is approximately 1 second, for
detection of muscle artefact in the normal human awake EEG.

In the muscle artefact study, we observed that constant thresholds were better than
statistical thresholds obtained from the reference measurements; performance was
optimal using a Slope or ‘high beta’ parameter. Of course this approach was not suited
for application in prolonged recordings containing different EEG patterns, e.g., sleep
EEG. The Slope detection algorithm was therefore extended into a more adaptive version
(chapter I-3), which successfully detected transient (high-frequency) ‘events’ like muscle
artefacts as statistical outliers based on the context of the ongoing EEG signal. Context
related evaluation of autoregressive (AR) parameters was useful for detection of high-
amplitude, low frequency artefacts. Using both the AR error-term as well as the AR
model parameters is not common, but highly contributed to the specificity of the AR-
based detection process. The new approach of context incorporation also allowed us to
investigate the optimal length of the context period: a relatively short period of EEG,
limited to 20-40 seconds, was optimal and resulted in the detection of 90% of the artefacts
in the ICU data. The accompanying positive prediction was not so high: 53%.

Recommendations for enhanced context related ‘event’ marking

The artefact detection process based on the shifting context-window as described in
chapter I-3, can not be used for instance to mark sustained periods of muscle artefact or
longer low-frequency artefacts. This drawback can be overcome by a more advanced
implementation as illustrated in Figure 1. The context model is now extended to a
sequence of ‘context’, ‘test’, and ‘prescan’ windows, which relates to the way clinicians
browse back and forth pages of an EEG recording. In each of these windows the Slope
distributions and AR parameters are calculated as described in chapter I-3. Statistical
differences between the prescan-window and the test-window can be tested analogous
to the procedures as described for context-window and test-window, but are used to
detect the end of a significant change.

Additional improvements to the detection algorithm can be made. For instance,
shifting the detection windows forward in time per epoch, instead of per ‘page’ (e.g., 10
seconds) will result in higher specificity, because artefact marking can be performed
more accurately. Small epoch lengths (e.g., 0.5 s) can be used to make the method more
sensitive to very short phenomena. Also, different window lengths and different
thresholds (not necessarily based on the F-distribution) can be used. Using an example
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threshold of 2
1

2
2 λλ  > 2, and further settings as illustrated in Figure 1, resulted in the

detection of the artefacts as depicted in Figure 2. The settings were not specifically tuned
for this particular artefact, but we must admit that it is one of the ‘typical best’ examples.

These improvements have to be implemented carefully, since the new settings can
result in a highly specific detection process, thereby missing a lot of artefacts. One
additional enhancement that should be investigated however, is the use of adaptive
context and test windows. When a significant difference is detected in the test window,
the context window should not shift forwards in time, until the ongoing signal in the test

window is within a ‘valid’ range, based on 2
1

2
2 λλ . This approach also enables accurate

marking of artefacts, without using a ‘prescan’ window.

1 minute, 120 epochs5 sec 5 sec

(λ1) (λ2) (λ3)

Figure 1 Alternative implementation of context related EEG validation, tuned for
high specificity, using ‘context’ and ‘prescan’ windows of 5 seconds, and a ’test’ window of
1 minute. In the current example, epoch length is 0.5 seconds.

Figure 2 Examples of artefact detection using the alternative context detection.
Indicated are the markings by the autoregressive model (AR) and Slope (S) detection.
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EEG validation: integration in the evaluation process

The context related detection procedure as presented in this thesis is not aimed at
detection of specific clinical EEG phenomena. The algorithms merely indicate the
statistical differences between periods or epochs of EEG data. As already indicated by
the relatively low positive prediction of our method (chapter I-3), we have observed that
such statistical ‘changes’ in the EEG are often not artefactual. However, most of these
non-artefacts still presented clinically relevant EEG ‘events’, and were characterised by a
relatively low variability score (based on AR model). All high variability scores (e.g.,

2
1

2
2 λλ  > 20) indicated true artefacts (marked as such by both observers).

Therefore, the EEG validation procedure should be combined with a feature detection
program, which can process the detected ‘events’ of lower variability. A general EEG
processing scheme of measurement, validation, analysis and clinical review is depicted
in Figure 3. The feature detection module can of course consist of several specialised
programs; this advanced (automated) analysis step focuses on specific EEG phenomena
(e.g., arousals, spindles, and spikes). This design will result in a higher true positive rate
for detected features from the valid periods than processing of the raw EEG signal.
Moreover, ‘events’ can be dealt with separately, possibly using more robust settings or
special pre-filtering in the feature detector. When using such a combination of methods,
an optional artefact classification module can also benefit from such an approach (see
Figure 3). Thus conceived, the system allows for optimal tuning of both the validation
process as well as the advanced analysis process.

Validation

artefacts events

unknown detected features

valid EEG periodsEEG signal

Feature detection

robust settings

Artefact classification
(optional)

 special settings

measurement validation advanced (automated) analysis

cl
in

ic
ia

l r
ev

ie
w

Figure 3 Schematic diagram of an EEG evaluation process, incorporating validation
and feature detection. Dashed lines indicate optional processing steps.
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Objective EEG validation

As observed in many EEG studies — the studies in this thesis are no exception —
differences between human observers are unavoidable in visual EEG evaluations (e.g.,
Wilson et al., 1996, 1999). However, we can try to model the human process of validating
EEG signals by detailed analysis of the correlation between 1) each individual observer’s
scoring set, and 2) all parameters used in the automatic evaluation. This perusal will
result in a different set of parameter rules for each observer. Next, the consensus of
scores from several observers can be used to split the rules into generic, and observer-
specific rules.

