
IoT@run-time: a model-based approach
to support deployment and

self-adaptations in IoT systems

A Dissertation
by

Iván Alfonso

Submitted to the Faculty of Engineering of the
Universidad de los Andes

in partial fulfillment for the requirements for the Degree of
Doctor in Engineering

and
Submitted to the Faculty of Computer Science, Multimedia and

Telecommunications of the
Universitat Oberta de Catalunya

in partial fulfillment for the requirements for the Degree of
Doctor in Network and Information Technologies

Advisors: Dr. Kelly Garcés
Dr. Harold Castro
Dr. Jordi Cabot

Jury: Dr. Rafael Capilla
Dr. Guilherme Travassos
Dr. Carlos Lozano

December 2022

Abstract

In recent years, the Internet of Things (IoT) has expanded its fields and areas of
application, becoming a key component in industrial processes and even in the ac-
tivities we perform daily. The growth of IoT has generated increasingly restrictive
requirements, mainly in systems that analyze information in real time. Similarly,
IoT system architectures have evolved to implement new strategies and patterns
(such as edge and fog computing) to meet system requirements. Traditionally, an
IoT system was composed of two layers: the device layer (sensors and actuators)
and the cloud layer for information processing and storage. Today, most IoT sys-
tems leverage edge and fog computing to bring computation and storage closer to
the device layer, decreasing bandwidth consumption and latency. Although the use
of these multi-layer architectures can improve performance, it is challenging to de-
sign them because the dynamic and changing IoT environment can impact Quality
of Service (QoS) and system operation. IoT systems are often exposed to changing
environments that induce unexpected runtime events such as signal strength in-
stability, latency growth and software failures. To cope with these events, system
adaptations should be automatically executed at runtime, i.e., IoT systems should
have self-adaptation capabilities.

In this sense, better support in the design, deployment, and self-adaptation
stages of multilayer IoT systems is needed. However, the tools and solutions found
in the literature do not address the complexity of multi-layered IoT systems, and
the languages for specifying the adaptation rules that govern the system at runtime
are limited.

Therefore, we propose a modeling-based approach that addresses the limita-
tions of existing studies to support the design, deployment, and management of
self-adaptive IoT systems. Our solution is divided into two stages:

Modeling (design time): to support the design tasks, we propose a Domain
Specific Language (DSL) that enables to specify the multi-layered architecture of
the IoT system, the deployment of container-based applications, and rules for the
self-adaptation at runtime. Additionally, we design a code generator that produces
YAMLmanifests for the deployment and management of the IoT system at runtime.

i

ii ABSTRACT

Self-adaptation (runtime): we have designed a framework based on theMAPE-
K loop to monitor and adapt the IoT system following the rules specified in the
model (design time). The deployment and configuration of the tools and technolo-
gies used by this framework is performed using the YAML manifests produced by
the code generator.

Additionally, we have designed two extensions to our DSL. The first one is an ex-
tension focused on modeling IoT systems deployed in the underground coal mining
industry. This DSL addresses new mining domain concepts such as mine structure
specification and control points. The second DSL extension is focused on modeling
IoT systems deployed in Wastewater Treatment Plants (WWTPs). This DSL exten-
sion addresses the modeling of the WWTP process block diagram using a graphi-
cal notation. Even with these two DSL extensions, there is no need to modify our
framework that manages system adaptation at runtime.

Finally, we have conducted experimental studies classified into three groups: (1)
we validated the expressiveness and usability of the DSL through experiments with
13 participants who performed modeling exercises (using the DSL) and answered
surveys reporting their experience; (2) we functionally validated the architectural
adaptations using our framework and comparing the performance and availability
between a non-self-adaptive system versus a self-adaptive system implementing our
approach; (3) finally, we evaluate the ability and performance of our framework to
address the growth of concurrent adaptations on an IoT system. The results of these
experiments demonstrated that (1) the DSL has the expressiveness to model multi-
layered IoT systems (including its self-adaptive behaviour) and the learning curve is
favorable; (2) functional tests demonstrated how the performance and availability of
the system improves when using our approach; and (3) we have identified scalability
limitations of the framework and proposed insights to address them.

Keywords: Internet of Things, Model-Driven Engineering, Self-Adaptive System, Do-
main Specific Language, Edge and Fog Computing.

Resumen

Durante los últimos años, el Internet de las Cosas (IoT) ha ampliado sus cam-
pos y áreas de aplicación convirtiéndose en un componente clave en los procesos
industriales e incluso en las actividades que realizamos a diario. El crecimiento en
el uso de IoT ha generado requerimientos cada vez más restrictivos, principalmente
en sistemas que requieren análisis de información en tiempo real. De igual forma,
las arquitecturas de los sistemas IoT han evolucionado para implementar nuevas es-
trategias y patrones (como la computación de borde y niebla) que permitan cumplir
con los requerimientos del sistema. Tradicionalmente, un sistema IoT se componía
de dos capas: la capa de dispositivo (sensores y actuadores) y la capa de nube para el
procesamiento y almacenamiento de la información. Hoy en día, la mayoría de los
sistemas IoT aprovechan la computación de borde y niebla para acercar físicamente
la computación y el almacenamiento hacia la capa de dispositivo, disminuyendo así
el consumo de ancho de banda y latencia. Aunque el uso de estas arquitecturas mul-
ticapa favorecen el desempeño, es un reto diseñarlas debido a que el ambiente IoT
dinámico y cambiante puede impactar la Calidad del Servicio (QoS) y operación del
sistema. Los sistemas IoT suelen estar expuestos a entornos cambiantes que inducen
eventos inesperados en tiempo de ejecución como la inestabilidad de la intensidad
de la señal, el crecimiento de la latencia y los fallos de software. Para hacer frente
a estos eventos, adaptaciones del sistema deben ser automáticamente ejecutadas en
tiempo de ejecución, es decir, los sistemas IoT deberían tener capacidades de auto-
adaptación.

En este sentido, es necesario brindar soporte en las etapas de diseño, despliegue
y autoadaptación de sistemas IoT multicapa. Sin embargo, las herramientas y solu-
ciones encontradas en la literatura no abordan la complejidad de los sistemas IoT
multicapa, y los lenguajes para especificar las reglas de adaptación que gobiernan
el sistema en tiempo de ejecución son limitados.

En esta tesis, proponemos una solución basada en modelado que supera las li-
mitaciones de los estudios existentes para soportar el diseño, despliegue, y gestión
de sistemas IoT autoadaptables. Nuestra solución se divide en dos etapas:

Modelamiento (tiempo de diseño): para soportar las tareas de diseño, propo-

iii

iv RESUMEN

nemos un Lenguaje de Dominio Especifico (DSL) que permite representar la arqui-
tectura multicapa del sistema IoT, el despliegue de aplicaciones basadas en contene-
dores, y las reglas para la autoadaptación en tiempo de ejecución. Adicionalmente,
diseñamos un generador de código que produce manifiestos YAML para el desplie-
gue y gestión del sistema IoT en tiempo de ejecución.

