537 research outputs found

    Automating the Reconstruction of Neuron Morphological Models: the Rivulet Algorithm Suite

    Get PDF
    The automatic reconstruction of single neuron cells is essential to enable large-scale data-driven investigations in computational neuroscience. The problem remains an open challenge due to various imaging artefacts that are caused by the fundamental limits of light microscopic imaging. Few previous methods were able to generate satisfactory neuron reconstruction models automatically without human intervention. The manual tracing of neuron models is labour heavy and time-consuming, making the collection of large-scale neuron morphology database one of the major bottlenecks in morphological neuroscience. This thesis presents a suite of algorithms that are developed to target the challenge of automatically reconstructing neuron morphological models with minimum human intervention. We first propose the Rivulet algorithm that iteratively backtracks the neuron fibres from the termini points back to the soma centre. By refining many details of the Rivulet algorithm, we later propose the Rivulet2 algorithm which not only eliminates a few hyper-parameters but also improves the robustness against noisy images. A soma surface reconstruction method was also proposed to make the neuron models biologically plausible around the soma body. The tracing algorithms, including Rivulet and Rivulet2, normally need one or more hyper-parameters for segmenting the neuron body out of the noisy background. To make this pipeline fully automatic, we propose to use 2.5D neural network to train a model to enhance the curvilinear structures of the neuron fibres. The trained neural networks can quickly highlight the fibres of interests and suppress the noise points in the background for the neuron tracing algorithms. We evaluated the proposed methods in the data released by both the DIADEM and the BigNeuron challenge. The experimental results show that our proposed tracing algorithms achieve the state-of-the-art results

    Modelling Neuron Morphology: Automated Reconstruction from Microscopy Images

    Get PDF
    Understanding how the brain works is, beyond a shadow of doubt, one of the greatest challenges for modern science. Achieving a deep knowledge about the structure, function and development of the nervous system at the molecular, cellular and network levels is crucial in this attempt, as processes at all these scales are intrinsically linked with higher-order cognitive functions. The research in the various areas of neuroscience deals with advanced imaging techniques, collecting an increasing amounts of heterogeneous and complex data at different scales. Then, computational tools and neuroinformatics solutions are required in order to integrate and analyze the massive quantity of acquired information. Within this context, the development of automaticmethods and tools for the study of neuronal anatomy has a central role. The morphological properties of the soma and of the axonal and dendritic arborizations constitute a key discriminant for the neuronal phenotype and play a determinant role in network connectivity. A quantitative analysis allows the study of possible factors influencing neuronal development, the neuropathological abnormalities related to specific syndromes, the relationships between neuronal shape and function, the signal transmission and the network connectivity. Therefore, three-dimensional digital reconstructions of soma, axons and dendrites are indispensable for exploring neural networks. This thesis proposes a novel and completely automatic pipeline for neuron reconstruction with operations ranging from the detection and segmentation of the soma to the dendritic arborization tracing. The pipeline can deal with different datasets and acquisitions both at the network and at the single scale level without any user interventions or manual adjustment. We developed an ad hoc approach for the localization and segmentation of neuron bodies. Then, various methods and research lines have been investigated for the reconstruction of the whole dendritic arborization of each neuron, which is solved both in 2D and in 3D images

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons.

    Get PDF
    In the Drosophila antenna, different subtypes of olfactory receptor neurons (ORNs) housed in the same sensory hair (sensillum) can inhibit each other non-synaptically. However, the mechanisms underlying this underexplored form of lateral inhibition remain unclear. Here we use recordings from pairs of sensilla impaled by the same tungsten electrode to demonstrate that direct electrical ("ephaptic") interactions mediate lateral inhibition between ORNs. Intriguingly, within individual sensilla, we find that ephaptic lateral inhibition is asymmetric such that one ORN exerts greater influence onto its neighbor. Serial block-face scanning electron microscopy of genetically identified ORNs and circuit modeling indicate that asymmetric lateral inhibition reflects a surprisingly simple mechanism: the physically larger ORN in a pair corresponds to the dominant neuron in ephaptic interactions. Thus, morphometric differences between compartmentalized ORNs account for highly specialized inhibitory interactions that govern information processing at the earliest stages of olfactory coding