Instead of calculating the consensus set from the different scores, we can also have the
observers meet in an consensus session, in order to agree on some of their differences in
a joint effort (Pietilä et al., 1994). Ideally, different clinical backgrounds among experts
should be avoided (Williams et al., 1985). From the ‘joint effort consensus scores’ we can
gain insight in several processes. The difference between the initial scoring of an expert
and his/her adjusted scores in the consensus session relates to the level of individual
‘uncertainty’ of scores, much like the intra-expert ‘reproducibility’ comparison as
performed in chapter I-2. Comparison of the joint effort scores versus the calculated
consensus set provides an indication for the acceptable difference between consensus
scores and computer scores.

When applying these principles we may be able to tailor the computerised procedure
to the need of a particular clinical expert or laboratory, using a custom selection of
observer-specific rules, leaving the generic rules intact. In general, this is a proper
procedure when the validation tool is only used as an advisory system for the
neurophysiological expert. Requirements of sensitivity and specificity will be different
for (semi-) automated analysis.

An early advisory/classification system was described by Bodenstein et al. (1985).
Their program provided a summary of a prolonged EEG recording, where different
types of EEG were clustered into groups of ‘alike’ periods based on a spectral distance
criterion. However, a major drawback of this approach is the rigid reduction of a
prolonged recording to only a few raw traces of EEG (representative samples of 5
seconds for each ‘type’ of EEG) on the final one-page ‘summary sheet’. A similar
classification method was described recently by Agarwal et al. (1998), who improved,
and slightly enlarged the summary sheet to two pages, displaying more raw EEG traces.
Still, immediate access to all original EEG traces by ‘clicking’ on a salient detail in the
compressed display should be a standard feature, even when it requires a more powerful
computer or increased network communication.

The absence of a universal analytical model of the EEG hampers the scientific research
on EEG validation and feature detection. Therefore, human observers are involved in the
evaluations, and subsequently all investigations will be afflicted with subjective
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interpretation of the EEG signal. The use of empirical rules and heuristics based on the
stochastic EEG process is inevitable, and the factor of human error must be taken into
account. Although explicitly marked artefacts will probably indicate true artefacts, we
cannot rule out the possibility of artefacts being missed, even by the expert’s eye. The
amount of missed artefacts may even be significant, especially in a consensus set,
resulting in an exaggerated false detection rate (i.e., a low positive prediction) of any
detection method that is compared to the human scores.

EVOKED POTENTIALS

Quality of EP measurements

Quantitative EP assessment

A major difference between EEG and EP measurements is the fact that the EEG is a
stochastic signal, whereas EPs are discrete signals, having known properties. Although
some types of evoked signals can change during the recording (e.g., long latency EPs,
evoked K-complexes during sleep), we have good reasons to believe that waveform
shape changes relatively little during the recording of most sensory EPs. These EPs can be
acquired in relatively short measurements: between 1 minute (middle latency EPs) and
10 minutes (long latency EPs).

Based on these observations, two existing methods for objective signal-to-noise ratio
(SNR) estimation were compared in a large data set of middle latency auditory EPs
(MLAEPs, chapter II-2). Because of the difficult recording conditions, EPs of different
quality were present in the data set, which allowed for a thorough investigation of SNR
related to visual, clinical judgement of EP quality. We found that the (±)-reference
method, originally designed by Schimmel (1967), resulted in the best classification of
clinically ‘acceptable’ and ‘unacceptable’ waveforms.

The EP study in chapter II-2, as well as the subsequent explorative study in long-
latency CNV signals (Contingent Negative Variation, see chapter II-3) indicates that
calculation of the SNR can be performed reliably in the post-stimulus interval around
relatively stable EP components. Since the MLAEPs were obtained during anaesthesia,
the middle latency components were relatively variable. It appeared that the brainstem
interval of 5-15ms is the best predictor for signal quality of the entire MLAEP waveform,
when using the (±)-reference method.

The quality of the MLAEP signal can also be assessed quantitatively by estimating the
noise contribution as the differential signal between successive intermediate averages
(chapter II-4). This new ‘convergence’ factor Qc and the (±)-reference P factor were used
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to find the optimal stimulation rate in the high-frequency random stimulation method
(h1) developed by Cluitmans (1990). The results of this study indicated that the
acquisition time required for MLAEP waveforms of acceptable quality can be reduced to
one minute or shorter, using a mean click rate of 80/second or 90/second.

Artefact detection

Artefact detection using amplitude parameters has been very successful for the
improvement of evoked potentials (EPs) in clinically difficult recording conditions (see
chapter II-1 p. 85, chapter II-2 p. 99, and in the original study of De Beer et al., 1995). This
semi-automatic rejection method uses statistical thresholds based on just a few artefact-
free EP measurements (visual assessment) from the investigated set of EPs, all recorded
under the same conditions.

