

Edinburgh Research Explorer

Proof Systems for Retracts in Simply Typed Lambda Calculus

Citation for published version:
Stirling, C 2013, Proof Systems for Retracts in Simply Typed Lambda Calculus. in FV Fomin, R Freivalds, M
Kwiatkowska & D Peleg (eds), Automata, Languages, and Programming: 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II. Lecture Notes in Computer Science, vol.
7966, Springer-Verlag GmbH, pp. 398-409. DOI: 10.1007/978-3-642-39212-2_36

Digital Object Identifier (DOI):
10.1007/978-3-642-39212-2_36

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Automata, Languages, and Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28972483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-39212-2_36
http://www.research.ed.ac.uk/portal/en/publications/proof-systems-for-retracts-in-simply-typed-lambda-calculus(79ed3ca6-bd3c-4e35-beda-cd7597f8fda2).html

Proof Systems for Retracts in Simply Typed
Lambda Calculus

Colin Stirling

School of Informatics
University of Edinburgh

cps@inf.ed.ac.uk

Abstract. This paper1 concerns retracts in simply typed lambda cal-
culus assuming βη-equality. We provide a simple tableau proof system
which characterises when a type is a retract of another type and which
leads to an exponential decision procedure.

1 Introduction

Type ρ is a retract of type τ if there are functions C : ρ → τ and D : τ → ρ
with D ◦ C = λx.x. This paper concerns retracts in the case of simply typed
lambda calculus [1]. Various questions can be asked. The decision problem is:
given ρ and τ , is ρ a retract of τ? Is there an independent characterisation of
when ρ is a retract of τ? Is there an inductive method, such as a proof system, for
deriving assertions of the form “ρ is a retract of τ”? If so, can one also construct
(inductively) the witness functions C and D?

Bruce and Longo [2] provide a simple proof system that solves when there
are retracts in the case that D ◦ C =β λx.x. The problem is considerably more
difficult if β-equality is replaced with βη-equality. De Liguoro, Piperno and Stat-
man [3] show that the retract relation with respect to βη-equality coincides with
the surjection relation: ρ is a retract of τ iff for any model there is a surjection
from τ to ρ. They also provide a proof system for the affine case (when each
variable in C and D occurs at most once) assuming a single ground type. Reg-
nier and Urzyczyn [9] extend this proof system to cover multiple ground types.
The proof systems yield simple inductive nondeterministic algorithms belonging
to NP for deciding whether ρ is an affine retract of τ . Schubert [10] shows that
the problem of affine retraction is NP-complete and how to derive witnesses C
and D from the proof system in [9]. Under the assumption of a single ground
type, decidability of when ρ is a retract of τ is shown by Padovani [8] by explicit
witness construction (rather than by a proof system) of a special form.

More generally, decidability of the retract problem follows from decidability
of higher-order matching in simply typed lambda calculus [13]: ρ is a retract of τ
iff the equation λzρ.xτ→ρ1 (xρ→τ2 z) =βη λz

ρ.z has a solution (the witnesses D and
C for x1, x2). Since the complexity of matching is non-elementary [15] this de-
cidability result leaves open whether there is a better algorithm, or even a proof
1 For a full version see http://www.homepages.inf.ed.ac.uk/cps/ret.pdf

ttotterd
Typewritten Text
Stirling, C. (2013). Proof Systems for Retracts in Simply Typed Lambda Calculus. In Fomin, F. V., Freivalds, R., Kwiatkowska, M., & Peleg, D. (Eds.), Automata, Languages, and Programming. (pp. 398-409). (Lecture Notes in Computer Science). Springer Berlin / Heidelberg. doi: 10.1007/978-3-642-39212-2_36

system, for the problem. In the case of β-equality matching is no guide to solv-
ability: the retract problem is simply solvable whereas β-matching is undecidable
[4].

In this paper we provide an independent solution to the retract problem. We
show it is decidable by exhibiting sound and complete tableau proof systems.
We develop two proof systems for retracts, one for the (slightly easier) case when
there is a single ground type and the other for when there are multiple ground
types. Both proof systems appeal to paths in terms. Their correctness depend
on properties of such paths. We appeal to a dialogue game between witnesses of
a retract to prove such properties: a similar game-theoretic characterisation of
β-reduction underlies decidability of matching.

In Section 2 we introduce retracts in simply typed lambda calculus and fix
some notation for terms as trees and for their paths. The two tableau proof
systems for retracts are presented in Section 3 where we also briefly examine
how they generate a decision procedure for the retract problem. In Section 4 we
sketch the proof of soundness of the tableau proof systems (and completeness
and further details are provided in the full version).