Autoadaptación (tiempo de ejecución): hemos diseñado un framework ba-
sado en el ciclo MAPE-K para monitorear y adaptar el sistema IoT, siguiendo las
reglas especificadas en el modelo (tiempo de diseño). El despliegue y configuración
de las herramientas y tecnologías usadas por este framework se realiza mediante
los manifiestos YAML producidos por el generador de código.

Adicionalmente, hemos diseñado dos extensiones de nuestro DSL demostrando
su capacidad de extensibilidad. La primera, es una extensión enfocada al modelado
de sistemas IoT desplegados en la industria de minería subterránea de carbón. Este
DSL aborda nuevos conceptos del dominio minero como la especificación de la es-
tructura de las minas subterráneas y los puntos de control. La segunda extensión del
DSL está enfocada en el modelado de sistemas IoT desplegados en Plantas de Trata-
miento de Aguas Residuales (PTAR). Esta extensión del DSL aborda el modelado del
diagrama de bloques de procesos de la PTAR usando una notación gráfica. Incluso
con estas dos extensiones del DSL, no es necesario modificar nuestro framework
que gestiona la adaptación del sistema en tiempo de ejecución.

Finalmente, hemos realizado tres estudios experimentales: (1) validamos la ex-
presividad y facilidad de uso del DSL mediante experimentos con 13 participantes
que realizaron ejercicios de modelado (usando el DSL) y respondieron encuestas
reportando su experiencia; (2) validamos funcionalmente las adaptaciones arqui-
tecturales que nuestro framework realiza, comparando el desempeño y disponibili-
dad entre un sistema no autoadaptable y un sistema autoadaptable que implementa
nuestra solución; (3) por último, evaluamos la capacidad y el desempeño de nuestro
framework para abordar el aumento de adaptaciones concurrentes en un sistema
IoT. Los resultados de estos experimentos demuestran que (1) el DSL tiene la ex-
presividad para modelar sistemas IoT multicapa (incluyendo su comportamiento
autoadaptable) y la curva de aprendizaje es favorable; (2) las pruebas funcionales
demuestran como el desempeño y disponibilidad del sistema mejora al usar nues-
tra solución; y (3) hemos identificado limitaciones de escalabilidad del framework y
hemos propuesto sugerencias para abordarlas.

Palabras clave: Internet de las cosas, Ingeniería Basada en Modelos, Sistema Autoadap-
table, Lenguaje de Dominio Específico, Computación de Borde y Niebla

Acknowledgements

The development of this thesis has been possible thanks to the support of my
family, friends, and colleagues. To each and every one, thank you.

First and foremost, I would like to thank my three mentors Kelly, Harold, and
Jordi. Thank you for giving me the opportunity to do a PhD thesis under your
supervision, for trusting me, and for dedicating your time to me. I am very grateful
to Kelly and Harold for their advice from the beginning of the thesis. They have
shaped me as a researcher and have taught me to love this beautiful work. To Jordi,
I want to thank him for his advice, guidance, patience, severity, and friendship.
Thank you for the opportunity to meet and join your great working group (SOM
Research Lab) in Barcelona.

I would also like to thank the jury for their time and effort in evaluating this
dissertation. Your comments, questions, and suggestions will be used to further
improve this thesis.

I would also like to thankmy friends at Software Evolution Lab and SOMResearch
Lab for all their collaboration in this research, and support as friends and colleagues.
I especially want to thank Olga Vega, Jaime Chavarriaga, Edouard Batot, Marc Oriol,
Marcos Gómez, Abel Gómez, Joan Giner and the others for their friendship and
support.

This dissertation have been partially funded by a PhD Scholarship of MINCIEN-
CIAS (Becas del Bicentenario program, 2018). It have been also funded by a teaching
assistance of Universidad de los Andes and a joint-project (European TRANSACT
Project) with SOM Research Lab, UOC. I am very grateful with all these institutions
for the opportunity they gave me.

I would also like to thank all my family: Jesus, Marlen, Andrea, Andres, Marien,
and Maleja. Thank you for helping and supporting me during these years of work.
Without your trust and love this would not have been possible.

Last but not least, I would like my wife Karen for her love, patience, and support
in all the difficult and happy moments. Gracias por estar siempre a mi lado.

v

Contents

Abstract i

Resumen iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Contributions . 3
1.4 Organization of the Document . 5

2 State of the Art 7
2.1 Preliminary Concepts . 8

2.1.1 Internet of Things . 8
2.1.2 Self-adaptive Systems . 10
2.1.3 Model-Driven Engineering 12

2.2 Analysis of IoT System Adaptation 14
2.2.1 Method . 14
2.2.2 List of dynamic events . 19
2.2.3 Detecting dynamic events 23
2.2.4 List of adaptation strategies 23
2.2.5 Open Challenges . 27
2.2.6 Our direction . 30

2.3 Conclusion . 31

3 Overview 33
3.1 Framework Overview . 33

3.1.1 Design time stage . 34
3.1.2 Runtime stage . 35

vii

viii CONTENTS

3.2 Running Example: Smart Building Scenario 35
3.2.1 Multilayered Architecture 35
3.2.2 System Adaptation . 37

3.3 Research Methodology . 37
3.4 Conclusion . 39

4 Modeling Self-adaptive IoT Architectures 41
4.1 Modeling of the IoT Architecture 42

4.1.1 Abstract syntax . 42
4.1.2 Concrete syntax . 45
4.1.3 Well-Formedness Rules . 45
4.1.4 Example scenario . 46

4.2 Modeling of Rules . 49
4.2.1 Abstract syntax . 51
4.2.2 Concrete syntax . 56
4.2.3 Well-Formedness Rules . 56
4.2.4 Example Scenario . 57

4.3 Building a Modeling Environment for the DSL 58
4.3.1 Structure Aspect . 59
4.3.2 Editor Aspect . 60
4.3.3 Constraints and Type-System Aspects 61
4.3.4 Behaviour Aspect . 62

4.4 Code Generator . 63
4.4.1 Mapping Configuration . 64
4.4.2 Templates . 65

4.5 Installation and Configuration . 66
4.6 Conclusion . 66

5 Adapting IoT systems at runtime 71
5.1 Runtime Framework . 71

5.1.1 Monitor . 72
5.1.2 Analyze . 77
5.1.3 Plan . 78
5.1.4 Execute . 79

5.2 Example scenario . 81
5.3 Installation and Configuration . 82
5.4 Conclusion . 83

6 Extending DSL for specific cases 85
6.1 Modeling IoT systems for the Underground Mining Industry 86

CONTENTS ix

6.1.1 Extending the metamodel 86
6.2 Modeling IoT Systems for Wastewater Treatment Plants (WWTPs) 91

6.2.1 Extending the metamodel 92
6.3 Conclusion . 96

7 Experimental Evaluation 97
7.1 DSL Empirical Evaluation . 97

7.1.1 Experimental Study 1: DSL Validation - Architectural Con-
cepts . 98

7.1.2 Experimental Study 2: DSL Validation - Mining Concepts . 100
7.1.3 Threats to Validity . 104

7.2 Evaluation of System Self-Adaptations 104
7.2.1 Experiment Design and Setup 105
7.2.2 Protocol . 106
7.2.3 Results . 109
7.2.4 Threats to Validity . 112

