

The Hanoi Omega-Automata Format
Babiak, Tomas; Blahoudek, Frantisek; Duret-Lutz, Alexandre; Klein, Joachim; Kretinsky, Jan;
Muller, David; Parker, David; Strejcek, Jan
DOI:
10.1007/978-3-319-21690-4_31

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Babiak, T, Blahoudek, F, Duret-Lutz, A, Klein, J, Kretinsky, J, Muller, D, Parker, D & Strejcek, J 2015, The Hanoi
Omega-Automata Format. in D Kroening & CS Psreanu (eds), Computer Aided Verification : 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. vol. 9206 LNCS,
Springer, pp. 479-486, 27th International Conference, Computer Aided Verification, San Francisco, United
States, 18/07/15. https://doi.org/10.1007/978-3-319-21690-4_31

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21690-4_31

Checked Jan 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://doi.org/10.1007/978-3-319-21690-4_31
https://research.birmingham.ac.uk/portal/en/publications/the-hanoi-omegaautomata-format(b830d624-43be-45b5-957d-edbbebfc9995).html

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

The Hanoi Omega-Automata Format?

Tomáš Babiak1, Frantǐsek Blahoudek1, Alexandre Duret-Lutz2,
Joachim Klein3, Jan Křet́ınský5, David Müller3,

David Parker4, and Jan Strejček1

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 LRDE, EPITA, Le Kremlin-Bicêtre, France
3 Technische Universität Dresden, Germany

4 University of Birmingham, UK
5 IST Austria

Abstract. We propose a flexible exchange format for ω-automata, as
typically used in formal verification, and implement support for it in a
range of established tools. Our aim is to simplify the interaction of tools,
helping the research community to build upon other people’s work. A
key feature of the format is the use of very generic acceptance conditions,
specified by Boolean combinations of acceptance primitives, rather than
being limited to common cases such as Büchi, Streett, or Rabin. Such
flexibility in the choice of acceptance conditions can be exploited in ap-
plications, for example in probabilistic model checking, and furthermore
encourages the development of acceptance-agnostic tools for automata
manipulations. The format allows acceptance conditions that are either
state-based or transition-based, and also supports alternating automata.

1 Introduction

Finite automata over infinite words, ω-automata, play a crucial role in formal
verification. For instance, they are a key component in the automata-theoretic
approach to LTL model checking [21], where the property in question is encoded
as an ω-automaton. There is a long history of research and ongoing tool devel-
opment, trying to produce more compact automata in theory and in practice.

Formats to represent ω-automata have mostly been defined in an ad-hoc
manner, tailored to their particular tools, setting and scope, and tend to be
restricted to a few specific acceptance conditions. For classical Büchi automata,

? T. Babiak, F. Blahoudek, and J. Strejček have been supported by The Czech Science
Foundation, grant GBP202/12/G061. J. Klein and D. Müller have been supported
by the DFG through the collaborative research centre HAEC (SFB 912), the Excel-
lence Initiative by the German Federal and State Governments (cluster of excellence
cfAED and Institutional Strategy), the Graduiertenkolleg QuantLA (1763), and the
DFG/NWO-project ROCKS, and the EU-FP-7 grant MEALS (295261). J. Křet́ınský
has been supported in part by the European Research Council (ERC) under grant
267989 (QUAREM), by the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE) and Z211-N23 (Wittgenstein Award), and by the People Programme (Marie
Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-
2013) under REA grant agreement No 291734.

2 Tomáš Babiak et al.

0 1
p1

p0 ∧ ¬p1 >

(a) The automaton. . .

2 1

0 1 -1

1 p1

0 & p0 ! p1

-1

1 0 0 -1

1 t

-1

(b) . . . in LBT’s format

never { /* p0 U p1 */

T0_init:

if

:: ((p1)) ->

goto accept_all

:: ((p0) && (!(p1))) ->

goto T0_init

fi;

accept_all:

skip

}

(c) . . . as a never claim

HOA: v1

name: "p0 U p1"

States: 2

Start: 0

AP: 2 "p0" "p1"

acc-name: Buchi

Acceptance: 1 Inf(0)

--BODY--

State: 0

[1] 1

[0&!1] 0

State: 1 {0}

[t] 1

--END--

(d) . . . in HOA format

Fig. 1: A Büchi automaton for the LTL formula p0 U p1 encoded in three formats.

tools often use Spin’s never claims [8] (see Fig. 1(c)), or LBT’s format [17] (see
Fig. 1(b)), which can also represent generalized Büchi automata and which was
extended with transition-based acceptance by LBTT [19]. For Rabin and Streett
automata, the format of ltl2dstar [10] can be used, provided those automata
are complete, deterministic, and use state-based acceptance.