In the MLAEP study described in chapter II-4, high-pass filtering of the EEG was used
to reduce the adverse influence of slow-wave sleep. This pre-processing did not filter all
artefacts. However, detailed analysis of the SNR quality factors revealed that the
evolution curves of P (±-reference), and Qc (convergence) of individual measurements
should be analysed to detect loss of the EP response caused by artefacts (or other adverse
effects). In an on-line implementation, the expected logarithmic increase of the SNR
curve (power) can be tracked in both P and Qc quality factors based on both brainstem
and middle latency intervals; ‘no-response’ sweeps should be recognised easily. In this
respect, the applied quality factors P and Qc are complementary.

Application in clinical monitoring

Indication of the SNR is still not a standard feature on most commercial EP averaging
equipment. The studies in Part II of this thesis have shown that several methods are
readily available; incorporation of an objective indication of SNR improves the
comparison between studies, and clinical applications will benefit from an increased
awareness about the quality of measurements. A signal-to-noise estimate can also be
used to decide when the evoked potential average has sufficient quality. Currently, the
recording length of EP measurements is based on empirical rules, e.g., 4000 sweeps are
used in a BAEP recording.

In a clinical application, a frequent status update of the investigated EP is desired.
This can for instance be implemented by constant updating of the average: adding new
responses, and deleting the ‘oldest’ sweeps. A practical and reliable implementation of
such a ‘moving average’ EP can be achieved by using an SNR evaluation module, which
controls the adding and deleting of sweeps based on a SNR threshold.

Monitoring of MLAEPs can be improved through the use of high-frequency random
stimulation, according to a Poisson distribution. As stated in the discussion in chapter
II-2, the observed average recording time for clinically acceptable MLAEPs was 100
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seconds; however, this was biased towards higher N (number of sweeps), because of the
procedures used. In chapter II-4 the recording time for adequate MLAEPs was
investigated in detail: the results show that 60 seconds is feasible. When combining the
h1 random stimulation method with other detection techniques, e.g., wavelets (Geva,
1998), ARX (Jensen et al., 1996), or neural networks (Fung et al., 1999), the recording time
may be reduced even more.

OVERALL CONCLUSIONS

Signal validation of the EEG

The application of relatively simple statistical principles was very successful for the
detection of signal disturbances in the investigated EEG data sets.

In a study for the detection of muscle artefact in the EEG, the use of short epochs of
EEG data (0.5 to 2 seconds) yielded the best results. The analysis using a Slope threshold
(first derivative) or absolute ‘high beta’ power showed the best results, matching the
expert’s performance.

A model for EEG signal context, consisting of autoregressive parameters and Slope
parameters in successive epochs, was very successful in the detection of non-
stationarities and artefacts in a large dataset as measured in critically ill patients during
their stay in the intensive care unit. This EEG study pointed out that objective
computerised validation may be applied generally when the signal context is taken into
account in the model(s) or parameters used. An adequate signal period providing
enough context information can be limited to 20 to 40 seconds.

Evoked potential validation

Validation through the use of amplitude parameters is very successful for quality
improvement of EPs. Quantification of the quality of EP measurements can be
implemented by using the (±)-reference method, or by the ‘convergence’ method.

The high-frequency random stimulation method, using a mean click rate of 80/second
or 90/second, yields higher quality MLAEP signals, which can be acquired faster than
conventional, regular stimulation methods.

EEG validation: future directions

For a successful incorporation of automated validation algorithms, clinical experts
must be open to computerised detection of artefacts. The use of objective, statistical
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evaluation methods can help to raise general acceptance. Although computer methods
are not perfect, the results are highly reproducible.

Validation cannot be separated from the (clinical) application area: an additional
feature recognition module may be used for instance for detection of a particular EEG
phenomenon, using pre-processed EEG obtained through a tailored validation step. Both
procedures can benefit from this integration: the overlap between artefact (‘event’)
detection and feature detection can be evaluated in several steps. This approach is
illustrated in Figure 3. The positive prediction and specificity of this integrated
validation/detection process will be higher than in the individual methods.

A better understanding of the way (groups of) clinicians perform EEG evaluation is
essential for the development of automated digital EEG analysis. This is probably more
important than technological progress, e.g., improved amplifiers, electrodes, or ‘ideal’
(50Hz) filters cannot prevent subjective interpretation. In conclusion, validation of EEGs
must be taken seriously; the confirmation that authentic EEG data is used, is a
prerequisite for reliable incorporation of any automated digital EEG analysis in the
future.

Notwithstanding the fact that advanced (automated) analyses and clinical review
focus on specific EEG phenomena, one must not forget that artefacts can also reveal
useful clinical information (Barlow, 1986b). For example: muscle activity or eye
movements in the EEG of an ICU patient can actually indicate a status improvement.
Therefore: 1) EEG signals should always be available in the original format, preferably
accompanied by detailed annotations, and 2) end-conclusions about physiological
changes should be made by an expert clinician.
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Summary

This thesis describes the research on validation of electroencephalographic
measurements: the electroencephalogram (EEG, in Part I), and evoked potentials (EPs, in
Part II). These neurophysiological measurements are generally of very low amplitude and
are easily disturbed by other physiological signals or external sources. The studies on
EEG validation focused on time-related aspects of validation; the research on EP
validation focused on objective assessment of EP signal quality. The work is positioned
in-between the actual recording and the (human or automated) clinical review process.

