4,292 research outputs found

    Developments in Practice X: Radio Frequency Identification (RFID) - An Internet for Physical Objects

    Get PDF
    This paper explores the applications and future commercial impacts of radio frequency identification (RFID) technology. Its objective is to summarize the ways in which organizations and academics are thinking about these technologies and to stimulate strategic thinking about their possible uses and implications. It first provides an overview of this technology and how it works. Then it explores the surprisingly wide variety of current applications of RFID. Next it looks at several classes of potential RFID applications and how these might affect how organizations work. Finally, it examines the cost and implementation considerations of this technology. The paper concludes that RFID is a viable technology with many possible applications. However, only some of the impacts on organizations and society can be anticipated at present

    IoT-Based Vehicle Monitoring and Driver Assistance System Framework for Safety and Smart Fleet Management

    Get PDF
    Curbing road accidents has always been one of the utmost priorities in every country. In Malaysia, Traffic Investigation and Enforcement Department reported that Malaysia’s total number of road accidents has increased from 373,071 to 533,875 in the last decade. One of the significant causes of road accidents is driver’s behaviours. However, drivers’ behaviour was challenging to regulate by the enforcement team or fleet operators, especially heavy vehicles. We proposed adopting the Internet of Things (IoT) and its’ emerging technologies to monitor and alert driver’s behavioural and driving patterns in reducing road accidents. In this work, we proposed a lane tracking and iris detection algorithm to monitor and alert the driver’s behaviour when the vehicle sways away from the lane and the driver feeling drowsy, respectively. We implemented electronic devices such as cameras, a global positioning system module, a global system communication module, and a microcontroller as an intelligent transportation system in the vehicle. We implemented face recognition for person identification using the same in-vehicle camera and recorded the working duration for authentication and operation health monitoring, respectively. With the GPS module, we monitored and alerted against permissible vehicle’s speed accordingly. We integrated IoT on the system for the fleet centre to monitor and alert the driver’s behavioural activities in real-time through the user access portal. We validated it successfully on Malaysian roads.  The outcome of this pilot project benefits the safety of drivers, public road users, and passengers. The impact of this framework leads to a new regulation by the government agencies towards merit and demerit system, real-time fleet monitoring of intelligent transportation systems, and socio-economy such as cheaper health premiums. The big data can be used to predict the driver’s behavioural in the future

    IoT-Based Vehicle Monitoring and Driver Assistance System Framework for Safety and Smart Fleet Management

    Get PDF
    Curbing road accidents has always been one of the utmost priorities in every country. In Malaysia, Traffic Investigation and Enforcement Department reported that Malaysia’s total number of road accidents has increased from 373,071 to 533,875 in the last decade. One of the significant causes of road accidents is driver’s behaviours. However, drivers’ behaviour was challenging to regulate by the enforcement team or fleet operators, especially heavy vehicles. We proposed adopting the Internet of Things (IoT) and its’ emerging technologies to monitor and alert driver’s behavioural and driving patterns in reducing road accidents. In this work, we proposed a lane tracking and iris detection algorithm to monitor and alert the driver’s behaviour when the vehicle sways away from the lane and the driver feeling drowsy, respectively. We implemented electronic devices such as cameras, a global positioning system module, a global system communication module, and a microcontroller as an intelligent transportation system in the vehicle. We implemented face recognition for person identification using the same in-vehicle camera and recorded the working duration for authentication and operation health monitoring, respectively. With the GPS module, we monitored and alerted against permissible vehicle’s speed accordingly. We integrated IoT on the system for the fleet centre to monitor and alert the driver’s behavioural activities in real-time through the user access portal. We validated it successfully on Malaysian roads.  The outcome of this pilot project benefits the safety of drivers, public road users, and passengers. The impact of this framework leads to a new regulation by the government agencies towards merit and demerit system, real-time fleet monitoring of intelligent transportation systems, and socio-economy such as cheaper health premiums. The big data can be used to predict the driver’s behavioural in the future

    Radio Frequency Identification: Supply Chain Impact and Implementation Challenges

    Get PDF
    Radio Frequency Identification (RFID) technology has received considerable attention from practitioners, driven by mandates from major retailers and the United States Department of Defense. RFID technology promises numerous benefits in the supply chain, such as increased visibility, security and efficiency. Despite such attentions and the anticipated benefits, RFID is not well-understood and many problems exist in the adoption and implementation of RFID. The purpose of this paper is to introduce RFID technology to practitioners and academicians by systematically reviewing the relevant literature, discussing how RFID systems work, their advantages, supply chain impacts, and the implementation challenges and the corresponding strategies, in the hope of providing guidance for practitioners in the implementation of RFID technology and offering a springboard for academicians to conduct future research in this area