7.3 Evaluation of Framework Scalability 115
7.3.1 Design and Setup . 116
7.3.2 Experiment Protocol . 120
7.3.3 Results and Analysis . 121
7.3.4 Threats to Validity . 124

7.4 Conclusion . 125

8 Related Work 127
8.1 Languages and metamodels for modeling IoT systems 127

8.1.1 DSLs for IoT Architectures 128
8.1.2 DSLs for IoT Self-Adaptation 129
8.1.3 Discussion . 130

8.2 Frameworks for IoT system self-adaptations 134
8.2.1 General Approaches or Frameworks 134
8.2.2 Modeling-based solutions 135

9 Conclusions and Further Research 139
9.1 Summary of Contributions . 139
9.2 Publications and Software Artifacts 141

9.2.1 Publications . 141
9.2.2 Software Artifacts . 142

9.3 Further Research . 143
9.3.1 Approach improvements . 143
9.3.2 Software Deployment Strategies 145

x CONTENTS

9.3.3 Security Strategies . 148
9.3.4 Machine Learning Algorithms to Support Adaptation 149

Bibliography 151

A Large Modeling Example 169
A.1 Modeling Mine Structure and Control Points 169
A.2 Modeling Applications and Nodes 172

B Installation and Configuration Guide 175
B.1 Installation and Configuration of MPS for the DSL 175
B.2 DSL use and code generation . 178

B.2.1 Changing the Notation . 178
B.2.2 Creating New Model . 180
B.2.3 Modeling an IoT system . 183
B.2.4 Generating the Code . 186

B.3 Framework deployment . 188

C Modeling an IoT System for the Self-adaptation Evaluation 191
C.1 General Test Scenario . 191
C.2 Scale Adaptation . 193
C.3 Offload Adaptation . 195
C.4 Redeployment Adaptation . 196

Chapter 1

Introduction

The emergence of the Internet of Things (IoT) has dramatically changed how phys-
ical objects are conceived in our society and industry. In this new IoT era, every
object becomes a complex cyber-physical system (CPS) [87], where both the physi-
cal characteristics and the software thatmanages them are highly intertwined. More
specifically, IoT is defined by the International Telecommunication Union (ITU) as
a "global infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving inter-
operable information and communication technologies" [155].

Although the term IoT was first used by Kevin Ashton in 1999 to describe a
system where the physical world is connected to the Internet through sensors and
RFID (Radio Frequency Identification) technologies, years ago other projects were
already addressing the connection of devices to the Internet.

In 1982, the first thing was connected to the Internet. At Carnegie Mellon Uni-
versity, a Coca-Cola machine was connected to the Internet to check the availability
and temperature of drinks. In 1990, a toaster machine was connected to the Inter-
net via TCP/IP protocol to monitor its usage time. In 1993 students at Cambridge
University connected the first camera to monitor the availability of cage in the de-
partment’s machines. In 1999, the same year that the term IoTwas coined, device to
device communications was introduced by Bill Joy in his taxonomy of the Internet.

In 2000, the popularity of wireless connections begins to grow together with
the number of objects connected to the internet. In this year, LG launches the first
internet-connected refrigerator. 2008was the first year in which the number of de-
vices connected to the Internet exceeded the number of people connected. Although
the term IoT was already being used in closed communities, Kevin Ashton first in-
troduced it in his paper tittled That "Internet of Things" Thing [12]. Since then, IoT
has had quite a big growth, and a lot of startups and companies working in this area

1

2 CHAPTER 1. INTRODUCTION

emerged. Today manufacturing, transportation, agriculture, healthcare and other
domains have benefited from the use of IoT technologies. Industry is one of the
sectors highly motivated to invest in IoT to improve business processes, automate
tasks, and offer better customer experiences.

This evolution of IoT systems throughout history has also involved the design
of new technologies and architectures to meet increasingly restrictive requirements
and improve Quality of Service (QoS). For example, the use of multi-layered archi-
tectures leveraging edge and fog computing, or the system’s ability to self-adapt
and cope with unexpected changes are requirements that can be critical to ensure
its performance. However, designing and managing these IoT systems are chal-
lenging and complex tasks that can be extremely time and effort consuming. In this
thesis, we investigate how to support the design and operation of multilayered IoT
systems and its self-adaptive behaviour.

1.1 Motivation

The ideas behind the IoT have been especially embraced by industry in the so-
called Industrial IoT (IIoT) or Industry 4.0. Currently billions of devices are con-
nected with potential capabilities to sense, communicate, and share information
about their environment. Traditional IoT systems rely on cloud-based architectures,
which allocate all processing and storage capabilities to cloud servers. Although
cloud-based IoT architectures have advantages such as reduced maintenance costs
and application development efforts, they also have limitations in bandwidth and
communication delays [89]. Given these limitations, edge and fog computing have
emerged with the goal of distributing processing and storage close to data sources
(i.e. things). Today, developers tend to leverage the advantages of edge, fog, and
cloud computing to design multi-layered architectures for IoT systems.

Nevertheless, creating such complex designs is a challenging task. Even more
challenging is managing, and adapting IoT systems at runtime to ensure the optimal
performance of the systemwhile facing changes in the environment conditions. IoT
systems are commonly exposed to changing environments that induce unexpected
events at runtime (such as unstable signal strength, latency growth, and software
and hardware aging) that can impact its QoS. To deal with such events, a number of
runtime adaptations should be automatically applied, e.g. architectural adaptations
such as auto-scaling and offloading tasks.

In this sense, a better support to define and execute complex IoT systems and
their (self)adaptation rules to semi-automate the deployment and evolution process
is necessary [133]. One of the most widely used approaches to deal with the com-
plexity of these large systems is Model-Driven Engineering (MDE) [75]. The use of

1.2. PROBLEM STATEMENT 3

models allows to raise the level of abstraction and capture the aspects of interest
of a real system. This helps to avoid the complexity and uncertainty of real and
complex scenarios.

Models are built using domain-specific languages (DSLs). In short, a DSL offers
a set of abstractions and vocabulary closer to the one already employed by domain
experts, facilitating the modeling of new systems for that domain. Nevertheless,
current DSLs for IoT do not typically cover multi-layered architectures [130, 67, 72,
43] and even less include a sublanguage to ease the definition of the dynamic rules
governing the adaptability of the IoT system.

This thesis is focused on the design of a model-based approach to support the
deployment and self-adaptation of multilayer IoT systems. The main research activ-
ities include a systematic literature review (SLR) to analyze the state-of-the-art, the
design and development of our approach for modeling and managing self-adaptive
IoT systems, and experimental studies to validate our approach. This approach is
composed of aDSL tomodel themulti-layered IoT architecture and its self-adaptation,
a code generator, and a framework to monitor and support system adaptations at
runtime.

1.2 Problem Statement

To tackle the complexity of designing and implementing self-adaptive IoT systems
based on multi-layer architectures, this thesis addresses two research questions that
remain as a challenge despite the related work. These research questions have been
carefully studied throughout the course of this dissertation

RQ1 How to model multi-layer IoT systems including their adaptation scheme to
ensure their run-time operation in changing environments?