The general overview in chapter I-1 describes the background of neurophysiological
signals and the (technical) requirements for recording of electroencephalographic data,
focusing on practical issues. The various types of artefacts are described along with
previous work in artefact processing. Subsequently the research in EEG validation and
artefact detection is reviewed, consisting of a section about existing methods for signal
processing and of a section that briefly introduces technical issues in clinical EEG
processing.

The study presented in chapter I-2 deals with automatic detection of muscle artefact in
21 normal human subjects, using (classical) time domain and frequency domain methods.
Distributions as calculated from a reference period in each subject were used to
investigate the statistics of the parameter ranges. Performance of the automatic detection
was compared to human (visual) assessment, using per-subject thresholds, and constant
(empirical) thresholds for the entire data set. The results indicate that a 1-second epoch
length was optimal for detection of muscle artefact. The analysis using a Slope (first
derivative) threshold or absolute ‘high beta’ power (>25Hz) showed the best results in
sensitivity (80%) and specificity (90%), matching the expert’s performance. Constant
threshold settings performed better than statistical thresholds per subject.

Chapter I-3 tackles the problem of artefact detection in seven 24-hour EEG recordings
in the intensive care unit (ICU). ICU recordings have received less attention than e.g.,
epilepsy monitoring, although recordings in this environment present an interesting
application area. The investigated artefact detection methods were based on statistical
differences between signal parameters, using time-varying autoregressive (AR) modeling
and Slope detection. The study focused on the optimal settings for context incorporation
by testing the algorithms for different time windows and epoch lengths against the
artefact markings made by two human observers.
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The results of the ICU study indicated that a relatively short period (20-40 seconds)
provided sufficient context information. The combined AR and Slope detection
parameters yielded good performance, detecting approximately 90% of the artefacts as
indicated by the consensus score of the human observers. However, the accompanying
positive prediction was rather low: only 53%. This rather low positive prediction was
possibly adversely influenced by the use of consensus scores; the consensus may also
have excluded some true artefacts. In addition, it would seem sensible to err towards
high sensitivity (at a cost of lesser positive prediction); this would allow observers to
visually analyse events detected by automation, and categorise them as artefact/non-
artefact.

Part II describes the research on objective assessment of evoked potential (EP) quality.
An EP represents the electrophysiological behaviour of a specific neural pathway, as
measured on the scalp. EPs are signals that can be obtained from advanced processing of
the EEG, often recorded during a repeated task. The different types of EPs are described
in the introduction to Part II, in chapter II-1, which also focuses on artefacts and
procedures specific to EP recordings, and concludes by describing the investigated
methods for quality assessment.

Chapter II-2 describes a study where the usefulness of the (±)-reference method and
the ‘single-point’ method for residual noise estimation was investigated in middle latency
auditory evoked potentials (MLAEPs) obtained during cardiac surgery. The use of
auditory evoked potentials in clinical monitoring is still mainly restricted to research, but
its potential as an indicator for levels of anaesthesia is well established. However, the
auditory evoked potential is a very small signal (investigated post-stimulus interval 0-
200ms, amplitudes <10µV) that can be disturbed easily, which is especially true in the
operating room, where sub-optimal measurement conditions are encountered. Therefore,
automatic monitoring of the quality of the recording is desired.

The visual screening of the signals by human observers was used as a reference for the
performance evaluation of the methods. The best results were obtained when the
computation was restricted to the brainstem part of the MLAEPs. High performance for
detection of evoked potential waveforms ‘acceptable for clinical use’ was obtained by the
(±)-reference method, by combining the quality factor P with the number of sweeps N
contributing to the average. For a selected combination of P > 8dB and N > 2400
(corresponding to a minimal recording time of 30 seconds), the sensitivity for detecting
‘acceptable’ MLAEP waveforms was 87%, with 82% specificity.

The study in chapter II-3 explores a previously acquired data set, consisting of
‘Contingent Negative Variation’ (CNV) waveforms. This signal is measured in a task
where a warning-stimulus and a subsequent response-stimulus are presented to a subject,
which is to be followed by a prompt button-press action. The data set provided an
interesting starting-point to investigate the usefulness of SNR assessment in event related
potentials, which present slower components and larger amplitudes when compared to
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the MLAEP waveforms of chapter II-2. In particular the effect of response lateralization
was examined: the amplitudes of (various parts of) these CNV waveforms were
dependent on the limb used in the response action. This effect was found in the original
study and was indicated here also from the evaluation of the SNR. Several other statistical
significant differences were found in the analyses, leading to the overall conclusion that
the (±)-reference method provides useful information, corroborating the findings from
other amplitude based analyses.

Minimisation of the data-acquisition time required for middle latency auditory evoked
potentials (MLAEPs) is studied in chapter II-4. Shorter measurements can reduce the
influence of non-stationary EEG and artefacts and provide a more frequent status update,
which is crucial for a practical application of these measurements in clinical monitoring.

The study investigated the amplitude characteristics and quality of MLAEPs obtained
using both conventional stimulation and random high-frequency stimulation during
stages ‘Wake’ and stationary NREM2 sleep in 14 human subjects. The evaluation of signal
quality focused on the estimation of signal-to-noise ratios, based on the (±)-reference and
a new ‘convergence’ calculation method. The overall results show the high-frequency
random stimulation method, using a mean click rate of 80/second or 90/second, yields
higher quality MLAEP signals, which can be acquired faster than conventional, regular
stimulation methods.