    On Improving Automation by Integrating RFID in the Traceability Management of the Agri-Food Sector

    Get PDF
    Traceability is a key factor for the agri-food sector. RFID technology, widely adopted for supply chain management, can be used effectively for the traceability management. In this paper, a framework for the evaluation of a traceability system for the agri-food industry is presented and the automation level in an RFID-based traceability system is analyzed and compared with respect to traditional ones. Internal and external traceability are both considered and formalized, in order to classify different environments, according to their automation level. Traceability systems used in a sample sector are experimentally analyzed, showing that by using RFID technology, agri-food enterprises increase their automation level and also their efficiency, in a sustainable wa

    Smart container monitoring using custom-made WSN technology : from business case to prototype

    Get PDF
    This paper reports on the development of a prototype solution for tracking and monitoring shipping containers. Deploying wireless sensor networks (WSNs) in an operational environment remains a challenging task. We strongly believe that standardized methodologies and tools could enhance future WSN deployments and enable rapid prototype development. Therefore, we choose to use a step-by-step approach where each step gives us more insight in the problem at hand while shielding some of the complexity of the final solution. We observed that environment emulation is of the utmost importance, especially for harsh wireless conditions inside a container stacking. This lead us to extend our test lab with wireless link emulation capabilities. It is also essential to assess feasibility of concepts and design choices after every stage during prototype development. This enabled us to create innovative WSN solutions, including a multi-MAC framework and a robust gateway selection algorithm

    Modeling and Implementation of Wireless Sensor Networks for Logistics Applications

    Get PDF
    Logistics has experienced a long time of developments and improvements based on the advanced vehicle technologies, transportation systems, traffic network extension and logistics processes. In the last decades, the complexity has increased significantly and this has created complex logistics networks over multiple continents. Because of the close cooperation, these logistics networks are highly dependent on each other in sharing and processing the logistics information. Every customer has many suppliers and vice versa. The conventional centralized control continues but reaches some limitations such as the different distribution of suppliers, the complexity and flexibility of processing orders or the dynamics of the logistic objects. In order to overcome these disadvantages, the paradigm of autonomous logistics is proposed and promises a better technical solution for current logistics systems. In autonomous logistics, the decision making is shifted toward the logistic objects which are defined as material items (e.g., vehicles, containers) or immaterial items (e.g., customer orders) of a networked logistics system. These objects have the ability to interact with each other and make decisions according to their own objectives. In the technical aspect, with the rapid development of innovative sensor technology, namely Wireless Sensor Networks (WSNs), each element in the network can self-organize and interact with other elements for information transmission. The attachment of an electronic sensor element into a logistic object will create an autonomous environment in both the communication and the logistic domain. With this idea, the requirements of logistics can be fulfilled; for example, the monitoring data can be precise, comprehensive and timely. In addition, the goods flow management can be transferred to the information logistic object management, which is easier by the help of information technologies. However, in order to transmit information between these logistic objects, one requirement is that a routing protocol is necessary. The Opportunistic relative Distance-Enabled Uni-cast Routing (ODEUR ) protocol which is proposed and investigated in this thesis shows that it can be used in autonomous environments like autonomous logistics. Moreover, the support of mobility, multiple sinks and auto-connection in this protocol enhances the dynamics of logistic objects. With a general model which covers a range from low-level issues to high-level protocols, many services such as real time monitoring of environmental conditions, context-aware applications and localization make the logistic objects (embedded with sensor equipment) more advanced in information communication and data processing. The distributed management service in each sensor node allows the flexible configuration of logistic items at any time during the transportation. All of these integrated features introduce a new technical solution for smart logistic items and intelligent transportation systems. In parallel, a management system, WSN data Collection and Management System (WiSeCoMaSys), is designed to interact with the deployed Wireless Sensor Networks. This tool allows the user to easily manipulate the sensor networks remotely. With its rich set of features such as real time data monitoring, data analysis and visualization, per-node management, and alerts, this tool helps both developers and users in the design and deployment of a sensor network. In addition, an analytical model is developed for comparison with the results from simulations and experiments. Focusing on the use of probability theory to model the network links, this model considers several important factors such as packet reception rate and network traffic which are used in the simulation and experiment parts. Moreover, the comparison between simulation, experiment and analytical results is also carried out to estimate the accuracy of the design and make several improvements of the simulation accuracy. Finally, all of the above parts are integrated in one unique system. This system is verified by both simulations in logistic scenarios (e.g., harbors, warehouses and containers) and experiments. The results show that the proposed model and protocol have a good packet delivery rate, little memory requirements and low delay. Accordingly, this system design is practical and applicable in logistics