2 Preliminaries

Simple types are generated from ground types using the binary function operator
→. We let a, b, o, . . . range over ground types and ρ, σ, τ, . . . range over simple
types. Assuming → associates to the right, so ρ → σ → τ is ρ → (σ → τ), if a
type ρ is not a ground type then it has the form ρ1 → . . . → ρn → a. We say
that a is the target type of a and of any type ρ1 → . . .→ ρn → a.

Simply typed terms in Church style are generated from a countable set of
typed variables xσ using lambda abstraction and function application [1]. We
write Sσ, or sometimes S : σ, to mean term S has type σ. The usual typing
rules hold: if Sτ then λxσ.Sτ : σ → τ ; if Sσ→τ and Uσ then (Sσ→τUσ) : τ . In a
sequence of unparenthesised applications we assume that application associates
to the left, so SU1 . . . Uk is ((. . . (SU1) . . .)Uk). Another abbreviation is λz1 . . . zm
for λz1 . . . λzm. Usual definitions of when a variable occurrence is free or bound
and when a term is closed are assumed.

We also assume the usual dynamics of β and η-reductions and the consequent
βη-equivalence between terms (as well as α-equivalence). Confluence and strong
normalisation ensure that terms reduce to (unique) normal forms. Moreover,
we assume the standard notion of η-long β-normal form (a term in normal form
which is not an η-reduct of some other term) which we abbreviate to lnf. The syn-
tax of such terms reflects their type: a lnf of type a is a variable xa, or xU1 . . . Uk
where xρ1→...→ρk→a and each Uρii is a lnf; a lnf of type ρ1 → . . .→ ρn → a has
the form λxρ11 . . . xρnn .S, where Sa is a lnf.

The following definition introduces retracts between types [2, 3].

Definition 1. Type ρ is a retract of type τ , written |= ρ� τ , if there are terms
C : ρ→ τ and D : τ → ρ such that D ◦ C =βη λx

ρ.x.

The witnesses C and D to a retract can always be presented as lnfs. We can
think of C as a “coder” and D as a “decoder” [9]. Assume ρ = ρ1 → . . .→ ρl → a
and τ = τ1 → . . . → τn → a: in a retract the types must share target type [9].
We instantiate the bound ρi variables in a decoder D to D(zρ11 , . . . , zρll), often
abbreviated to D(z), and the bound variable of type ρ in C to C(xρ): so, |= ρ�τ
if D(zρ11 , . . . , zρll)(C(xρ)) =βη xz1 . . . zl. From [9], we can restrict a decoder to
be of the form λfτ .fSτ11 . . . Sτnn with f as head variable and a coder C(x) has
the form λyτ11 . . . yτnn .H(xT ρ11 . . . T ρll).

Definition 2. We say that the decoder D(z1, . . . , zl) = λfτ .fSτ11 . . . Sτnn and the
coder C(x) = λyτ11 . . . yτnn .H(xT ρ11 . . . T ρll) are canonical witnesses for ρ � τ if
D(z)(C(x)) =βη xz1 . . . zl and they obey the following properties:

1. variables f, z1, . . . , zl occur only once in D(z),
2. x occurs only once in C(x),
3. H is ε if ρ and τ are constructed from a single ground type,
4. if T ρii contains an occurrence of yj then it is the head variable of T ρii , zi

occurs in S
τj
j and T ρii contains no other occurrences of any yk, 1 ≤ k ≤ n.

The next result follows from observations in [3, 9].

Proposition 1. |= ρ� τ iff there exist canonical witnesses for ρ� τ .

So, if there is only a single ground type then C(x) can be restricted to have the
form λyτ11 . . . yτnn .xT

ρ1
1 . . . T ρll with x as head variable [3].

Example 1. From [3]. Let ρ = ρ1 → ρ2 → o where ρ1 = ρ2 = σ → o and let
τ = τ1 → o where τ1 = σ → (o → o → o) → o and σ is arbitrary. It follows
that |= ρ � τ . A decoder D(zρ11 , zρ22) is λfτ .f(λuσvo→o→o.v(z1u)(z2u)) and a
coder C(xρ) is λyτ1 .x(λwσ.yw(λsoto.s))(λwσ.yw(λsoto.t)); so, (D(z1, z2))C(x)
→∗β x(λwσ.z1w)(λwσ.z2w) =βη xz1z2. ut

