439 research outputs found

    Identification of cellular automata based on incomplete observations with bounded time gaps

    Get PDF
    In this paper, the problem of identifying the cellular automata (CAs) is considered. We frame and solve this problem in the context of incomplete observations, i.e., prerecorded, incomplete configurations of the system at certain, and unknown time stamps. We consider 1-D, deterministic, two-state CAs only. An identification method based on a genetic algorithm with individuals of variable length is proposed. The experimental results show that the proposed method is highly effective. In addition, connections between the dynamical properties of CAs (Lyapunov exponents and behavioral classes) and the performance of the identification algorithm are established and analyzed

    A dynamical systems approach to the discrimination of the modes of operation of cryptographic systems

    Full text link
    Evidence of signatures associated with cryptographic modes of operation is established. Motivated by some analogies between cryptographic and dynamical systems, in particular with chaos theory, we propose an algorithm based on Lyapunov exponents of discrete dynamical systems to estimate the divergence among ciphertexts as the encryption algorithm is applied iteratively. The results allow to distinguish among six modes of operation, namely ECB, CBC, OFB, CFB, CTR and PCBC using DES, IDEA, TEA and XTEA block ciphers of 64 bits, as well as AES, RC6, Twofish, Seed, Serpent and Camellia block ciphers of 128 bits. Furthermore, the proposed methodology enables a classification of modes of operation of cryptographic systems according to their strength.Comment: 14 pages, 10 figure

    Time tracking of different cropping patterns using Landsat images under different agricultural systems during 1990-2050 in Cold China

    Get PDF
    Rapid cropland reclamation is underway in Cold China in response to increases in food demand, while the lack analyses of time series cropping pattern mappings limits our understanding of the acute transformation process of cropland structure and associated environmental effects. The Cold China contains different agricultural systems (state and private farming), and such systems could lead to different cropping patterns. So far, such changes have not been revealed yet. Based on the Landsat images, this study tracked cropping information in five-year increments (1990-1995, 1995-2000, 2000-2005, 2005-2010, and 2010-2015) and predicted future patterns for the period of 2020-2050 under different agricultural systems using developed method for determining cropland patterns. The following results were obtained: The available time series of Landsat images in Cold China met the requirements for long-term cropping pattern studies, and the developed method exhibited high accuracy (over 91%) and obtained precise spatial information. A new satellite evidence was observed that cropping patterns significantly differed between the two farm types, with paddy field in state farming expanding at a faster rate (from 2.66 to 68.56%) than those in private farming (from 10.12 to 34.98%). More than 70% of paddy expansion was attributed to the transformation of upland crop in each period at the pixel level, which led to a greater loss of upland crop in state farming than private farming (9505.66 km(2) vs. 2840.29 km(2)) during 1990-2015. Rapid cropland reclamation is projected to stagnate in 2020, while paddy expansion will continue until 2040 primarily in private farming in Cold China. This study provides new evidence for different land use change pattern mechanisms between different agricultural systems, and the results have significant implications for understanding and guiding agricultural system development

    Improved texture image classification through the use of a corrosion-inspired cellular automaton

    Full text link
    In this paper, the problem of classifying synthetic and natural texture images is addressed. To tackle this problem, an innovative method is proposed that combines concepts from corrosion modeling and cellular automata to generate a texture descriptor. The core processes of metal (pitting) corrosion are identified and applied to texture images by incorporating the basic mechanisms of corrosion in the transition function of the cellular automaton. The surface morphology of the image is analyzed before and during the application of the transition function of the cellular automaton. In each iteration the cumulative mass of corroded product is obtained to construct each of the attributes of the texture descriptor. In a final step, this texture descriptor is used for image classification by applying Linear Discriminant Analysis. The method was tested on the well-known Brodatz and Vistex databases. In addition, in order to verify the robustness of the method, its invariance to noise and rotation were tested. To that end, different variants of the original two databases were obtained through addition of noise to and rotation of the images. The results showed that the method is effective for texture classification according to the high success rates obtained in all cases. This indicates the potential of employing methods inspired on natural phenomena in other fields.Comment: 13 pages, 14 figure

    The Point-Descriptor-Precedence representation for point configurations and movements

    Get PDF
    In this paper, we represent (moving) point configurations along a curved directed line qualitatively by means of a system of relational symbols based on two distance descriptors: one representing distance along the curved directed line and the other representing signed orthogonal distance to the curved directed line. The curved directed line represents the direction of the movement of interest. For instance, it could be straight as in the case of driving along a highway or could be curved as in the case of an intersection or a roundabout. Inspired by the Point Calculus, the order between the points on the curved directed line is described by means of a small set of binary relations () acting upon the distance descriptors. We call this representation the Point-Descriptor-Precedence-Static (PDPS) representation at a time point and Point-Descriptor-Precedence-Dynamic (PDPD) representation during a time interval. To illustrate how the proposed approach can be used to represent and analyse curved movements, some basic micro-analysis traffic examples are studied. Finally, we discuss some extensions of our work to highlight the practical benefits of PDP in identifying motion patterns that could be useful in GIS, autonomous vehicles, sports analytics, and gait analysis

    A split-and-perturb decomposition of number-conserving cellular automata

    Full text link
    This paper concerns dd-dimensional cellular automata with the von Neumann neighborhood that conserve the sum of the states of all their cells. These automata, called number-conserving or density-conserving cellular automata, are of particular interest to mathematicians, computer scientists and physicists, as they can serve as models of physical phenomena obeying some conservation law. We propose a new approach to study such cellular automata that works in any dimension dd and for any set of states QQ. Essentially, the local rule of a cellular automaton is decomposed into two parts: a split function and a perturbation. This decomposition is unique and, moreover, the set of all possible split functions has a very simple structure, while the set of all perturbations forms a linear space and is therefore very easy to describe in terms of its basis. We show how this approach allows to find all number-conserving cellular automata in many cases of dd and QQ. In particular, we find all three-dimensional number-conserving CAs with three states, which until now was beyond the capabilities of computers

    Balanced magnetic logic gates in a kagome spin ice

    Get PDF
    Nanomagnetic logic (NML) is a promising candidate to replace or complement traditional charged-based logic devices. Single NML gates such as the three-input majority gate are well studied, and their functionality has been verified experimentally. However, such gates suffer from a problem in that they sometimes produce erroneous output when integrated into circuits. A fundamental solution is offered by using balanced logic gates: gates for which the ground states corresponding to all possible input states have the same energy. We investigate how balanced gates can be created from kagome spin ice elements. We present a balanced NAND (and NOR) gate consisting of 19 dipole-coupled uniaxially anisotropic magnets. This gate can be either driven by an external clocking field or thermally driven. In the latter case, we numerically show that the gate has a reliability of at least 96%, a number which is shown to be robust against disorder. The presented gate provides a proof of concept for an artificial kagome spin ice NML gate
    • …
    corecore