24 research outputs found

    A Linear Logic Based Approach to Timed Petri Nets

    Get PDF
    1.1 Relationship between Petri net and linear logic Petri nets were first introduced by Petri in his seminal Ph.D. thesis, and both the theory and the applications of his model have flourished in concurrency theory (Reisig & Rozenberg, 1998a; Reisig & Rozenberg, 1998b)

    State of B\"uchi Complementation

    Full text link
    Complementation of B\"uchi automata has been studied for over five decades since the formalism was introduced in 1960. Known complementation constructions can be classified into Ramsey-based, determinization-based, rank-based, and slice-based approaches. Regarding the performance of these approaches, there have been several complexity analyses but very few experimental results. What especially lacks is a comparative experiment on all of the four approaches to see how they perform in practice. In this paper, we review the four approaches, propose several optimization heuristics, and perform comparative experimentation on four representative constructions that are considered the most efficient in each approach. The experimental results show that (1) the determinization-based Safra-Piterman construction outperforms the other three in producing smaller complements and finishing more tasks in the allocated time and (2) the proposed heuristics substantially improve the Safra-Piterman and the slice-based constructions.Comment: 28 pages, 4 figures, a preliminary version of this paper appeared in the Proceedings of the 15th International Conference on Implementation and Application of Automata (CIAA

    VLDL Satisfiability and Model Checking via Tree Automata

    Get PDF
    We present novel algorithms solving the satisfiability problem and the model checking problem for Visibly Linear Dynamic Logic (VLDL) in asymptotically optimal time via a reduction to the emptiness problem for tree automata with B\"uchi acceptance. Since VLDL allows for the specification of important properties of recursive systems, this reduction enables the efficient analysis of such systems. Furthermore, as the problem of tree automata emptiness is well-studied, this reduction enables leveraging the mature algorithms and tools for that problem in order to solve the satisfiability problem and the model checking problem for VLDL.Comment: 14 page

    The Hanoi Omega-Automata Format

    Get PDF
    We propose a flexible exchange format for ω-automata, as typically used in formal verification, and implement support for it in a range of established tools. Our aim is to simplify the interaction of tools, helping the research community to build upon other people’s work. A key feature of the format is the use of very generic acceptance conditions, specified by Boolean combinations of acceptance primitives, rather than being limited to common cases such as Büchi, Streett, or Rabin. Such flexibility in the choice of acceptance conditions can be exploited in applications, for example in probabilistic model checking, and furthermore encourages the development of acceptance-agnostic tools for automata manipulations. The format allows acceptance conditions that are either state-based or transition-based, and also supports alternating automata

    The Complexity of Enriched Mu-Calculi

    Full text link
    The fully enriched μ-calculus is the extension of the propositional μ-calculus with inverse programs, graded modalities, and nominals. While satisfiability in several expressive fragments of the fully enriched μ-calculus is known to be decidable and ExpTime-complete, it has recently been proved that the full calculus is undecidable. In this paper, we study the fragments of the fully enriched μ-calculus that are obtained by dropping at least one of the additional constructs. We show that, in all fragments obtained in this way, satisfiability is decidable and ExpTime-complete. Thus, we identify a family of decidable logics that are maximal (and incomparable) in expressive power. Our results are obtained by introducing two new automata models, showing that their emptiness problems are ExpTime-complete, and then reducing satisfiability in the relevant logics to these problems. The automata models we introduce are two-way graded alternating parity automata over infinite trees (2GAPTs) and fully enriched automata (FEAs) over infinite forests. The former are a common generalization of two incomparable automata models from the literature. The latter extend alternating automata in a similar way as the fully enriched μ-calculus extends the standard μ-calculus.Comment: A preliminary version of this paper appears in the Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP), 2006. This paper has been selected for a special issue in LMC

    Structural Reductions and Stutter Sensitive Properties

    Full text link
    Verification of properties expressed as ω\omega-regular languages such as LTL can benefit hugely from stutter insensitivity, using a diverse set of reduction strategies. However properties that are not stutter invariant, for instance due to the use of the neXt operator of LTL or to some form of counting in the logic, are not covered by these techniques in general. We propose in this paper to study a weaker property than stutter insensitivity. In a stutter insensitive language both adding and removing stutter to a word does not change its acceptance, any stuttering can be abstracted away; by decomposing this equivalence relation into two implications we obtain weaker conditions. We define a shortening insensitive language where any word that stutters less than a word in the language must also belong to the language. A lengthening insensitive language has the dual property. A semi-decision procedure is then introduced to reliably prove shortening insensitive properties or deny lengthening insensitive properties while working with a \emph{reduction} of a system. A reduction has the property that it can only shorten runs. Lipton's transaction reductions or Petri net agglomerations are examples of eligible structural reduction strategies. We also present an approach that can reason using a partition of a property language into its stutter insensitive, shortening insensitive, lengthening insensitive and length sensitive parts to still use structural reductions even when working with arbitrary properties. An implementation and experimental evidence is provided showing most non-random properties sensitive to stutter are actually shortening or lengthening insensitive.Comment: 24 pages, extended version of FORTE'22 paper "LTL under reductions with weaker conditions than stutter invariance" arXiv:2111.0334
    corecore