Example 2. From [9] with multiple ground types. Let ρ = ρ1 → ρ2 → a where
ρ1 = b → a, ρ2 = a and let τ = τ1 → a where τ1 = b → (a → o → a) → a.
A decoder is D(zρ11 , zρ22) is λfτ .f(λub1u

a→o→a
2 .u2(z1u1)z2) and a coder C(xρ) is

λyτ1 .ysb(λwa1w
o
2.x(λvb.yv(λwa1w

o
2.w1))w2); so, (D(z1, z2))C(x) →∗β x(λvb.z1v)z2

=βη xz1z2. ut

Terms are represented as special kinds of tree (that we call binding trees in
[12, 14]) with dummy lambdas and an explicit binding relation. A term of the
form ya is represented as a tree with a single node labelled ya. In the case of
y U1 . . . Uk, when yρ1→...→ρk→a, we assume that a dummy lambda with the empty
sequence of variables is placed directly above any subterm Ui in its tree repre-
sentation if ρi is a ground type. With this understanding, the tree for y U1 . . . Uk
consists of a root node labelled yρ1→...→ρk→a and k-successor trees representing
U1, . . . , Uk. We also use the abbreviation λy for λy1 . . . ym for m ≥ 0, so y is
possibly the empty sequence of variables in the case of a dummy lambda. The

(0)λf (12)λy

(1) f (13) x

ttttttttt

JJJJJJJJJ

(2)λuv (14)λw (20)λw

(3) v

uuuuuuuuu
(15) y

JJJJJJJJJ (21) y

JJJJJJJJJ

(4)λ (8)λ (16)λ (18)λst (22)λ (24)λst

(5) z1 (9) z2 (17)w (19) s (23)w (25) t

(6)λ (10)λ

(7)u (11)u

Fig. 1. D(z1, z2) and C(x) of Example 1

tree representation of λy.S : ρ1 → . . . → ρk → a consists of a root node la-
belled λy and a single successor tree for Sa. The trees for C(x) and D(z1, z2) of
Example 1, where we have omitted the types, are in Figure 1.

We say that a node is a lambda (variable) node if it is labelled with a lambda
abstraction (variable). The type (target type) of a variable node is the type (target
type) of the variable at that node and the type (target type) of a lambda node
is the type (target type) of the subterm rooted at that node.

The other elaboration is that we assume an extra binary relation ↓ between
nodes in a tree that represents binding ; that is, between a node labelled λy1 . . . yn
and a node below it labelled yj (that it binds). A binder λy is such that either y is
empty and therefore is a dummy lambda and cannot bind a variable occurrence
or y = y1 . . . yk and λy can only then bind variable occurrences of the form yi,
1 ≤ i ≤ k. Consequently, we also employ the following abbreviation n ↓i m if
n ↓ m and n is labelled λy1 . . . yk and m is labelled yi. In Figure 1 we have not
included the binding relation; however, for instance, (2) ↓1 (7).

Definition 3. Lambda node n is a descendant (k-descendant) of m if either
m ↓ m′ (m ↓k m′), n is a successor of m′ for some m′ and the target types of
m, m′ and n are the same, or n′ is a descendant (k-descendant) of m and n is
a descendant of n′ for some n′.

We assume a standard presentation of nodes of a tree as sequences of integers:
an initial sequence, typically ε, is the root node; if n is a node and m is the ith
successor of n then m = ni. For the sake of brevity we have not followed this
approach in Figure 1 where we have presented each node as a unique integer (i).

Definition 4. A path of the tree of a term of type σ is a sequence of nodes
n = n1, . . . , nk where n1 is the root of the tree, each ni+1 is a successor of ni
and if nj is a variable node then for some i < j, ni ↓ nj (hence is a closed path).

For paths m = m1, . . . ,ml and n = n1, . . . , nk of type σ we write m @ n if
for some i > 0, for all h ≤ 2i, mh = nh, m2i+1 = m2ip, n2i+1 = n2iq and p < q.

A (closed) subtree of a tree of a term of type σ is a set of paths P of type σ
such that if m,n are distinct paths in P then m @ n or n @ m.

A path n = n1, . . . , nk is a contiguous sequence of nodes in a tree of a term
starting at the root; for i ≥ 1, each n2i−1 is a lambda node and each n2i is
a variable node (whose binder occurs earlier in the path). Path m is before n,
m @ n, if they have a common even length prefix and then differ as to their
successors (the one in m before that in n). These paths could, therefore, be in
the same term: therefore, a closed subtree is a set of such paths.

Definition 5. A path n = n1, . . . , nl is k-minimal provided that for each binding
node ni there are at most k distinct nodes nj, i < j ≤ l, such that ni ↓ nj. A
subtree P is k-minimal if each path in P is k-minimal.

Not every path or subtree is useful in a term. So, we define when a path or
subtree is realisable meaning that their nodes are “accessible” [7] or “reachable”
[6] in an applicative context.