RQ2 How to manage real-time adaptations for multilayered IoT systems operating
in changing environments?

1.3 Contributions

The main contribution of this thesis is a model-based approach for the deployment
and management of multilayer IoT systems with self-adaptive capabilities. Specifi-
cally, it consists of:

C1 DSL. We have designed a new DSL for IoT systems focusing on three main
contributions: (1) modeling of multi-layer architectures of IoT systems, in-
cluding concepts such as IoT devices (sensors or actuators), edge, fog and

4 CHAPTER 1. INTRODUCTION

cloud nodes; (2) modeling the deployment and grouping of container-based
applications on those nodes; and (3) a specific sublanguage to express adap-
tation rules to guarantee QoS at runtime, availability, and performance. We
have implemented this DSL using a projection-based editor that allows mix-
ing various notations to define the concrete syntax of the language. In this
way, the IoT system can be specified by a model containing text, tables, and
graphics.

C2 Code generator. Themodel (built using theDSL) describing the self-adaptive
IoT system is the input to a code generator we have designed. This generator
produces several YAML1 manifests with two purposes: (1) to configure and
deploy the IoT system container-based applications and (2) to configure and
deploy the tools and technologies used in the framework that supports the
execution and adaptation of the system at runtime.

C3 Runtime framework. We have developed a framework to monitor and
adapt the IoT system following the adaptation plan specified in the model.
This framework is based on the MAPE-K [92] loop (a reference model to im-
plement adaptation mechanisms in auto-adaptive systems) composed of sev-
eral stages including system statusmonitoring, data analysis, action planning,
and execution of adaptations.

C4 DSL extensions. We propose two extensions of our DSL focused on themod-
eling IoT systems for two different domains: (1) a DSL extension focused in the
IoT systems deployed for underground mining industry, and (2) a DSL exten-
sion for specifying IoT systems for Wastewater Treatment Plants (WWTPs).
These extensions involve the definition of new domain-specific concepts (e.g.
mine and tunnel concepts for the mining industry), and the design of graph-
ical editors to model specific scenarios.

C5 Empirical evaluations. We have designed and conducted experimental stud-
ies classified in three categories: (1) two experimental studies to validate the
expressiveness and usability of our DSL extended to the mining domain (13
participants attended the experiment), (2) three experimental studies to test
the self-adaptive capability of our approach, and (3) two set of experimental
studies to identify approach scalability to perform concurrent adaptations of
ourMAPE-K based framework to adapt the IoT system at runtime. We present
here a report of our experience including the results of the experiments.

1YAML is a data serialization language typically used in the design of configuration files

1.4. ORGANIZATION OF THE DOCUMENT 5

Table 1.1: Organization of the Document

Introduction Ch 1 Introduction
State of the Art Ch 2 State of the Art

Ch 3 Overview
Ch 4 Modeling Self-adaptive IoT Architectures

Our Approach Ch 5 Adapting IoT systems at runtime
Ch 6 Extending DSL for specific cases
Ch 7 Experimental Validation

Related Work Ch 8 Related Work
Conclusions Ch 9 Conclusions

1.4 Organization of the Document

This thesis document is organized in five parts. (1) there is an Introduction, (2) the
State of The Art, (3) the description of our approach, (4) related work, and (5) a final
part with the Conclusions. Table 1.1 shows the structure and chapters.

Chapter 2 (State of the Art) presents the backgroud information that has served
as the basis for this dissertation, and an SLR to obtain a comprehensive view of the
overall topic and identify open challenges.

Our Approach is presented in five chapters. Chapter 3 introduces an overview of
our approach. Chapter 4 discusses our DSL for modeling multi-layered IoT systems
and its self-adaptive behavior. In Chapter 5, we describe the framework that sup-
ports and manages the self-adaptive IoT system at runtime. Chapter 6 presents two
extensions of our DSL for modeling IoT systems in specific domains and Chapter 7
describes the validation of our approach through empirical experiments.

Chapter 8 discusses relatedwork onmethods for designing, deploying, andman-
aging multilayer IoT systems with self-adaptive capabilities. Finally, Conclusions
are presented in Chapter 9, including future directions.

Chapter 2

State of the Art

Over the past few years, the relevance of the Internet of Things (IoT) has grown
significantly and is now a key component of many industrial processes and even
a transparent participant in various activities performed in our daily life. IoT sys-
tems are subjected to changes in the dynamic environments they operate in. These
changes (e.g. variations in the bandwidth consumption or new devices joining/leav-
ing) may impact the Quality of Service (QoS) of the IoT system. A number of
self-adaptation strategies for IoT architectures to better deal with these changes
have been proposed in the literature. Nevertheless, they focus on isolated types of
changes. We lack a comprehensive view of the trade-offs of each proposal and how
they could be combined to cope with dynamic situations involving simultaneous
types of events.

In this chapter, we identify, analyze, and interpret relevant studies related to IoT
systems adaptation and develop a comprehensive view of the interplay of different
dynamic events, their consequences on the architecture QoS, and the alternatives
for the adaptation. To do so, we have conducted a Systematic Literature Review
(SLR) of existing scientific proposals and defined a research agenda based on the
findings and weaknesses identified in the literature.

This SLR was the first research activity conducted in this doctoral thesis and the
results obtained were the inspiration to define our research objectives.

Rest of this chapter is organized as follows: Section 2.1 present an overview of
the concepts related to IoT, self-adaptive systems, and Model-Driven Engineering
(concepts used in this and other chapters of this document). Section 2.2 presents
the SLR method and findings, and Section 2.3 summarizes the chapter.

7

8 CHAPTER 2. STATE OF THE ART

2.1 Preliminary Concepts

This section covers the basic concepts involved in this research. Section 2.1.1 in-
troduces the concept of the Internet of Things (IoT) and presents some generalities
about its architecture. Self-adaptive systems including the MAPE-K loop are de-
scribed in Section 2.1.2. Finally, in Section 2.1.3 we introduce the concepts Model-
Driven Engineering (MDE) and domain specific language (DSL) that serve as a basis
to design our solution.

2.1.1 Internet of Things

The term IoT has acquired several definitions since it was coined in 1999 by Kevin
Ashton [12]. All these definitions agree that IoT aims to exchange information be-
tween things-people, people-people, or things-things. According to Madakam et
al., the best definition of IoT is “An open and comprehensive network of intelligent ob-
jects that have the capacity to auto-organize, share information, data, and resources,
reacting and acting in face of situations and changes in the environment” [104]. IoT
has transformed and improved the activities we carry out on a daily basis in var-
ious aspects such as transport, agriculture, healthcare, industrial automation, and
emergency response.

The increase in IoT applications and connected devices in recent years requires
improved solutions to meet the requirements of the system and data management
[141]. Usually, the cloud is used in the IoT systems for data storage and processing.
However, cloud servers are often located far from data sources or IoT devices caus-
ing system delays and performance problems mainly for real-time IoT applications.
Distributed or multi-layered architectures have emerged to reduce dependence on
the cloud and meet non-functional IoT system requirements. In particular, edge
computing and fog computing are solutions that propose to bring processing and
storage closer to data sources (IoT devices).