The one format that covers most common acceptance conditions (Büchi, gen-
eralized Büchi, co-Büchi, Rabin, Streett, etc.) and automata structures (deter-
ministic, non-deterministic, and alternating) is the XML-based Goal File Format
(GFF) used internally by the Goal tool [20]. It uses specific encodings for the
different acceptance conditions. For instance, there is a special notation to define
the sets in each acceptance pair of Rabin conditions. This necessitates changes
to the format and its parsers when introducing new acceptance conditions and
makes acceptance-agnostic manipulations difficult.

Based on our experience as implementers of tools producing, consuming, and
manipulating ω-automata, we have set out to define a common, flexible, and
extensible format for representing ω-automata in a uniform way. The result is the
Hanoi Omega-Automata (HOA) format.1 A crucial feature is the introduction
of a generic way to specify the acceptance condition as an arbitrary Boolean
formula over the acceptance primitives “infinitely often” and “finitely often”,
covering the common acceptance conditions discussed so far and more.

Firstly, this approach facilitates the exchange and usage of new acceptance
conditions, which can provide important gains in efficiency. For instance, the
generalized Rabin condition [13] has led to an orders-of-magnitude speed-up of
probabilistic LTL model checking [3, 12]. Secondly, it offers flexibility in the
choice of acceptance conditions, which can again be quite beneficial in practice,
such as for deterministic Streett and Rabin automata [9], where there is an
exponential worst-case size difference in both directions [16].

1 The discussion about this format started during ATVA’13 in Hanoi, hence the name.

The Hanoi Omega-Automata Format 3

Thirdly, arbitrary Boolean combinations of acceptance conditions can be ex-
ploited. For example, building a deterministic automaton for an LTL formula
using a product of the automata constructed for its subformulas can be ben-
eficial in practice [9]. But this normally only works when the structure of the
formula and acceptance condition are aligned, e.g., conjunctive formulas and
a conjunctive acceptance condition such as Streett. With generic acceptance,
it becomes possible to compositionally construct automata using disjunction,
conjunction, and negation of deterministic automata with unrelated acceptance
conditions. For some verification problems, such as probabilistic model checking
of LTL in Markov chains, this generic acceptance condition can be used directly
for verification.

The HOA format offers flexibility in other respects too. It supports various
structural variants of ω-automata such as labels on states or transitions and
state-based or transition-based acceptance, and can describe deterministic, non-
deterministic, and alternating automata. Despite its generality, the format also
contains features that allow a concise and readable representation in special cir-
cumstances, such as when dealing with deterministic complete automata, where
the number of transitions per state is constant.

We have implemented support for the HOA format in various established
tools, as detailed in Section 3, and are already seeing several of the intended
benefits. Interaction between existing tools has become significantly easier: they
are no longer restricted by the particular format of automata used, but only by
the algorithms implemented to work with them. This shortens development time
and can bring performance gains, as described above. It also facilitates research
into new types of automata; for instance the intermediate co-Büchi alternating
automata built by ltl3ba can now be exported to an easily-readable format.
More generally, we hope to stimulate the development of acceptance-agnostic
tools for the automata construction pipeline, e.g., for doing structural transfor-
mations such as switching between state- and transition-based acceptance or for
reduction algorithms that do not rely on a particular acceptance condition.

2 Main Features of the HOA Format

The HOA format currently supports the following:

– deterministic, non-deterministic, and alternating ω-automata,
– both state-labelled and transition-labelled ω-automata,
– generic acceptance conditions, specified in a uniform and extensible way,
– both state-based and transition-based acceptance.

The format was also designed to:

– be succinct and human-readable,
– be extensible, by allowing additional information to be stored in the headers,
– support streaming, for processing automata in batches.