Definition 6. Assume n = n1, . . . , nl is a path of odd length of a closed term T
of type σ, m is the node below nl in T and T ′ is the term T when the variable uτ

at node m is replaced with a fresh free variable zτ . We say that n is realisable if
there is a closed term U = λyσ.yS1 . . . Sk such that UT ′ =βη λx.zW1 . . .Wq for
some q ≥ 0.

Definition 7. Assume P is a subtree of closed term T of type σ where each path
has even length, m1, . . . ,mq are the leaves of P and Ti, 1 ≤ i ≤ q, is the term
T when the variable uτii at mi is replaced with a fresh free variable zτii . We say
that P is realisable if there is a closed term U = λyσ.yS1 . . . Sk such that for
each i, UTi =βη λx.ziW1 . . .Wqi for qi ≥ 0.

Next we define two useful operations on paths, restriction relative to a suffix
and the subtype after a prefix.

Definition 8. Assume that n = n1, . . . , np is a path, σ = σ1 → . . . → σk → a,
ni is a lambda node of type σ and w = ni, . . . , np is a suffix of n.

1. The suffix w admits σj, 1 ≤ j ≤ k, if either there is no nq, i ≤ q ≤ p, such
that ni ↓j nq or there is a j-descendant nq of ni whose type is τ1 → . . . →
τl → a and for some r there is not a t : q < t ≤ p such that nq ↓r nt and a
is the target type of τr.

2. The restriction of σ to w, σ � w, is defined as σw where
– aw = a,
– (σj → . . . → σk → a)w = if w admits σj then σj → (σj+1 → . . . →
σk → a)w else (σj+1 → . . .→ σk → a)w.

Definition 9. Assume that n = n1, . . . , np is a path of type σ. For a prefix w
of n we define the subtype of σ after w, w(σ):

– if w = ε (the empty prefix) then σ,
– if w = n1, . . . , nq, q ≤ p, then the type of node nq.

We also define a canonical presentation of a (prefix or suffix of a) path n =
n1, . . . , nk of type σ as a word w. If w is the empty prefix we write w = ε.
Otherwise, w = (w1, . . . , wj), j ≤ k, where for each i ≥ 0, w2i+1 = n2i+1

and if nh ↓m n2i then w2i = nhm. Thus, we distinguish between w = ε (the
empty word) and w = (ε) the prefix of length 1 consisting of the root node.
Also, we can present a subtree as a set of words. Words will occur in our proof
systems as presentations of paths. For example, w = (ε, 1, 11, 112, 1112) of type
τ as in Example 1 represents the path labelled λf, f, λuv, v, λ of D(z1, z2) in
Figure 1 when its root is ε. To illustrate Definitions 8 and 9, for the prefix
w′ = (ε, 1, 11) and the suffix w′′ = (11, 112, 1122) of w we have w′(τ) = τ1 where
τ1 = σ → (o → o → o) → o as in Example 1 and τ1 � w′′ = σ → o: word w′′ of
type τ1 has labelling λuσvo→o→o, v, λ; so, w′′ admits the first component σ of τ1
but not the second (o→ o→ o). The final element of w′ is the same as the first
element of w′′; in such a case we define their concatenation to be w.

Definition 10. The concatenation of (a prefix) v and (a suffix) w, v∧w, is:
ε∧w = w; if vk = w1 then v1, . . . , v

∧
kw1, . . . , wn = v1, . . . , vk, w2, . . . , wn.

3 Proof Systems for Retracts

We now develop goal directed tableau proof systems for showing retracts. By
inverting the rules one has more classical axiomatic systems: we do it this way
because it thereby provides an immediate nondeterministic decision procedure
for deciding retracts. We present two such proof systems: a slightly simpler
system for the restricted case when there is a single ground type and one for the
general case.

3.1 Single Ground Type

Assertions in our proof system are of two kinds. First is ρ � τ with meaning ρ
is a retract of τ . The second has the form [ρ1, . . . , ρk] � τ which is based on the
“product” as defined in [3]. We follow [9] in allowing reordering of components
of types since ρ→ σ → τ is isomorphic to σ → ρ→ τ . Instead we could include
explict rules for reordering (as with the axiom in [3]). Moreover, we assume that
[ρ1, . . . , ρk] is a multi-set and so elements can be in any order.