There are similarities between these two solutions, but the main difference is
the location into the IoT network where processing and storage of data can be
performed [53]. Edge computing focuses more on the things side (sensors and ac-
tuators), while fog computing focuses more on the infrastructure side [145]. Fig-
ure 2.1 shows the architecture of a distributed IoT system where fog computing is
performed on the system’s fog nodes while edge computing is performed on edge
nodes, e.g. gateways. Edge and fog computing moves computation, storage, com-
munication, control, and decision making closer to the network edge where data is
being generated; i.e., in the device layer. The combination of edge computing, fog
and cloud results in distributed (multi-layered) architectures to ensure QoS compli-
ance in IoT applications. Fog and edge computing offer advantages mainly in terms

2.1. PRELIMINARY CONCEPTS 9

Figure 2.1: Distributed architecture for IoT systems

of latency and bandwidth usage, since they allow data processing at the edge rather
than in the cloud.

Communication

Communication technologies and standards used in IoT systems can be classified
into two groups according to the application level [2]: device-level communication,
and application-level communication.

Device level. The selection of communication protocols and technologies at the
device and edge layer, i.e. between IoT devices and gateways, depends on several
aspects such as communication range, data transmission rate, power consumption,
network topology, interoperability, and security. The communication protocols in
this group can be categorized according to the coverage area [3]: (1) Low Power
Wide Area Network (LPWAN) and (2) short range network. LPWAN encompasses
wireless communication technologies that allow data to be transmitted between a
device and a base station/Gateway separated by hundreds of meters or kilometers
with very low power consumption. LPWAN encompasses communication proto-
cols such as SigFox, LoRaWAN, and Cellular technologies. On the other hand, short
range networks are implemented in local networks such as residential areas, com-

10 CHAPTER 2. STATE OF THE ART

mercial buildings, or greenhouses. Communication protocols implemented in such
networks include WiFi, Zigbee, Bluetooth, or NFC.

Application level. In terms of communication standards and technologies for
the application layer, there are two communication models that span different pro-
tocols [50]: request-response and publish-subscribe. Request-response represents
a message exchange pattern commonly used in client-server architectures (syn-
chronous communication), where the client makes a request to the server, which
processes some information and returns a response to the client. The most com-
monly used request-response protocols are REST HTTP and CoAP. On the other
hand, publish-subscribe model offers a loosely coupled asynchronous communi-
cation between data generators and destinations. Three components are involved
in a publish-subscribe communication (Figure 2.2): the publisher (e.g. a sensor)
sends information to the topics of a broker (central point of this architecture),
which routes and retransmits the information to the subscribers (e.g. a server
or an actuator) that are subscribed to the broker topics. This model is today one
of the most popular for message-driven asynchronous architectures [73]. Publish-
subscribemodel encompasses communication protocols such asMQTT, CoAP, AMQP,
DDS, and XMPP.

One of the most popular application layer protocols in IoT systems is MQTT
(Message Queuing Telemetry Transport) [173, 50]. This protocol is suitable for de-
vices with restricted memory capabilities and limited processing power. MQTT has
very small message header compared to other publish-subscribe protocols, and due
to its simplicity of use, it has become one of the most prominent protocols in re-
strictive IoT systems.

2.1.2 Self-adaptive Systems

Systems commonly address functional and non-functional requirements at design
and development time. However, knowledge at design time is sometimes limited
to deal with unpredictable or uncertain circumstances. Therefore, designers often
prefer to deal with this uncertainty at run-time, when more knowledge is avail-
able [105]. This unpredictable behavior of the system can be addressed in run-time
by self-adaptations of the system. A self-adaptive system modifies its behavior at
run-time in response to changes in the system or its environment [38] (such as sys-
tem failures, environment changes, and new requirements). System adaptations are
given to meet both functional requirements (specific system functions) and non-
functional requirements (such as performance, usability, security, availability, and
others). Assurance of these requirements is commonly achieved through feedback
loops that follow a set of steps to apply self-adaptations to the system. For example,
monitoring is one of the key stages in self-adaptive systems.

2.1. PRELIMINARY CONCEPTS 11

Figure 2.2: Publish-subscribe model

The MAPE-K loop, proposed by IBM for autonomous computing [92], has been
implemented in several studies for the design of self-adaptive systems. MAPE-K is
a reference model to implement adaptation mechanisms in auto-adaptive systems.
MAPE-K includes four activities (monitor, analyze, plan, and execute) in an itera-
tive feedback cycle that operate on a knowledge base (see Figure 2.3). These four
activities produce and exchange knowledge and information to apply adaptations
due to changes in the managed element.

Figure 2.3: The MAPE-K loop [135]

MAPE-K loop activities are described below.

12 CHAPTER 2. STATE OF THE ART

• Monitor: information about the current state of the system is collected, ag-
gregated, filtered, and reported. Data such as functional and non-functional
system properties are collected.

• Analyze: in this stage the information collected in the monitoring phase is
analyzed, and changes in the system that require adaptations are identified.
The analyzer uses policy information to determine when a change is required.
If a change is required, the analyzer sends a change request to the next activity
component (plan).

• Plan: according to the analysis made in the previous stage, an adaptation plan
is generated with the appropriate actions to adapt the system at run-time. The
adaptation plan contains tasks that could be either a complex workflow or
simple commands. This adaptation plan is sent to the execution component
of the next stage.

• Execute: the adaptations are applied to the system following the actions de-
fined in the adaptation plan.

2.1.3 Model-Driven Engineering

To better understand and analyze the characteristics of complex domains such as
software systems and their application domains, the definition of abstractions is
often used. Models are abstractions or generalized representations of a real world
system. Model-Driven Engineering (MDE) is focused on the use of models at dif-
ferent levels of abstraction for software engineering activities [26]. For example,
MDE combines languages and model transformations for the automated generation
of software artifacts [156], improving productivity and quality in software develop-
ment processes.

Models and transformations are the two core aspects of MDE. Models are spec-
ified by a model notation or language known as Domain-Specific Language (DSL).
DSLs are based on a metamodel that captures the essential concepts of the domain.
A model transformation is a mapping that takes a source model and generates an
objective model following transformation rules. Commonly amodel transformation
chain results in the generation of system artifacts (e.g. source code and configura-
tion files). There are three types of model transformations: model-to-model trans-
formations (m2t), text-to-model transformations (t2m), and model-to-text transfor-
mations (m2t). In this thesis, we will implement m2t transformations to automati-
cally generate software artifacts from a model according to a metamodel.

2.1. PRELIMINARY CONCEPTS 13

Models and Metamodels

In the case of software engineering, models represent aspects of a software sys-
tem such as requirements, structure, architecture, behavior, or deployment. The
purposes in defining these models are to support the construction of the system,
to provide documentation that transcends the project, to facilitate communication
between the system that transcends the project, facilitate communication between
developers, and automatically generate code for the system implementation [65].