In conclusion, the research described in this thesis has focused on general applicable
validation methods and the evaluation of the methods in several clinical data sets. The
EEG was modeled through parameterisation of amplitude and/or frequency
characteristics in short signal periods (epochs). In a study for the detection of muscle
artefact in the EEG, the use of short epochs of EEG data (0.5 to 2 seconds) yielded the best
results. The analysis using a Slope threshold (first derivative) or absolute ‘high beta’
power showed the best results, matching the expert’s performance. A model for EEG
signal context, consisting of autoregressive parameters and Slope parameters in
successive epochs, was very successful in the detection of non-stationarities and artefacts
in a large dataset as measured in critically ill patients during their stay in the intensive
care unit. This EEG study pointed out that objective computerised validation may be
applied generally when the signal context is taken into account in the model(s) or
parameters used. A signal period providing adequate context information can be limited
to 20 to 40 seconds. Further research into the performance of different context models and
different parameter settings is necessary for accurate marking of artefacts/events.

Validation through the use of amplitude parameters was very successful for quality
improvement of EPs. Because EPs are discrete signals, having known properties, and EP
waveform shape changes relatively little during the recording, signal context (the
ongoing measurement) can be used to quantify EP quality. This can be implemented
objectively by using the (±)-reference method, or by using the ‘convergence’ method,
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which have been evaluated in Part II of this thesis. The correlation between the calculated
signal-to-noise power ratios and clinical (visually assessed) quality has been
demonstrated clearly. Furthermore, the quality factors were useful for the evaluation of
the high-frequency random stimulation method for middle latency evoked potentials.
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Samenvatting

Dit proefschrift beschrijft het onderzoek naar validatie van elektro-encefalografische
metingen, met betrekking tot het elektro-encefalogram (EEG, in Deel I) en ‘evoked
potential’ metingen (EPs, in Deel II). De gemeten voltages bij dit soort neurofysiologische
metingen zijn in het algemeen erg klein en kunnen makkelijk worden verstoord door
andere fysiologische signalen of externe bronnen. In de EEG studies zijn vooral de
tijdsaspecten van validatie onderzocht; het onderzoek naar EP validatie was gericht op
het objectief bepalen van signaal kwaliteit. Het onderzoek is gepositioneerd tussen de
eigenlijke EEG/EP metingen en het (menselijke of geautomatiseerde) klinische
beoordelingsproces.

In de algemene inleiding van Deel I (hoofdstuk I-1) wordt  de achtergrond van
neurofysiologische signalen beschreven in relatie tot de (technische) eisen voor het meten
van het EEG, met speciale aandacht voor een aantal praktische zaken. De verschillende
types van artefacten (verstoringen) worden beschreven aan de hand van de bestaande
literatuur. Hierna wordt het onderzoek naar EEG validatie en artefact detectie beschreven
in een sectie over bestaande methoden voor signaalverwerking, en in een sectie waarin
een korte introductie wordt gegeven over signaalverwerking in een drietal hoofd-
onderwerpen van de klinische neurofysiologie.

De studie in hoofdstuk I-2 behandelt automatische detectie van spierartefacten in 21
normale menselijke proefpersonen, gebruik makend van (klassieke) tijd-domein en
frequentie-domein methoden. Op basis van de statistische verdelingen van de berekende
parameters, is onderzocht hoe goed de automatische detectie presteerde in relatie tot
menselijke (visuele) beoordeling. De prestaties zijn bepaald voor het gebruik van
parameter-grenzen per individuele proefpersoon (statistisch), en voor het gebruik van
constante parameter-grenzen (empirisch) over de hele data-set. De resultaten geven aan
dat een tijdsduur van 1 seconde voor een ‘epoch’ (stukje signaal) optimaal was voor de
detectie van spierartefacten. De artefact detectie met behulp van parameter-grenzen
gebaseerd op de 1e afgeleide (‘Slope’) en gebaseerd op de frequentie-band boven 25Hz
(‘high beta’) gaven de beste resultaten: een sensitiviteit van 80% en een specificiteit van
90% werden hiermee behaald. Dit benaderde de prestaties van de menselijke expert. Ook
bleek dat constante parameter-grenzen betere prestaties tot gevolg hadden dan
individuele instellingen per proefpersoon.
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Hoofdstuk I-3 gaat in op het probleem van artefacten in zeven 24-uurs registraties van
patiënten tijdens hun verblijf in de intensive care unit (ICU). Patiëntbewaking in de ICU
door middel van het EEG krijgt minder aandacht dan bijvoorbeeld metingen ten behoeve
van epilepsie, maar registraties in deze omgeving vormen een interessant toepassings-
gebied. De onderzochte methoden voor artefact detectie zijn gebaseerd op statistische
verschillen tussen signaal parameters, gebruik makend van in de tijd variërende auto-
regressieve (AR) modellen en Slope detectie. De studie ging nader in op het bepalen van
een optimale context door de algoritmes te testen voor verschillende tijdvensters en epoch
lengtes ten opzichte van de artefact markeringen van twee menselijke beoordelaars.

