26 research outputs found

    Width of Non-deterministic Automata

    Get PDF
    International audienceWe introduce a measure called width, quantifying the amount of nondeterminism in automata. Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe an incremental determinisation construction on NFAs, which can be more efficient than the full powerset determinisation, depending on the width of the input NFA. This construction can be generalised to infinite words, and is particularly well-suited to coBüchi automata in this context. For coBüchi automata, this procedure can be used to compute either a deterministic automaton or a GFG one, and it is algorithmically more efficient in this last case. We show this fact by proving that checking whether a coBüchi automaton is determinisable by pruning is NP-complete. On finite or infinite words, we show that computing the width of an automaton is PSPACE-hard. 1 Introduction Determinisation of non-deterministic automata (NFAs) is one of the cornerstone problems of automata theory, with countless applications in verification. There is a very active field of research for optimizing or approximating determinisation, or circumventing it in contexts like inclusion of NFA or Church Synthesis. Indeed, determinisation is a costly operation, as the state space blow-up is in O(2 n) on finite words, O(3 n) for coBüchi automata [16], and 2 O(n log(n)) for Büchi automata [17]. If A and B are NFAs, the classical way of checking the inclusion L(A) ⊆ L(B) is to determinise B, complement it, and test emptiness of L(A) ∩ L(B). To circumvent a full determinisation, the recent algorithm from [3] proved to be very efficient, as it is likely to explore only a part of the powerset construction. Other approaches use simulation games to approximate inclusion at a cheaper cost, see for instance [8]. Another approach consists in replacing determinism by a weaker constraint that suffices in some particular context. In this spirit, Good-for-Games automata (GFG for short) were introduced in [9], as a way to solve the Church synthesis problem. This problem asks, given a specification L, typically given by an LTL formula, over an alphabet of inputs and outputs, whether there is a reactive system (transducer) whose behaviour is included in L. The classical solution computes a deterministic automaton for L, and solves a game defined on this automaton. It turns out that replacing determinism by the weaker constraint of being GFG is sufficient in this context. Intuitively, GFG automata are non-deterministic * This work was supported by the grant PALSE Impulsion

    Proof Systems for Retracts in Simply Typed Lambda Calculus

    Get PDF
    Abstract. This paper concerns retracts in simply typed lambda calculus assuming βη-equality. We provide a simple tableau proof system which characterises when a type is a retract of another type and which leads to an exponential decision procedure.

    Query learning of derived ω\omega-tree languages in polynomial time

    Full text link
    We present the first polynomial time algorithm to learn nontrivial classes of languages of infinite trees. Specifically, our algorithm uses membership and equivalence queries to learn classes of ω\omega-tree languages derived from weak regular ω\omega-word languages in polynomial time. The method is a general polynomial time reduction of learning a class of derived ω\omega-tree languages to learning the underlying class of ω\omega-word languages, for any class of ω\omega-word languages recognized by a deterministic B\"{u}chi acceptor. Our reduction, combined with the polynomial time learning algorithm of Maler and Pnueli [1995] for the class of weak regular ω\omega-word languages yields the main result. We also show that subset queries that return counterexamples can be implemented in polynomial time using subset queries that return no counterexamples for deterministic or non-deterministic finite word acceptors, and deterministic or non-deterministic B\"{u}chi ω\omega-word acceptors. A previous claim of an algorithm to learn regular ω\omega-trees due to Jayasrirani, Begam and Thomas [2008] is unfortunately incorrect, as shown in Angluin [2016]

    Inference Systems with Corules for Fair Subtyping and Liveness Properties of Binary Session Types

    Get PDF
    Many properties of communication protocols stem from the combination of safety and liveness properties. Characterizing such combined properties by means of a single inference system is difficult because of the fundamentally different techniques (coinduction and induction, respectively) usually involved in defining and proving them. In this paper we show that Generalized Inference Systems allow for simple and insightful characterizations of (at least some of) these combined inductive/coinductive properties for dependent session types. In particular, we illustrate the role of corules in characterizing weak termination (the property of protocols that can always eventually terminate), fair compliance (the property of interactions that can always be extended to reach client satisfaction) and also fair subtyping, a liveness-preserving refinement relation for session types

    An Infinitary Proof Theory of Linear Logic Ensuring Fair Termination in the Linear ?-Calculus

    Get PDF
    Fair termination is the property of programs that may diverge "in principle" but that terminate "in practice", i.e. under suitable fairness assumptions concerning the resolution of non-deterministic choices. We study a conservative extension of ?MALL^?, the infinitary proof system of the multiplicative additive fragment of linear logic with least and greatest fixed points, such that cut elimination corresponds to fair termination. Proof terms are processes of ?LIN, a variant of the linear ?-calculus with (co)recursive types into which binary and (some) multiparty sessions can be encoded. As a result we obtain a behavioral type system for ?LIN (and indirectly for session calculi through their encoding into ?LIN) that ensures fair termination: although well-typed processes may engage in arbitrarily long interactions, they are fairly guaranteed to eventually perform all pending actions

    A Polynomial Time Algorithm for Deciding Branching Bisimilarity on Totally Normed BPA

    Full text link
    Strong bisimilarity on normed BPA is polynomial-time decidable, while weak bisimilarity on totally normed BPA is NP-hard. It is natural to ask where the computational complexity of branching bisimilarity on totally normed BPA lies. This paper confirms that this problem is polynomial-time decidable. To our knowledge, in the presence of silent transitions, this is the first bisimilarity checking algorithm on infinite state systems which runs in polynomial time. This result spots an instance in which branching bisimilarity and weak bisimilarity are both decidable but lie in different complexity classes (unless NP=P), which is not known before. The algorithm takes the partition refinement approach and the final implementation can be thought of as a generalization of the previous algorithm of Czerwi\'{n}ski and Lasota. However, unexpectedly, the correctness of the algorithm cannot be directly generalized from previous works, and the correctness proof turns out to be subtle. The proof depends on the existence of a carefully defined refinement operation fitted for our algorithm and the proposal of elaborately developed techniques, which are quite different from previous works.Comment: 32 page

    Quantified Constraints in Twenty Seventeen

    Get PDF
    I present a survey of recent advances in the algorithmic and computational complexity theory of non-Boolean Quantified Constraint Satisfaction Problems, incorporating some more modern research directions
    corecore