Models are defined following a metamodel structure. A metamodel specifies the
concepts of a language, the relationships between these concepts, and the structural
rules that constrain and validate the correctness of a model. Ecore [150] is cur-
rently the most widespread metamodeling language (based on Meta-Object Facility
MOF1), which provides the basic concepts for creating metamodels: concepts are
represented as classes, properties of a class refer to attributes of the concept, and
relationships between classes represent associations.

Domain-Specific Languages (DSLs)

DSLs are designed to describe or model things in a specific domain, context, or com-
pany [26]. DSLs address the needs of a specific application domain which cannot be
covered by a General-Purpose Language (GPL). Some advantages of DSLs are (1) the
abstractions supplied to represent particular concepts of domain application, and (2)
the natural notation for a given domain and the avoidance of the syntactic disorder
that usually occurs when using a GPL [45]. However, a lot of time and effort can
be consumed to develop a DSL. This involves tasks that require expertise in both
domain and language development.

According to Van Deursen et al. [157] the development of a DSL involves 7
tasks distributed in three main stages. The first stage is analysis, which includes
the tasks of (1) identifying the problem, (2) gathering relevant domain information,
(3) representing domain knowledge in semantics and operations, and (4) designing
the DSL. The second stage is implementation, which involves the tasks of (5) build a
library that implements semantic notions, and (6) design and implement a compiler
that translates DSL programs into a sequence of library calls. Finally, stage three
(use) has a single task, write and compile DSL programs for the desired applications.

A DSL is composed of three elements: the abstract syntax, the concrete syn-
tax, and the semantics. The abstract syntax is usually represented by a meta-
model that defines the concepts of the domain, relationships between concepts, and
wellformedness rules that constrain and validate the model. The concrete syn-
tax defines the notation (graphical, textual, or hybrid) for the abstract syntax. The

1https://www.omg.org/mof/

14 CHAPTER 2. STATE OF THE ART

notation used by users to define models can greatly impact the usability of the lan-
guage. To represent concepts with a graphic DSL, graphic objects such as connec-
tors, blocks, axes, arrows, and others are used. In contrast, a textual DSL is based
on grammar, e.g., SQL is a textual DSL used to perform database hides.

2.2 Analysis of IoT System Adaptation

In most IoT systems, it is critical to guarantee the QoS to the users, according to
the requirements of the application domain. For example, in continuous monitor-
ing systems, a decrease in the quality could generate wrong or late alerts stemming
from the monitored system (imagine the effects of late alerts in monitoring sys-
tems in hospitals). However, satisfying these commitments is challenging due to
the dynamic nature of the environment surrounding the IoT system. All types of
unexpected events (such as unstable signal strength, growth in the number of con-
nected devices, and software and hardware aging [30, 123]) can happen at any time,
posing a risk to the QoS. This unpredictable behavior of the system can be addressed
at runtime by self-adaptive systems.

Most studies found in the literature individually address particular dynamic
events in IoT systems and propose specific strategies to ensure QoS. However, each
proposal provides only a partial view (and solution) to the self-adaptation problem.
It is necessary to have a comprehensive view of all the different kinds of events
(for example, environmental) addressed in the literature. Indeed, we need: (1) a
classification of the dynamic events that impact the QoS; (2) a classification of the
self-adaptation strategies of the IoT system architecture; and (3) gaps and challenges
in the proposed strategies and their relationships.

In this sense, we decided that an SLRwas the best way to systematically reach to
a comprehensive and fair assessment of these topics. The results of this SLR provide
an overview of the gaps and challenges that inspired the definition of the research
objectives of this thesis.

2.2.1 Method

A systematic literature review (SLR) is a methodology used for the identification,
analysis, and interpretation of relevant studies to address specific research questions
[91]. Our SLR consists of six main steps and is based on the methodology proposed
by Kitcheham et al. [94]. The steps followed for this SLR are illustrated in Figure
2.4 and documented below.

2.2. ANALYSIS OF IOT SYSTEM ADAPTATION 15

Figure 2.4: Application of the SLR process

Research questions

Our goal is to identify the dynamic environmental events in the device and edge/fog
layers of an IoT system that could impact its QoS and therefore require the trigger
of self-adaptations of the system. In addition, we classify the strategies to achieve
this self-adaptation. For this purpose, our SLR addresses the following two research
questions:

• SLR-RQ1. Which dynamic events present in the edge/fog and device layers
are the main causes for triggering adaptations in an IoT system?

• SLR-RQ2. How do existing solutions adapt their internal behavior and ar-
chitecture in response to dynamic environmental events in the edge/fog and
device layers to ensure compliance with its non-functional requirements?

Literature search process

The search process step had three phases [94]: first, we selected the digital libraries;
next, we defined the search queries; and finally, we carried out the search and dis-
carded the repeated studies.

• Digital libraries: we chose four digital libraries for our search: Scopus, Web

16 CHAPTER 2. STATE OF THE ART

Table 2.1: Search queries

Search query
SQ1 ("fog" OR "edge" OR "osmotic") AND ("IoT" OR

"internet of things" OR "cyber-physical") AND ("architecture")
AND ("adapt*" OR "self-adapt*")

SQ2 "fog" AND "adapt*" AND "architecture" AND "orchestration"
SQ3 ("orchestration" OR "choreography") AND "fog" AND

"architecture" AND "dynamic"

Table 2.2: Studies per digital library

Digital library Studies found
Scopus 229
Web of Science (WOS) 120
IEEE 176
ACM 32
Total 557
Total without duplicates 334

of Science (WOS), IEEE Explore, and ACM. These libraries are frequently up-
dated and contain a large number of studies in the area of this research.

• Search queries: as shown in Table 2.1, we defined four search queries. We used
keywords including IoT, architecture, dynamic, adapt (or variations of this
word; e.g., adaptation), fog and edge (to retrieve studies that use distributed
architectures with fog and edge computing), orchestration or choreography
(two resource management techniques in the fog layer of an architecture).
We looked for matches in the title, abstract, and keywords of the articles.

• Search results: Table 2.2 shows the search results; we obtained 557 studies,
out of which 223 were duplicates, for a total of 334 studies.

Inclusion and exclusion criteria

To screen and obtain the primary studies that address the research questions, we
defined inclusion and exclusion criteria. We applied two screening phases: in the

2.2. ANALYSIS OF IOT SYSTEM ADAPTATION 17

first screening of the titles, abstracts and keywords, we used three exclusion criteria,
to exclude 117 out of the 334 studies. Then, in the second filter we analyzed the full
texts, and we discarded 170 additional studies. Finally, using Snowballing to check
the list of study citationswe included three additional studies, for a total of 50 studies
(see Figure 2.4). The inclusion and exclusion criteria for each screening phase are
presented below.

First screening:

• (Exclusion) It is not a primary study. Literature reviews are discarded.

• (Exclusion) It is not a journal, conference or workshop paper.

• (Exclusion) The paper is written in a language other than English

Second screening:

• (Inclusion) The study addresses a dynamic event in IoT systems that impacts
QoS.

• (Inclusion) The study proposes, takes advantage or analyzes a strategy of self-
adaptation of architecture for IoT systems.