The full specification of the format and some examples can be found at http://
adl.github.io/hoaf/. Below, we discuss a few of the most important features.

http://adl.github.io/hoaf/
http://adl.github.io/hoaf/

4 Tomáš Babiak et al.

As seen in Figure 1(d), an automaton is defined in two parts: a header that
specifies the characteristics of the automaton, and a body that gives the tran-
sition structure, the labels of states or transitions (in square brackets), and the
acceptance sets (in curly brackets). Numbers in the body outside any brackets
always refer to states. Labels (in square brackets) are Boolean formulas over in-
tegers that index the atomic propositions listed in the AP: header. Using indices
instead of atomic propositions makes it easy to rename an atomic proposition,
and allows using arbitrarily long names without bloating the resulting file.

Header lines that start with a capital letter are supposed to affect the se-
mantics of the automaton, while header lines that start with a lower-case letter
are only informative. The HOA specification reserves a few header names, but
additional headers can be added as needed. This gives an easy and robust way
for automata producers to extend the format and emit additional information
about the automaton: Consumers that encounter a capitalized header they do
not understand should report an error, but can safely ignore a lower-case one.

The Acceptance: line specifies the acceptance condition formally. This line
has the form “Acceptance: n acc”, where n gives the number of acceptance
sets used, subsequently named 0, . . . , n− 1, and acc is a formula built according
to the following grammar.

acc ::= f | t | Inf(s) | Inf(!s) | Fin(s) | Fin(!s) | acc&acc | acc|acc | (acc)

Above, s denotes one of the acceptance sets. Membership in these sets for states
and transitions is defined in the body of the automaton. A run satisfies an
acceptance primitive Inf(s) or Fin(s) iff it visits the acceptance set s infinitely
often or at most finitely often, respectively. The same notations with !s refer to
the complement of the set s.2 A run is accepting if it satisfies the acceptance
condition acc. We do not need a negation operator, as negation can be pushed
into the acceptance primitives, e.g., ¬Inf(s) is equivalent to Fin(s).

In the case of Figure 1(d), there is only one acceptance set, and accepting runs
should visit this acceptance set infinitely often. In the body of the automaton,
state 1 is marked with {0}, meaning that it belongs to the set 0.

Rabin acceptance with 3 pairs of acceptance sets could be defined as follows:

Acceptance: 6 (Fin(0)&Inf(1))|(Fin(2)&Inf(3))|(Fin(4)&Inf(5))

Here, a run is accepting if it visits set 0 finitely and set 1 infinitely often, or set
2 finitely and set 3 infinitely often, or analogously for sets 4 and 5.

Figure 2 shows an example of a transition-based generalized deterministic Ra-
bin automaton (such as produced internally by ltl3dra before optimizations).
Here, acceptance sets are expressed in terms of transitions. As a final exam-
ple, Figure 3 shows an alternating transition-based co-Büchi automaton, such as
those studied by Tauriainen [18]. Alternation is supported by allowing a tran-
sition to have multiple destinations. Runs over alternating automata are trees,
and in this example a run is accepting iff the only transition in the acceptance

2 Readers familiar with LTL can interpret Inf(s), Fin(s), Inf(!s), Fin(!s) as mean-
ing GFps, FG¬ps, GF¬ps, FGps, where ps is the property “belongs to set s”.

The Hanoi Omega-Automata Format 5

0

1

ab̄ 3 ab
1 3
4

āb̄0 āb
0

4
ab̄ 3ab

1

3

4

āb̄ 0 āb
0

4

(a) The automaton. . .

HOA: v1

name: "G(Fa && XFb)"

States: 2

Start: 0

acc-name:

generalized-Rabin 2 1 2

Acceptance:

5 (Fin(0)&Inf(1))

| (Fin(2)&Inf(3)&Inf(4))

AP: 2 "a" "b"

--BODY--

State: 0

[0 & !1] 0 {3}

[0 & 1] 0 {1 3 4}

[!0 & !1] 1 {0}

[!0 & 1] 1 {0 4}

State: 1

[0 & !1] 0 {3}

[0 & 1] 0 {1 3 4}

[!0 & !1] 1 {0}

[!0 & 1] 1 {0 4}

--END--

(b) . . . and its HOA representation.