I ρ� ρ

W
ρ� σ → τ

ρ� τ

C
δ → ρ� σ → τ

δ � σ ρ� τ

P1
ρ1 → . . .→ ρk → ρ� σ → τ

[ρ1, . . . , ρk] � σ ρ� τ

P2
[ρ1, . . . , ρk] � σ

ρ1 � σ � w1 . . . ρk � σ � wk

where

– w1 @ . . . @ wk are k-minimal realisable paths of odd length of type σ

Fig. 2. Goal directed proof rules

The proof rules are given in Figure 2. There is a single axiom I, identity,
a weakening rule W , a covariance rule C, and two product rules P1 and P2.
The rules are goal directed: for instance, C allows one to decompose the goal
δ → ρ�σ → τ into the two subgoals δ�σ and ρ�τ . I,W and C (or their variants)
occur in the proof systems for affine retracts (when variables in witnesses can
only occur at most once) [3, 9]. The new rules are the product rules: P2 appeals
to k-minimal realisable paths (presented as words), and the restriction operator
of Definition 8. The proof system does not require the axiom A4 of [3], σ� (σ →
a)→ a: all instances are provable using W and C.

Definition 11. A successful proof tree for ρ � τ is a finite tree whose root is
labelled with the goal ρ � τ , the successor nodes of a node are the result of an
application of one of the rules to it, and each leaf is labelled with an axiom. We
write ` ρ� τ if there is a successful proof tree for ρ� τ .

For some intuition about the product rules assume ρ = ρ1 → . . . → ρl → a
and τ = τ1 → . . .→ τn → a. Now, |= ρ� τ iff there are canonical, Definition 2,
witnesses D(zρ11 , . . . , zρll) = λfτ .fSτ11 . . . Sτnn . Since we can reorder components
of ρ and τ we can assume that z1 is in Sτ11 . Suppose z1, . . . , zk, where k > 1,
are in Sτ11 and so y1 must occur in T ρ11 , . . . , T ρkk . Therefore, there is a common
coder Sτ11 (x1/z1, . . . , xk/zk) and k decoders Ti(zi) where zi = zρi1i1 , . . . , z

ρili
ili

and ρi1, . . . , ρili are the components of ρi such that Ti(zi)(Sτ11 (x1, . . . , xk)) =βη

xizi (which is similar to the product in [3]). In Sτ11 (x1/z1, . . . , xk/zk) there are
distinct odd length paths w1, . . . , wk of type τ1 to the lambda nodes above
x1, . . . , xk. These paths are realisable, Definition 6, because each xi belongs to
the normal form of Ti(zi)(Sτ11 (x1, . . . , xk)). Using a combinatorial argument,
see the full version, Sτ11 can be chosen so that these words are k-minimal and

(σ → o) → (σ → o) → o� (σ → (o→ o→ o) → o) → o

[σ → o, σ → o] � σ → (o→ o→ o) → o

σ → o� σ → o σ → o� σ → o

o� o

Fig. 3. A proof tree for Example 1

by reordering ρ’s components w1 @ . . . @ wk. We may not be able to reduce
to the subgoals ρ1 � τ1, . . . , ρk � τ1 as wi may prescribe the form of Ti(zi):
if Ti(zi) = λfτ1 .fSi1 . . . S

i
m then path wi may prevent Sij containing elements

of zi; so, this may restrict the possible distribution of zi within the subterms
Si1, . . . , S

i
m which is captured using τ1 � wi.

An example proof tree is in Figure 3 for the retract of Example 1 (which is
not affine). Rule P1 is applied to the root and then P2 to the first subgoal where
w1 = (ε, 2, 21) and w2 = (ε, 2, 22). Let σ′ = σ → (o→ o→ o)→ o. Now, σ′ � w1

= σ → o = σ′ � w2; in both cases only the first component of σ′ is admitted.

3.2 Multiple Ground Types

We extend the proof system to include multiple ground types. Again, assertions
are of the two kinds ρ � τ and [ρ1, . . . , ρk] � τ . However, we now assume that
to be a well-formed assertion ρ � τ both ρ and τ must share the same target
type (which is guaranteed when there is a single ground type). The rules for this
assertion are as before the axiom I, weakening W , covariance C and the product
rule P1 in Figure 2: however, C carries the requirement that the target types of
δ and σ coincide. The other product rule P ′2, presented in Figure 4, is different:
the arity of ρ1 → . . .→ ρn → a is the maximum of n and the arities of each ρi
where a gound type a has arity 0.

P ′2
[ρ1, . . . , ρk] � σ

ρ1 � v1(σ) � w1 . . . ρk � vk(σ) � wk

where

– k′ is the maximum of k and h2 where h is the arity of σ
– there is a k′-minimal realisable subtree U of type σ where each path has even

length (which can be ∅),
– each vi is ε, a prefix of a path in U of odd length or the extension of a path in U

with a single node,
– v∧1 w1 @ . . . @ v∧kwk and each v∧i wi is a k′-minimal realisable path of type σ of odd

length and if U 6= ∅, v∧i wi extends some path in U .