De resultaten van de ICU studie geven aan dat een relatief korte periode (20-40
seconden) voldoende context informatie bevat. De gecombineerde detectie met AR en
Slope parameters detecteerde ongeveer 90% van alle artefacten, zoals gemarkeerd door
beide menselijke beoordelaars. De hier bij behorende positieve predictie was echter
enigszins laag: slechts 53%. Deze lage positieve predictie is mogelijk beïnvloed door het
gebruik van consensus markeringen; hierdoor zijn waarschijnlijk ook echte artefacten
buiten beschouwing gelaten. Het is overigens zinvol in dit soort studies om een hogere
sensitiviteit te verkiezen boven een hoge positieve predictie, om zo min mogelijk
verstoringen te missen. Na een initiële automatische markering, kunnen gemarkeerde
‘events’ op basis van een nadere visuele beoordeling van de signalen relatief snel worden
ingedeeld als zijnde artefact, of niet-artefact.

Deel II beschrijft het onderzoek naar het objectief bepalen van de kwaliteit van evoked
potential (EP) metingen. Een EP representeert het elektrofysiologische gedrag van een
specifieke zenuwbaan, en wordt meestal gemeten op de schedel door het EEG signaal
verder te bewerken. EPs worden in het algemeen gemeten door een proefpersoon een
bepaalde stimulus herhaald aan te bieden, of deze een bepaalde taak te laten herhalen. De
verschillende types van EPs worden beschreven in de inleiding van Deel II, in hoofdstuk
II-1, waarin ook nader wordt ingegaan op artefacten en meetprocedures specifiek voor EP
metingen. Aan het eind van deze inleiding worden de onderzochte methoden
beschreven, met betrekking tot de rest van Deel II.

Hoofdstuk II-2 beschrijft een studie waarin het gebruik van de (±)-reference methode
en de ‘single-point’ methode voor het schatten van de ruis is geëvalueerd in middle
latency auditieve evoked potentials (MLAEPs) zoals gemeten tijdens hartchirurgie.
Hoewel auditieve evoked potentials ten behoeve van klinische patiëntbewaking nog
voornamelijk alleen in onderzoek worden gebruikt, zijn deze signalen mogelijk geschikt
om het niveau van anesthesie te bepalen. MLAEPs zijn echter hele kleine signalen (het
onderzochte post-stimulus interval beslaat 0-200ms, met amplitudes <10µV) welke
makkelijk kunnen worden verstoord. Dit is vooral een probleem in een operatiekamer,
waar de meetomstandigheden verre van optimaal zijn. Daarom is het automatisch
bepalen van de signaalkwaliteit gewenst.
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De visuele beoordeling van de MLAEPs door menselijke beoordelaars is gebruikt als
referentie voor het bepalen van de prestaties van de gebruikte methoden. De beste
resultaten werden behaald bij het gebruik van slechts het brainstem gedeelte (post-
stimulus interval 5-15ms) van de gemeten signalen. Vooral de (±)-reference methode
presteerde goed in het classificeren van golfvormen, welke als ‘acceptabel voor klinisch
gebruik’ waren ingedeeld. De combinatie van de berekende kwaliteitsfactor P en een
minimaal aantal sweeps N, bijvoorbeeld voor P > 8dB en N > 2400 (een minimale
registratieduur van 30 seconden), leverde een sensitiviteit en specificiteit op van
respectievelijk 87% en 82%.

De studie van hoofdstuk II-3 beschrijft een eerste evaluatie van de signaalkwaliteit in
een data-set, bestaande uit eerder geregistreerde ‘Contingent Negative Variation’ (CNV)
signalen. Het CNV is een signaal dat wordt gemeten gedurende een taak waarin een twee
waarschuwings-stimuli elkaar opvolgen, waarbij een proefpersoon onmiddellijk na het
tweede waarschuwings-signaal op een knop dient te drukken. Deze data-set vormde een
interessant beginpunt om het automatisch bepalen van signaalkwaliteit te onderzoeken in
event related potentials, waar langzamere componenten en hogere amplitudes worden
gemeten dan in de MLAEP golfvormen van hoofdstuk II-2. Hier is vooral het effect van
response lateralisatie onderzocht: de amplitudes in (verschillende delen van) de CNV zijn
afhankelijk van het lichaamsdeel dat is gebruikt bij het indrukken van de knop. Dit effect
was al aangetoond in de originele studie, en is hier ook gevonden door evaluatie van de
signaal-ruis verhouding. De analyses lieten meerdere interessante significante verschillen
zien, met als eindconclusie dat de (±)-reference methode bruikbare informatie oplevert, te
gebruiken voor het staven van andere op signaal-amplitude gebaseerde analyses.

Minimalisatie van de registratie tijd van MLAEPs is onderzocht in hoofdstuk II-4.
Korte metingen kunnen de invloed van niet-stationariteiten en artefacten in het EEG
verminderen. Bovendien kan het MLAEP signaal dan vaker worden bepaald, hetgeen van
cruciaal belang is voor een praktische toepassing van deze metingen in de klinische
patiëntbewaking.