    How to describe a cell: a path to automated versatile characterization of cells in imaging data

    Get PDF
    A cell is the basic functional unit of life. Most ulticellular organisms, including animals, are composed of a variety of different cell types that fulfil distinct roles. Within an organism, all cells share the same genome, however, their diverse genetic programs lead them to acquire different molecular and anatomical characteristics. Describing these characteristics is essential for understanding how cellular diversity emerged and how it contributes to the organism function. Probing cellular appearance by microscopy methods is the original way of describing cell types and the main approach to characterise cellular morphology and position in the organism. Present cutting-edge microscopy techniques generate immense amounts of data, requiring efficient automated unbiased methods of analysis. Not only can such methods accelerate the process of scientific discovery, they should also facilitate large-scale systematic reproducible analysis. The necessity of processing big datasets has led to development of intricate image analysis pipelines, however, they are mostly tailored to a particular dataset and a specific research question. In this thesis I aimed to address the problem of creating more general fully-automated ways of describing cells in different imaging modalities, with a specific focus on deep neural networks as a promising solution for extracting rich general-purpose features from the analysed data. I further target the problem of integrating multiple data modalities to generate a detailed description of cells on the whole-organism level. First, on two examples of cell analysis projects, I show how using automated image analysis pipelines and neural networks in particular, can assist characterising cells in microscopy data. In the first project I analyse a movie of drosophila embryo development to elucidate the difference in myosin patterns between two populations of cells with different shape fate. In the second project I develop a pipeline for automatic cell classification in a new imaging modality to show that the quality of the data is sufficient to tell apart cell types in a volume of mouse brain cortex. Next, I present an extensive collaborative effort aimed at generating a whole-body multimodal cell atlas of a three-segmented Platynereis dumerilii worm, combining high resolution morphology and gene expression. To generate a multi-sided description of cells in the atlas I create a pipeline for assigning coherent denoised gene expression profiles, obtained from spatial gene expression maps, to cells segmented in the EM volume. Finally, as the main project of this thesis, I focus on extracting comprehensive unbiased cell morphology features from an EM volume of Platynereis dumerilii. I design a fully unsupervised neural network pipeline for extracting rich morphological representations that enable grouping cells into morphological cell classes with characteristic gene expression. I further show how such descriptors could be used to explore the morphological diversity of cells, tissues and organs in the dataset

    The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System

    Get PDF
    The honeybee standard brain (HSB) serves as an interactive tool for relating morphologies of bee brain neurons and provides a reference system for functional and bibliographical properties (http://www.neurobiologie.fu-berlin.de/beebrain/). The ultimate goal is to document not only the morphological network properties of neurons collected from separate brains, but also to establish a graphical user interface for a neuron-related data base. Here, we review the current methods and protocols used to incorporate neuronal reconstructions into the HSB. Our registration protocol consists of two separate steps applied to imaging data from two-channel confocal microscopy scans: (1) The reconstruction of the neuron, facilitated by an automatic extraction of the neuron's skeleton based on threshold segmentation, and (2) the semi-automatic 3D segmentation of the neuropils and their registration with the HSB. The integration of neurons in the HSB is performed by applying the transformation computed in step (2) to the reconstructed neurons of step (1). The most critical issue of this protocol in terms of user interaction time – the segmentation process – is drastically improved by the use of a model-based segmentation process. Furthermore, the underlying statistical shape models (SSM) allow the visualization and analysis of characteristic variations in large sets of bee brain data. The anatomy of neural networks composed of multiple neurons that are registered into the HSB are visualized by depicting the 3D reconstructions together with semantic information with the objective to integrate data from multiple sources (electrophysiology, imaging, immunocytochemistry, molecular biology). Ultimately, this will allow the user to specify cell types and retrieve their morphologies along with physiological characterizations
    • …
    corecore