Fig. 4. Product proof rule for multiple gound types

(b→ a) → o→ a� (b→ (a→ o→ a) → a) → a

[b→ a, o] � b→ (a→ o→ a) → a

b→ a� b→ a o� o

a� a

Fig. 5. A proof tree for Example 2

In [ρ1, . . . , ρk]�σ it is not required that ρj and σ share the same target type.
Instead rule P ′2 requires that ρi and vi(σ), see Definition 9, do share target types:
for the concatenation v∧i wi see Definition 10. The specialisation to the case of
the single ground type is when U = ∅ and v = ε.

Let ρ = ρ1 → . . . → ρl → a and τ = τ1 → . . . → τn → a. So, |= ρ � τ
iff there are canonical witnesses D(zρ11 , . . . , zρll) = λfτ .fSτ11 . . . Sτnn and C(x) =
λyτ11 . . . yτnn .H(xT ρ11 . . . T ρll). Assume z1, . . . , zk, where k ≥ 1, occur in Sτ11 . There
is a path v in C(x) to the node above x which determines a subtree U of Sτ11 . The
head variable in T ρii bound in v has the same target type as ρi. There are distinct
paths v∧1 w1, . . . , v

∧
kwk of odd length to the lambda nodes above z1, . . . , zk in Sτ11 :

vi is decided by the meaning of the head variable in T ρii ; so, vi(τ1) has the same
target type as ρi. The rest of the path is the tail of wi: so we need to consider
whether |= ρi � vi(τ1) � wi.

Figure 5 is the proof tree for the retract in Example 2. There is an application
of P1 followed by P ′2. In the application of P ′2 the subtree U = {(ε, 2)}, v1 = ε,
w1 = (ε, 2, 21) = v∧1 w1, v2 = (ε, 2, 22) = v∧2 w2 when w2 = (22). So, v1(b →
(a→ o→ a)→ a) � w1 = b→ a as the first component is admitted (unlike the
second); and v2(b→ (a→ o→ a)→ a) = o = o � w2.

3.3 Complexity

The proof systems provide nondeterministic decision procedures for checking
retracts. Each subgoal of a proof rule has smaller size than the goal. Hence, by
focussing on one subgoal at a time a proof witness can be presented in PSPACE.
However, this does not take into account checking that a subgoal obeys the
side conditions in the case of the product rules. Given any type σ, there are
boundedly many realisable k-minimal paths (with an upper bound of kn where
n is size of σ). So, this means that overall the decision procedure requires at
most EXPSPACE.

4 Soundness and Completeness

To show soundness and completeness of our proof systems, we define a dialogue
game G(D(z), C(x)) played by a single player ∀ on the trees of potential wit-
nesses for a retract that characterises when (D(z))C(x) =βη xz, similar to game
semantics [5]. The game is defined in the full version of the paper.

To provide intuition for the reader we briefly describe G(D(z1, z2), C(x))
where these terms are from Figure 1. Play starts at node (0), the binder λf
at that node is associated with C(x) rooted at (12); so, the next position is at
node (1) and therefore jumps to (12); the binder at (12) λy is associated with
node (2) (the successor of (1)). Play proceeds to (13) and ∀ chooses to go left or
right; suppose it is left, so play is then at (14); nodes (13) and (14) are part of
the normal form, see Definition ??. Play descends to (15) and, therefore, jumps
to (2); so, with the binder at (2), u is associated with the the subtree at (16)
and v with the subtree at (18). Play proceeds to (3) and so jumps to (18); now,
s is associated with (4) and t with (8). Play proceeds to (19) and so jumps to
(4), descends to (5) and then to (6) and then to (7) and jumps to (16) before
finishing at (17). This play captures the path xλw.z1w of the normal form.

Some of the key properties, defined in the full version, we appeal to in the
correctness proofs below associate subtrees with realisable paths and vice versa.
For instance, as illustrated in the play above the path rooted at (0) downto (7)
is associated with the subtree rooted at (12) and with leaves (17) and (19). Let
ρ = ρ1 → . . . → ρl → a and τ = τ1 → . . . → τn → a and let τ1 = σ = σ1 →
. . .→ σm → b.

Theorem 1. (Soundness) If ` ρ� τ then |= ρ� τ .