De studie onderzocht de amplitude karakteristieken en de kwaliteit van de MLAEP
signalen, zoals gemeten met conventionele stimulatie en gerandomiseerde hoog-frequent
stimulatie gedurende de slaapstadia ‘waak’ en NREM2 in 14 proefpersonen. Voor de
evaluatie van de signaalkwaliteit (signaal-ruis verhuiding) is gebruik gemaakt van de
(±)-reference, en van een nieuwe methode gebaseerd op het berekenen van de
‘convergentie’ van het signaal. De resultaten laten zien dat de gerandomiseerde hoog-
frequent stimulatie, bij een gemiddelde klik-snelheid van 80/seconde of 90/seconde, een
hogere kwaliteit MLAEP signalen oplevert, welke sneller kunnen worden gemeten dan
met de conventionele, regelmatige stimulatie methode.
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Dit promotiewerk heeft zich gericht op algemeen toepasbare validatie methoden, en de
evaluatie in een aantal experimentele en klinische studies. Het EEG is hierbij
gemodelleerd door parametrisatie van amplitude- en/of frequentie-eigenschappen in
korte tijdsintervallen (epochs). In een studie naar detectie van spierartefacten in het EEG
is aangetoond dat zeer korte epochs (0.5 tot 2 seconden) de beste resultaten opleveren,
waarbij zowel de 1e-afgeleide (amplitude) als een frequentie-band de prestaties van een
menselijke expert benaderen. Een model voor EEG signaalcontext, bestaande uit
autoregressieve parameters van meerdere korte epochs, was succesvol voor het
detecteren van niet-stationairiteiten en artefacten in een grote klinische dataset, bestaande
uit metingen van patiënten gedurende hun verblijf in de intensive care unit. Uit deze EEG
studie bleek dat objectieve validatie door een computer programma mogelijk is wanneer
de signaalcontext meegenomen wordt in de gebruikte modellen en parameters. Verder
onderzoek naar verschillende modellen voor signaalcontext is nodig om te bepalen welke
parameter instellingen optimaal zijn voor het nauwkeurig markeren van artefacten en
events.

Validatie middels amplitude parameters is zeer succesvol gebleken in het verbeteren
van de kwaliteit van evoked potentials. Omdat het EP signaal redelijk kan worden
bepaald, is de signaalcontext (de gemeten responsen) hier te gebruiken voor het
kwantificeren van de EP kwaliteit. Gangbare methoden modelleren dit met behulp van
de amplitude variabiliteit in EP en EEG; dit is hier verder uitgewerkt. Een objectieve
bepaling van de signaalkwaliteit kan worden geïmplementeerd met gebruikmaking van
de (±)-reference methode, en de ‘convergentie’ methode. De hiermee berekende kwaliteit
is duidelijk gerelateerd aan klinische (visueel bepaalde) kwaliteit. Ook waren deze
methoden bruikbaar in de evaluatie van een alternatieve, hoog-frequent, random
stimulatie meetmethode voor middle latency auditieve evoked potentials.
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Nawoord

Het onderzoekswerk beschreven in dit proefschrift is, zoals ook al blijkt uit de auteurs
bij verschillende hoofdstukken, natuurlijk niet door één persoon verricht. De inhoud van
dit boekje had nooit tot stand kunnen komen zonder de sturing, de inzet, het meeleven,
en bijdragen van een groot aantal mensen.

Eerst en vooral wil ik Pierre Cluitmans bedanken. Pierre, je was al vanaf mijn
afstudeeronderzoek een inspiratiebron voor het ontdekken van de wereld der
neurofysiologie, en de (on)mogelijkheden van signaalverwerking in dit vakgebied.
Bedankt voor alle tips, aangewezen richtingen, en het samen opzetten van onderzoek. Je
kritische leeswerk en opmerkingen waren vanaf het eerste begin van dit proefschrift tot
aan de laatste veranderingen bijzonder waardevol. Het was een groot genoegen om jou
als begeleider en collega te hebben.

Professor Beneken wil ik vooral danken voor de inspiratie om niet alleen op een
wetenschappelijke manier onderzoek te verrichten, maar het daarna ook goed op te
schrijven. Nadat ik enigszins had geworsteld met de grote lijn van het proefschrift, kwam
het overzicht in het schrijfwerk pas na de suggestie om het geheel in twee duidelijk
herkenbare delen op te splitsen. Ook professor Brunia wil ik hartelijk danken voor de
interesse in mijn (grotendeels niet-psychofysiologische) onderzoekswerk, het secure
leeswerk, en het commentaar op de eerdere versies van dit proefschrift. Alle
opmerkingen waren even waardevol als leerzaam, waardoor het vooral een beter
afgerond geheel vormt.

Op deze plaats ook een belangrijk woord van dank richting het Epilepsiecentrum (en
Slaap/Waakcentrum) Kempenhaeghe. De samenwerking met de afdeling Klinische
Neurofysiologie was uitstekend, en een uitkomst qua locatie. Alle hulde voor de fijne
contacten, de praktische en kritische houding, en het uitgevoerde werk: Johan Arends,
Laurel Beecher, Guus Declerck, Gerard van Erp, Paul Griep, de technische staf, en de zeer
kundige EEG-laboranten (met name Erna en Joke bij het onderzoek in II-4). Mede door de
tijd op Kempenhaeghe is mijn belangstelling voor signaalverwerking en automatisering
in de klinische neurofysiologie gegroeid. Zonder jullie waren grote delen van dit
proefschrift niet tot stand gekomen. Op deze plaats wil ik ook alle proefpersonen
bedanken voor hun wezenlijke bijdrage; zonder meetgegevens geen onderzoek!