Quality assessment

The quality assessment step consists of reading the studies in detail, and answering
the assessment questions to get a quality score for each study. We have defined five
quality assessment questions as follows:

• QA1. Are the aims clearly stated? (Yes) the purpose and objectives of the
research are clear; (Partly) the aims of the research are stated, but they are
not clear; (No) The aims of the research are not stated, and these are not
clearer to identify.

• QA2. Is the research compared to related work? (Yes) the related work is
presented and compared to the proposed research; (Partly) the related work
is presented, but the contribution of the current research is not differentiated;
(No) the related work is not presented.

• QA3. Is there a clear statement of findings and do they have theoretical sup-
port? (Yes) the findings are explained clearly and concisely, and are supported
by a theoretical foundation; (Partly) the findings are clearly explained, but
they lack theoretical support; (No) findings are not clear and have no foun-
dation or theoretical support.

18 CHAPTER 2. STATE OF THE ART

• QA4. Do the researchers explain future implications? (Yes) the author presents
future work; (No) future work is not presented.

• QA5. Has the proposed solution been tested in real scenarios? (Yes) The so-
lution is tested in a real scenario; (Partly) the solution is tested in a particular
test bed; (No) the solution is not tested in any scenario.

The score given to each answer was: Yes = 1, Partly = 0.5, and No = 0. We cal-
culated the quality score for each study and excluded those that scored less than
3, in order to select the primary studies that would be used for data extraction and
analysis. We analyzed 50 studies and excluded eleven because they obtained a qual-
ity score of less than three. In total we have obtained 39 primary studies for the
remaining steps of this SLR, and the quality scores for each is presented in Table
2.4. In the remainder of this chapter, we reference these studies in the text by their
assigned ID in the table.

Data collection

The extracted information was stored in an Excel spreadsheet. Table 2.3 shows
the Data Collected (DC) for each study and the research question addressed. First,
we extracted standard information such as title, authors, and year of publication
(DC1 to DC4). Second, we extracted relevant information to address the research
questions defined in section 2.2.1. DC5 records the environmental event addressed
by the study, and this information is used to address research question SLR-RQ1.
DC6 to DC10 are data collected about proposed solutions and strategies to achieve
self-adaptations in the IoT system, and this information is used to address research
question SLR-RQ2.

Data analysis

Table 2.4 presents the list of the 39 studies relevant to this SLR, with the following
information: the assigned identification number (ID), the author, the type of publi-
cation, the year of publication, the answers to the quality questions, and the quality
score obtained. In the following sections, we will refer to primary studies by the
assigned ID code.

From the standard information extracted from the papers, we can note that the
relevant publications for this SLR are relatively recent. The largest number of stud-
ies were published in recent years: 12 studies from 2019, 16 studies from 2018, 7
studies from 2017, 3 studies from 2016, and one study from 2015. As to the type of
publication, 25 are conference publications, 10 are journal publications, and 4 are
workshop publications.

2.2. ANALYSIS OF IOT SYSTEM ADAPTATION 19

Table 2.3: Data collection

Field RQ
DC1 Author N/A
DC2 Title N/A
DC3 Year N/A
DC4 Publication venue N/A
DC5 Environmental event addressed by the solution SLR-RQ1
DC6 Favored quality attributes SLR-RQ2
DC7 Adaptation strategies and techniques SLR-RQ2
DC8 Architecture description SLR-RQ2
DC9 Architectural styles and patterns SLR-RQ2
DC10 Key responsibilities of architectural components SLR-RQ2

2.2.2 List of dynamic events

Table 2.5 provides an overview of the answer to the research question SLR-RQ1. The
table presents a classification of the dynamic environmental events present in the
edge/fog and device layers and the studies that addressed that event. We propose
this list of events that we have obtained from the detailed analysis of the studies. We
then classify each study according to the event it addresses. Strategies for adapting
architecture in response to these events are presented in Section 2.2.4.

E1. Client mobility

Mobile devices such as cell phones or automobiles produce events in the device
layer of the IoT system causing challenges to ensure QoS. When the system devices
change their location, it is necessary to make network re-configurations, storage
synchronizations, and rescheduling processes among the edge/fog nodes by taking
into account available resources. Client mobility is an event or requirement of IoT
systems that poses challenges due to the constant movement of devices, the hetero-
geneity of communication technologies, and resources which can be requested on
demand simultaneously by multiple devices in different locations [139].

E2. Dynamic data transfer rate

The data transmission rate of the devices is another dynamic event that significantly
influences the system’s QoS. In IoT systems, the data transmission rate from the de-
vice layer to the edge/fog layer may vary depending on the circumstances, objects,

20 CHAPTER 2. STATE OF THE ART

Table 2.4: Studies

ID Author Type Year QA1 QA2 QA3 QA4 QA5 QA Score
S1 Young, R. et al. [176] Conference 2018 Y Y Y Y P 4,5
S2 Wang, J. et al. [163] Workshop 2017 Y Y Y N P 3,5
S3 Muñoz, R. et al. [118] Article 2018 Y Y Y N P 3,5
S4 Cheng, B. et al. [37] Conference 2015 Y Y Y Y N 4
S5 Kimovski, D. et al. [93] Conference 2018 Y Y Y Y P 4,5
S6 Young, R. et al. [175] Conference 2018 Y Y Y Y P 4,5
S7 Tseng, C. et al. [154] Conference 2018 Y N Y Y P 3,5
S8 Peros, S. et al. [126] Conference 2018 Y Y Y Y P 4,5
S9 Rausch, T. et al. [131] Conference 2018 Y Y Y N Y 4
S10 Pahl, C. et al. [121] Conference 2018 Y Y Y N P 3,5
S11 Lorenzo, B. et al. [103] Article 2018 Y Y Y Y N 4
S12 Prabavathy, S. et al. [129] Article 2018 Y Y Y Y P 4,5
S13 Yigitoglu, E. et al. [174] Conference 2017 Y Y Y Y P 4,5
S14 Morabito, R. et al. [114] Workshop 2017 P P Y Y P 3,5
S15 Desikan, K. S. et al. [48] Workshop 2017 Y Y Y N P 3,5
S16 de Brito, M. S. et al. [46] Conference 2017 Y Y Y Y N 4
S17 Velasquez, K. et al. [158] Conference 2017 Y P Y Y P 4
S18 Flores, H. et al. [63] Conference 2017 Y N Y Y P 3,5
S19 Pizzolli, D. et al. [128] Conference 2016 Y N P Y P 3
S20 Montero, D. et al. [113] Conference 2016 Y Y Y Y P 4,5
S21 Chen, L. et al. [34] Article 2018 Y Y Y Y Y 5
S22 Mass, J. et al. [108] Conference 2018 Y Y Y Y Y 5
S23 Li, X. et al. [100] Article 2018 Y Y Y N Y 4
S24 Suganuma, T. et al. [151] Article 2018 Y Y Y Y Y 5
S25 Deng, G. et al. [47] Conference 2018 Y Y Y N Y 4
S26 Sami, H. et al. [137] Conference 2018 Y Y Y Y Y 5
S27 Wu, D. et al. [170] Conference 2019 Y Y Y N Y 4
S28 Skarlat, O. et al. [148] Conference 2019 Y Y Y Y Y 5
S29 Mechalikh, C. et al. [110] Conference 2019 Y Y Y Y Y 5
S30 Castillo, E. et al. [32] Conference 2019 Y P Y N Y 3,5
S31 Breitbach, M. et al. [27] Conference 2019 Y Y Y Y Y 5
S32 Torres Neto, J. et al. [153] Article 2019 Y Y Y Y Y 5
S33 Theodorou, V. et al. [152] Workshop 2019 Y N Y Y P 3,5
S34 Guntha, R. [78] Conference 2019 Y Y Y N P 3,5
S35 Jutila, M. [90] Article 2016 Y Y Y Y Y 5
S36 Cui, K. et al. [44] Conference 2019 Y Y Y Y Y 5
S37 Bedhief, I. et al. [20] Conference 2019 Y Y Y P N 3,5
S38 Asif-Ur-Rahman, Md et al. [13] Article 2019 Y Y Y Y Y 5
S39 Yousefpour, A. et al. [177] Article 2019 Y Y Y Y Y 5