    A Traceability Service to Facilitate RFID Adoption in the Retail Supply Chain

    Get PDF
    ISBN: 978-989-8111-94-4International audienceNowadays, companies are suffering changes in the way they deal with their inventories and their whole supply chain management. New technologies are emerging to help them adapt to the changes and keep a competitive status, but the adoption of such technologies is not always easy. Even though a lot of research has been done for RFID, there are still some areas that are being left aside, like the traceability aspect, which is one of the most important concerns in the retail supply chain. We propose a service named TRASER (TRAceability SErvice for the Retail supply chain) that will help the companies adopt the new technologies into their existing environments, dealing with persistence and traceability, and allowing the users to manage their operation according to their business rules, workflows and historical data

    A wireless method for monitoring medication compliance

    Get PDF
    There are many devices on the market to help remind patients to take their pills, but most require observation by a caregiver to assure medication compliance. This project demonstrates three modes to detect pill removal from a pillbox: a switch under the pills, a reflective type photointerrupter and a transmissive electric eye photosensor. Each mode exhibited blind spots or other failures to detect pill presence, but by combining modes with complementary characteristics, the accuracy of pill detection is greatly increased. Two methods of caregiver notification are demonstrated: text messages transmitted via an attached cellular phone, or the status is collected by a PC which provides an audit trail and daily notification if no pills were taken

    IoT@run-time: a model-based approach to support deployment and self-adaptations in IoT systems

    Get PDF
    Today, most Internet of Things (IoT) systems leverage edge and fog computing to meet increasingly restrictive requirements and improve quality of service (QoS). Although these multi-layer architectures can improve system performance, their design is challenging because the dynamic and changing IoT environment can impact the QoS and system operation. In this thesis, we propose a modeling-based approach that addresses the limitations of existing studies to support the design, deployment, and management of self-adaptive IoT systems. We have designed a domain specific language (DSL) to specify the self-adaptive IoT system, a code generator that generates YAML manifests for the deployment of the IoT system, and a framework based on the MAPE-K loop to monitor and adapt the IoT system at runtime. Finally, we have conducted several experimental studies to validate the expressiveness and usability of the DSL and to evaluate the ability and performance of our framework to address the growth of concurrent adaptations on an IoT system.Hoy en día, la mayoría de los sistemas de internet de las cosas (IoT, por su sigla en inglés) aprovechan la computación en el borde (edge computing) y la computación en la niebla (fog computing) para cumplir requisitos cada vez más restrictivos y mejorar la calidad del servicio. Aunque estas arquitecturas multicapa pueden mejorar el rendimiento del sistema, diseñarlas supone un reto debido a que el entorno de IoT dinámico y cambiante puede afectar a la calidad del servicio y al funcionamiento del sistema. En esta tesis proponemos un enfoque basado en el modelado que aborda las limitaciones de los estudios existentes para dar soporte en el diseño, el despliegue y la gestión de sistemas de IoT autoadaptables. Hemos diseñado un lenguaje de dominio específico (DSL) para modelar el sistema de IoT autoadaptable, un generador de código que produce manifiestos YAML para el despliegue del sistema de IoT y un marco basado en el bucle MAPE-K para monitorizar y adaptar el sistema de IoT en tiempo de ejecución. Por último, hemos llevado a cabo varios estudios experimentales para validar la expresividad y usabilidad del DSL y evaluar la capacidad y el rendimiento de nuestro marco para abordar el crecimiento de las adaptaciones concurrentes en un sistema de IoT.Avui dia, la majoria dels sistemes d'internet de les coses (IoT, per la sigla en anglès) aprofiten la informàtica a la perifèria (edge computing) i la informàtica a la boira (fog computing) per complir requisits cada cop més restrictius i millorar la qualitat del servei. Tot i que aquestes arquitectures multicapa poden millorar el rendiment del sistema, dissenyar-les suposa un repte perquè l'entorn d'IoT dinàmic i canviant pot afectar la qualitat del servei i el funcionament del sistema. En aquesta tesi proposem un enfocament basat en el modelatge que aborda les limitacions dels estudis existents per donar suport al disseny, el desplegament i la gestió de sistemes d'IoT autoadaptatius. Hem dissenyat un llenguatge de domini específic (DSL) per modelar el sistema d'IoT autoadaptatiu, un generador de codi que produeix manifestos YAML per al desplegament del sistema d'IoT i un marc basat en el bucle MAPE-K per monitorar i adaptar el sistema d'IoT en temps d'execució. Finalment, hem dut a terme diversos estudis experimentals per validar l'expressivitat i la usabilitat del DSL i avaluar la capacitat i el rendiment del nostre marc per abordar el creixement de les adaptacions concurrents en un sistema d'IoT.Tecnologies de la informació i de xarxe
    corecore