Proof. By induction on the depth of a proof. For the base case, the result is
clear for a proof that uses the axiom I. So, assume the result for all proofs of
depth < d. Consider now a proof of depth d. We proceed by examining the
first rule that is applied to show ` ρ � τ . If it is W or C the result follows
using the same arguments as in [3]. Assume the rule is W and suppose |= ρ� τ .
Therefore there are terms D1 and C1 such that Dτ→ρ

1 (Cρ→τx1) =βη x. Now
D(σ→τ)→ρ = λfσ→τyσ.D1(fy) and Cρ→(σ→τ)x = λsσ.C1(x) are witnesses for
|= ρ� σ → τ . Assume that the rule is C, so |= δ � σ and |= ρ� τ . So there are
terms D1, C1, D2, C2 such that Dσ→δ

1 (Cδ→σ1 x) =βη x and Dτ→ρ
2 (Cρ→τ2 x) =βη x.

Now D(σ→τ)→(δ→ρ) = λxy.C2(x(D1y)) and C(δ→ρ)→(σ→τ) = λuz.D2(u(C1z))
are witnesses for |= δ → ρ� σ → τ .

Consider next that the first rule is P1. So after P1 there is either an ap-
plication of P2 or P ′2: in the former case, there are k-minimal realisable paths
w1 @ . . . @ wk of odd length of type σ such that ` ρi � σ � wi; in the lat-
ter case, there is a k′-minimal realisable subtree U of type σ where each path
has even length; and there are paths v∧1 w1 @ . . . @ v∧kwk where each ele-
ment is a k′-minimal realisable path of type σ of odd length and if U 6= ∅,
it extends some path in U and where each vi is ε, a prefix of a path in U
of odd length path or an extension of a path in U with a single node and
` ρi � vi(σ) � wi; where k′ is the maximum of k and the square of the arity of
σ. So, by the induction hypothesis there are terms Di(zi) and Ci(xi) such that
Di(zi)(Ci(xi)) =βη xizi, witnesses for ρi � σ � wi or ρi � vi(σ) � wi, and terms
D′(zk+1, . . . , zl) and C ′(x′) such that D′(zk+1, . . . , zl)(C ′(x′)) =βη x

′zk+1 . . . zl,
witnesses for ρk+1 → . . . → ρl → a � τ ′ where τ ′ = τ2 → . . . → τn → a. We
assume that all these terms are canonical witnesses. The term D′(zk+1, . . . , zl)

is λfτ
′
.fSτ22 . . . Sτnn and C ′(x′) is λyτ22 . . . yτnn .H

′(x′T ρk+1
k+1 . . . T ρll) where H ′ = ε

if the rule applied was P2.

We need to show that there are terms D(z1, . . . , zl) and C(x) that are wit-
nesses for |= ρ� τ . D(z) will have the form λfτ .fSτ11 . . . Sτnn and C(x) the form
λyτ11 . . . yτnn .H(xT ρ11 . . . T ρll) where H = ε in the case of a single ground type. All
that remains is to define Sτ11 so it contains z1, . . . , zk, T ρ11 , . . . , T ρkk and H (as
an extension of H ′). If U = ∅ then H = H ′. Otherwise, let u be an odd length
path such that U is associated with (so, its head variable is yτ11). H consists of
the suffix of u followed by the subtree H ′. The head variable of each T ρii is y1 in
the case of the single ground type and gvi(σ)

i in the general case (which is either
y1 or bound in u). We assume that S′i is the subterm of Sσ1 that is rooted at
the initial vertex of the path wi: which is Sσ1 itself in the single ground type.
To complete these terms we require that T ρii (Sσ1 (z1, . . . , zk)) =βη zi. Therefore,
removing lambda abstraction over variables zij and changing zi to xi, we require
that Ti(zi)(S′i(x1, . . . , xk)) =βη xizi. We construct a term C ′′(xi) that occurs
after the path wi in S′i (and which has root xi when there is a single ground
type). We also complete Ti(zi) whose initial part is the tree Ui associated with
the path wi.

First, we examine the single ground type case. So, Sσ1 will have the form
λu1 . . . um.S

′
1, C ′′(xi) the form xiC

′′
i1 . . . C

′′
ip and Ti(zi) the form λfσi .fiV

i
1 . . . V

i
m.