Een andere bijzondere samenwerking vond plaats in het kader van de Europese
projecten IMPROVE en IBIS. De meetings waren warm en inspirerend; nieuwe ideeën
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ontstonden vooral dankzij de informele sfeer. In relatie tot dit proefschrift wil ik speciaal
noemen: Bob Ghosh, Mark van Gils, Ilkka Korhonen, Pamela Prior. Thanks for the
cooperation, your interest in my work, thank you for all the shared ideas.

Koen Böcker wil ik bedanken voor het behulpzaam zijn bij het ‘uitlenen’ van zijn data,
alsmede voor zijn commentaar op de eerste versie van het hoofdstuk II-3. Ook de andere
Tilburgse collega’s hartelijk dank voor het samen discussieren, het begeleiden van
afstudeerders: Geert van Boxtel en Greet van den Berg-Lenssen.

Terug naar de ‘eigen’ universiteit. Stagiairs, afstudeerders (met name Steven van Dijk
en Marco Salden), en alle collega’s van de groep Medische Elektrotechniek heel erg
hartelijk bedankt voor de plezierige samenwerking, de leuke activiteiten, de interessante
uitjes, en de gezellige koffie-uurtjes. Weg van de vakgroep, waar ik ruim zeven jaar heb
gewerkt, is toch anders. Geert, Hans, Harrie, Herman, Sjef, Sjoerd, Wim, Yvonne, en
Andriana, Bart, Bert, Eelco, Erik, Gulian, Harald, Johan, Luc, Marcel, Mark, Nicole, Pieter,
Piet-Hein, Raymond, Rob, Wendela, Wim: bedankt!

Een van de belangrijkste bijdragen kwam van Margit Horsthuis, partner in ‘food’-
crime en andere belangrijke dingen. De inspiratie uit bijv. chocolade, toetjes, en taartjes
niet alleen te hoeven ophalen was heerlijk; allerbelangrijkst was het dat je mij door de
moeilijke perioden van het schrijven heen hebt ‘gecoached’.

Ook de belangstelling van mijn ouders, broers, en andere familie, heeft, net als alle
contacten in muzikale sfeer, bijgedragen aan het afronden van dit werk.
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Maarten van de Velde was born in The Netherlands, December 12, 1965. He graduated
at the Medical Electrical Engineering (EME) group at Eindhoven University of
Technology (TUE), in 1991. His Master’s project focused on the analysis of spectral
features of electroencephalographic signals during anaesthesia. Subsequently, he has
worked at TUE/EME on signal-processing software for the group’s research on evoked
potentials, and was part of the development team for standardised data acquisition in a
large international clinical study. From 1994 to 1998 he conducted his Ph.D. project at the
TUE, collaborating with the Dept. of Clinical Neurophysiology at Kempenhaeghe (Heeze,
The Netherlands) and the European IMPROVE/IBIS projects (patient monitoring in ICU).
This work focused on signal validation, artefact detection and quality estimation of
spontaneous and evoked electroencephalographic brain activity, which resulted in the
current thesis.

From 1998 to 1999 he was employed in the areas of functional design and object
oriented software development at Origin IT-Services, The Netherlands. Currently, he is
pursuing a career that combines professional software development and scientific
research. Apart from biomedical engineering and neuroscience in general, his research
interests include signal processing and modeling/simulation of (bio-)medical processes.

In his spare time, he enthusiastically plays the clarinet in a chamber orchestra and in
the Edison Quintet , for which he also arranges new repertoire. Previously, he has
played the clarinet and saxophone in numerous ensembles, ranging from small solo-
performances to big-band and symphonic orchestras.



“What does that mean, Expiremental Proseedcake?” said Pooh.

“For I am only a Bear with Very Little Brain, and long words Bother me.”

(after A.A. Milne)



Statements pertaining to the thesis “Signal Validation in Electroencephalography Research”
by Maarten van de Velde

1. Artefacts in the EEG can be recognised from a context period of 1 minute.

This thesis

2. a) Quality assessment of sensory evoked potentials by a computerised method
performs at least as good as visual inspection.
b) Quantitative assessment of the signal-to-noise ratio of evoked potentials adds
significantly to further signal analysis.

This thesis

3. The complexity of algorithm design for any analysis method increases proportional
to the number of domain experts involved.

4. Finding an artefact in EEG research resembles finding an artefact in archaeology:
the beginning marks the start of a systematic search for a complete model.

(based on personal communication with P.J.M. Cluitmans)

6. The lack of a generally accepted format for clinical data recording hinders the
development of wider applications for patient monitoring using the EEG.

This thesis

7. The AWK scripting language is more useful for data processing than a spreadsheet
program.

8. Data-fusion resolves diffusion and confusion.



9. ‘Knowledge is power’, but true learning is more than cyclic in(ter)ference.

(‘Imagination is more important than knowledge’ – A. Einstein)

10. Often statistics are used like a drunken man uses lamp posts — for support rather
than illumination.

(Fortune cookie)

11. We are only consciously aware of changing sensory input or active mental thought.
Therefore, the Zen-aspired ‘timeless’ higher level of consciousness cannot reach
individual consciousness.

12. The musical importance of embouchure for playing a wind instrument is underscored
by its relation to the physical harmony of smiling.

Eindhoven, 17 January 2000
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