Fig. 2: A (non-simplified) transition-based generalized deterministic Rabin au-
tomaton for the LTL formula G(Fa ∧ XFb).

set 0 is visited finitely often in all the branches, as specified by the Acceptance:

line. This example also demonstrates that states may be named.
In general, most of the tools that are the ultimate consumers of HOA au-

tomata, such as model checkers, will employ algorithms restricted to particular
acceptance conditions. There are often multiple ways to syntactically structure
the acceptance condition. For example, the Rabin acceptance can be expressed
with the sets in the pairs swapped or complemented, as in Krishnan et al. [14].
Therefore, we specify canonical expression and acceptance set indices for the
common acceptance conditions, and an optional acc-name: header line which
helps tools to detect acceptance conditions they support. However, as discussed
in the introduction, some verification procedures can make direct use of generic
acceptance conditions.

3 Application Support
We have implemented support for HOA in a range of tools, with the current
status available at http://adl.github.io/hoaf/support.html, including links
to releases of each tool and a Live CD ISO for easy investigation of them all.

HOA generation. Generating automata in the HOA format is now sup-
ported by several tools: ltl2dstar [10], which translates LTL to determinis-

0Fa 1 >

2

G(b ∧ Xc)

3

c

0
>

a

>

b

c

(a) The automaton. . .

HOA: v1

name: "(Fa&G(b&Xc))|c"

States: 4

Start: 0&2

Start: 3

acc-name: co-Buchi

Acceptance: 1 Fin(0)

AP: 3 "a" "b" "c"

--BODY--

State: 0 "Fa"

[t] 0 {0}

[0] 1

State: 1 "true"

[t] 1

State: 2 "G(b&Xc)"

[1] 2&3

State: 3 "c"

[2] 1

--END--

(b) . . . and its HOA representation.

Fig. 3: Alternating transition-based co-Büchi automaton for (Fa∧G(b∧Xc))∨ c.

http://adl.github.io/hoaf/support.html

6 Tomáš Babiak et al.

tic Rabin or Street automata; ltl3ba [1], which generates Büchi automata,
transition-based generalized Büchi automata, and very weak alternating co-
Büchi automata; ltl3dra [2], which converts a fragment of LTL to determinis-
tic Rabin automata, transition-based generalized deterministic Rabin automata,
and very weak alternating co-Büchi automata; and Rabinizer3 [12], which trans-
lates LTL into state- and transition-based variants of deterministic Rabin au-
tomata and generalized deterministic Rabin automata.

Furthermore, Spot [6] offers many tools for generating automata in the HOA
format: ltl2tgba [5] can translate LTL/PSL into Büchi automata, transition-
based generalized Büchi automata or monitors; randaut generates random Büchi
automata, transition-based generalized Büchi automata or monitors; and finally
dstar2tgba converts deterministic automata in the dstar format into Büchi au-
tomata, transition-based generalized Büchi automata or monitors. The Spot tool
autfilt filters, transforms, and converts formats for Büchi automata, general-
ized Büchi automata, and monitors and supports reading and writing HOA, with
ltldo wrapping other LTL/PSL-to-automata translators to convert their input
and output. This command and the previous one can be used to produce HOA
output from existing tools that only output never claims or the LBT format.

HOA parsing. There are two parsers for the HOA format. The first, in C++,
is included in Spot and is able to read a stream of automata whose format can
be either HOA, LBT or never claim. This parser powers the tools autfilt and
ltldo (presented above), and also ltlcross [4] (a verifier for LTL translators).
At the time of writing, Spot does not yet support alternation.

The second is the jhoafparser library [11], which provides a Java-based
parser. This provides a convenient interface for applications to consume the
different elements of the HOA format, taking care of basic sanity checks. The
library is accompanied by a command-line tool that checks the well-formedness
of an automaton in the HOA format and performs basic manipulations.

HOA import. We have extended the probabilistic model checker PRISM [15]
to interface with external tools for the conversion from LTL to deterministic
automata. This is done using the HOA format and jhoafparser. In parallel, we
have expanded PRISM’s ω-automata verification procedures: Markov chains can
now be model checked against generic acceptance conditions, giving producers of
deterministic automata full flexibility in terms of acceptance conditions. Markov
decision processes can be checked against both generalized or standard Rabin
acceptance conditions. As a result, we have successfully interfaced PRISM with
Rabinizer3, ltl2dstar, and ltl3dra.

4 Conclusion
We have presented a new format for ω-automata that supports generic accep-
tance conditions, and implemented it in several tools. Besides smoothing the
interaction between tools, this representation of acceptance conditions allows a
significant flexibility and performance increase, which has already been harnessed
in PRISM, and encourages tool developers to expand the range of supported ac-
ceptance conditions. The HOA format has been developed openly on GitHub,
and an issue tracker keeps a public archive of our discussion and decisions. We
encourage other tool authors to report issues and suggest improvements.