Assume Di(zi) is λgσ�wi
i .giW

i
i1
. . .W i

il
and Ci(xi) is λui1 . . . uil .xiC

i
1 . . . C

i
p. As-

sume wi admits σij : therefore, for some r : 1 ≤ r ≤ m, ij = r (so, W i
r may

contain occurrences of variables in zi). If ur does not occur in the path wi then
we set V ir = W i

r . Otherwise, there is a non-empty subpath wir of wi generated
by ur, and a subtree U ir of V ir associated with wir. Each Cij contains a single uik
(as head variable). Assume Cis contains ur. Assume that the path in W i

r to the
lambda node above zis is w′s. If we can build the same path in V ir (by copying
nodes of Cis to C ′′is) then we are done (letting V ir include this path followed by
the subterm of W i

r rooted at zis). Otherwise, we initially include wir in C ′′is and
then try to build w′s in V ir by copying nodes of Cis to C ′′is: in V ir and, therefore
in U ir, there is a path whose prefix except for its final variable vertex is the same
as a prefix of w′s and then differ. In the game G(C ′′is, V

i
r), play jumps from that

variable in V ir to a lambda node in wir. By definition of admits, there is a binder
n′ labelled λv in wir such that for some q not(n′ ↓q n′i) for all nodes n′i after n′

in wi (and in wir). Therefore, we add a variable node labelled vq to the end of
wir in C ′′is; so play jumps to a lambda node in V ir which is a successor of a leaf
of U ir; below this node, we build the path w′s except for its root node (by adding
further nodes to C ′′is and add the subtree rooted at zis in W i

r to V ir).

For the general case, assume vi(σ) = σ′1 → . . . → σ′m → b. So, Svi(σ)
i will

have the form λu1 . . . um.S
′
1, C ′′(xi) the form Hi(xiC ′′i1 . . . C

′′
ip) and Ti(zi) the

form λfσi .fiV
i
1 . . . V

i
m. Assume Di(zi) is λgvi(σ)�wi

i .giW
i
i1
. . .W i

il
and Ci(xi) is

λu′i1 . . . u
′
il
.H ′i(xiC

i
1 . . . C

i
p). We set Hi = H ′i. Then we proceed in a similar fash-

ion to the single base type case. If some u′r does not occur in the path wi then

V ir = W i
r ; otherwise we need to build similar paths to zis in W i

r in V ir (by copying
vertices from Cis to C ′′is and using that wi admits (vi(σ))r. ut

The proof of completeness (by induction on the size of ρ) is easier.

Theorem 2. (Completeness) If |= ρ� τ then ` ρ� τ .

5 Conclusion

We have provided tableau proof systems that characterise when a type is a retract
of another type in simply typed lambda calculus (with respect to βη-equality).
They offer a a nondeterministic decision procedure for the retract problem in
EXPSPACE: it may be possible to improve on the rather crude k-minimality
bounds used on paths within the proof systems. Given the constructive proof of
correctness, we also expect to be able to extract witnesses for a retract from a
successful tableau proof tree (similar in spirit to [10]).

References

1. Barendregt, H. Lambda calculi with types. In Handbook of Logic in Computer
Science, Vol 2, ed. Abramsky, S., Gabbay, D. and Maibaum, T., Oxford University
Press, 118-309, (1992).

2. Bruce, K. and Longo, G. Provable isomorphisms and domain equations in models
of typed languages. Proc. 17th Symposium on Theory of Computing, ACM, 263-
272, (1985).

3. de’Liguoro, U., Piperno, A. and Statman, R. Retracts in simply typed λβη-
calculus. Procs. LICS 1992, 461-469, (1992).

4. Loader, R. Higher-order β-matching is undecidable, Logic Journal of the IGPL,
11(1), 51-68, (2003).

5. Ong, C.-H. L. On model-checking trees generated by higher-order recursion
schemes, Procs LICS 2006, 81-90.

6. Ong and Tzevelekos. Functional Reachability. Procs LICS 2009, 286-295, (2009).
7. Padovani, V. Decidability of fourth-order matching. Mathematical Structures in

Computer Science, 10(3), 361-372, (2000).
8. Padovani, V. Retracts in simple types. In: Abramsky, S. (ed.) TLCA 2001. LNCS,

2044, 376-384, (2001)
9. Regnier, L. and Urzyczyn, P. Retractions of types with many atoms. At

http://arxiv.org/abs/cs/0212005, pp1-16.
10. Schubert, A. On the building of affine retractions. Math. Struct. in Comp. Science,

18, 753-793, (2008).
11. Stirling, C. Higher-order matching, games and automata. Procs LICS 2007, 326-

335, (2007).
12. Stirling, C. Dependency tree automata. In: de Alfaro, L. (ed.) FOSSACS 2009.

LNCS, 5504, 92-106, (2009).
13. Stirling, C. Decidability of higher-order matching Logical Methods in Computer

Science, 5(3:2), 1-52, (2009).
14. Stirling, C. An introduction to decidability of higher-order matching. Submitted

for publication. Available at author’s website, (2012).
15. Vorobyov, S. The “hardest” natural decidable theory. Procs LICS 1997, 294-305,

(1997).