The Hanoi Omega-Automata Format 7

References

1. T. Babiak, M. Křet́ınský, V. Řehák, and J. Strejček. LTL to Büchi automata
translation: Fast and more deterministic. In TACAS’12, vol. 7214 of LNCS, pp.
95–109. Springer, 2012.

2. T. Babiak, F. Blahoudek, M. Křet́ınský, and J. Strejček. Effective translation of
LTL to deterministic Rabin automata: Beyond the (F, G)-fragment. In ATVA’13,
vol. 8172 of LNCS, pp. 24–39. Springer, 2013.

3. K. Chatterjee, A. Gaiser, and J. Křet́ınský. Automata with generalized Rabin
pairs for probabilistic model checking and LTL synthesis. In CAV’13, vol. 8044 of
LNCS, pp. 559–575. Springer, 2013.

4. A. Duret-Lutz. Manipulating LTL formulas using Spot 1.0. In ATVA’13, vol. 8172
of LNCS, pp. 442–445. Springer, 2013.

5. A. Duret-Lutz. LTL translation improvements in Spot 1.0. International Journal
on Critical Computer-Based Systems, 5(1/2):31–54, Mar. 2014.

6. A. Duret-Lutz and D. Poitrenaud. SPOT: an Extensible Model Checking Library
using Transition-based Generalized Büchi Automata. In MASCOTS’04, pp. 76–83.
IEEE Computer Society Press, 2004.

7. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV’95, pp. 3–18. Chapman & Hall,
1996.

8. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

9. J. Klein and C. Baier. Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theoretical Computer Science, 363(2):182–195, 2006.

10. J. Klein and C. Baier. On-the-fly stuttering in the construction of deterministic
ω-automata. In CIAA’07, vol. 4783 of LNCS, pp. 51–61. Springer, 2007.

11. J. Klein and D. Müller. The jhoafparser library. http://www.ltl2dstar.de/

jhoafparser/, 2015.
12. Z. Komárková and J. Křet́ınský. Rabinizer 3: Safraless translation of LTL to small

deterministic automata. In ATVA’14, vol. 8837 of LNCS, pp. 235–241. Springer,
2014.

13. J. Křet́ınský and J. Esparza. Deterministic automata for the (F,G)-fragment of
LTL. In CAV’12, vol. 7358 of LNCS, pp. 7–22. Springer, 2012.

14. S. C. Krishnan, A. Puri, and R. K. Brayton. Deterministic ω-automata vis-a-
vis deterministic Büchi automata. In ISAAC’94, vol. 834 of LNCS, pp. 378–386.
Springer, 1994.

15. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV’11, vol. 6806 of LNCS, pp. 585–591. Springer,
2011.

16. C. Löding. Optimal bounds for transformations of omega-automata. In
FSTTCS’99, vol. 1738 of LNCS, pp. 97–109. Springer, 1999.

17. M. Rönkkö. LBT: LTL to Büchi conversion. http://www.tcs.hut.fi/Software/

maria/tools/lbt/, 1999. Implements [7].
18. H. Tauriainen. Automata and Linear Temporal Logic: Translation with Transition-

based Acceptance. PhD thesis, Helsinki University of Technology, Espoo, Finland,
Sept. 2006.

19. H. Tauriainen and K. Heljanko. Testing LTL formula translation into Büchi au-
tomata. International Journal on Software Tools for Technology Transfer, 4(1):
57–70, 2002.

20. M.-H. Tsai, Y.-K. Tsay, and Y.-S. Hwang. Goal for games, omega-automata, and
logics. In CAV’13, vol. 8044 of LNCS, pp. 883–889. Springer, 2013.

http://www.ltl2dstar.de/jhoafparser/
http://www.ltl2dstar.de/jhoafparser/
http://www.tcs.hut.fi/Software/maria/tools/lbt/
http://www.tcs.hut.fi/Software/maria/tools/lbt/

8 Tomáš Babiak et al.

21. M. Y. Vardi. Automata-theoretic model checking revisited. In VMCAI’07, vol.
4349 of LNCS. Springer, 2007.

	The Hanoi Omega-Automata Format