2.2. ANALYSIS OF IOT SYSTEM ADAPTATION 21

Table 2.5: Dynamic environmental events

ID Dynamic event Studies
E1 Mobility client S5, S9, S10, S17, S19, S20,

S22, S29
E2 Dynamic data transfer rate S3, S6, S7, S11, S15, S18,

S19, S21, S26, S32, S39
E3 Important event detected by sensors S1, S2, S8, S24, S27, S31,

S36, S38
E4 Failures and software aging S4, S13, S14, S16, S28
E5 Network connectivity S1, S23, S25, S30, S33, S34,

S35, S37
E6 Attack from the traffic sensor S12

or conditions in which the devices are surrounded. The system devices may in-
crease or decrease the frequency of data transmission due to different stimuli. The
consequences generated by this dynamic event in IoT systems commonly lead to
increased latency and the unavailability of system services, because increased data
volume could congest the network and generate bottlenecks. In addition, this dy-
namic event implies growth in the data to be analyzed or processed by the edge
devices, which likely have limited computer resources. Therefore, the edge nodes
could be overloaded with processing work until they generate delays, down times,
or unavailability.

E3. Important event detected by sensors

When an alert or alarm is generated by sensor data in an IoT monitoring system, a
set of tasks is triggered to inform the end user and/or control the emergency. These
tasks may increase network, processing, and storage consumption at some layer of
the system architecture (device, edge/fog, and cloud). For example, in a smart city
when a vehicular accident is detected by video surveillance cameras, new processing
tasks begin to run in edge/fog nodes or cloud servers: 1) there are increases in the
processing and storage of video taken by surveillance cameras; 2) visual alerts are
generated to other drivers on the road; 3) tasks are executed to synchronize street
lights to address the emergency and reduce vehicle traffic. System tasks generated
by alarms or alerts commonly require additional network, processing, or storage
resources.

22 CHAPTER 2. STATE OF THE ART

E4. Failures and software aging

The software embedded in the devices, nodes, and servers of an IoT system needs
to be updated and redeployed by developers to fix service errors, improve applica-
tion performance, improve system security, etc. Some upgrades or deployments of
system services and application software may involve adaptations to the layers of
the system architecture. First, when new services are deployed at edge/fog nodes,
it may be necessary to adapt the bindings (e.g., service registry, network topology)
established between the services deployed in the nodes and the components that
consume said services in order to ensure the communication. Second, software up-
grades are sometimes unsuccessful due to storage, hardware, or connectivity fail-
ures. In these cases, the system should detect the problem and fix it. Third, the de-
vice layer and edge/fog devices have limited processing capabilities that may bring
risks to successful software upgrades. This implies increased latency and, in some
cases, unresponsive services.

E5. Network connectivity

According to Muñoz, R. et al. [118], the main network requirements for IoT ser-
vices are low latency, high-speed traffic, large capacity traffic, and massive connec-
tions. Although these requirements depend on the domain of the IoT application,
most systems require the fulfillment of at least one of these. IoT systems constantly
present variations in network connectivity characteristics that make it difficult to
meet network requirements. These variations, mainly present in wireless commu-
nications, can generate negative effects on the transmission and reception of data
between the system’s devices, nodes, and cloud servers: (1) out-of-date information
due to communication delays; (2) incomplete information due to intermittent or in-
terrupted communication; (3) unavailability of services or system applications due
to lost or broken communication.

E6. Cyber-attacks in IoT applications

Although the security topic was not intentionally addressed in this study, we found
the work of Prabavathy et al. [129], which proposes a strategy based on the use
of fog computing to detect attacks. The threats that come from the data of the
device layer devices towards the edge/fog layers and cloud are events induced by
attackers that violate the confidentiality, integrity, and availability of the system. In
an IoT system, sensors and actuator devices frequently capture and share personal
data from our daily life, detect critical physical variables in industrial processes, and
control the vehicular flow in a city. The impact of an attack on the devices in any of
the layers of the architecture can cause loss of critical information, disasters in the

2.2. ANALYSIS OF IOT SYSTEM ADAPTATION 23

processes that control the system, and unavailability of the system, among others.
This is why it is essential to ensure the security of the IoT system by designing
self-adaptation techniques to defend against attacks.

2.2.3 Detecting dynamic events

Monitoring is an important task to detect dynamic events in the IoT systems. These
events are detected by analyzing metrics about node resource consumption (such
as CPU, memory, and energy consumption), network behavior (such as bandwidth
consumption and communication latency), availability, and data collected by sen-
sors. Table 2.6 presents the monitored metrics to detect the dynamic events for
each study. The resource consumption in the edge/fog nodes is the most monitored
feature to detect events. In particular, CPU and memory consumption are used to
detect three of the dynamic events: Client mobility (E1), Dynamic data transfer (E2),
and Failures and software aging (E4). Sensor data (column 9) is not a QoS metric, but
its analysis is used to detect the dynamic events Important event detected by sensors,
Network connectivity, and Cyber-attacks in IoT applications.

Availability and Latency are seldommonitoredmetrics to detect dynamic events.
However, ensuring low latency is one of the important requirements for real-time
applications. Similarly, ensuring the availability of services and applications in IoT
systems is also a common requirement.

S10, S20, S22, and S29 are not included in Table 2.6 because they do not monitor
any QoS metrics. These four studies address the dynamic event client mobility,
which they detect by identifying new clients joining or leaving the system. Studies
S31 and S36 (also not included in the table) do not focus on the detection of the
dynamic event, instead they cover the architectural adaptations to cope with the
event.

2.2.4 List of adaptation strategies

Table 2.7, which presents a classification of the strategies used by each study to sup-
port specific dynamic events, provides a preliminary answer to the research ques-
tion SLR-RQ2. Similar to the classification of dynamic events (2.2.2), we propose
this list of adaptations after analyzing the studies in detail.

The adaptive strategies are described below.

Data flow reconfiguration

The routing of data traveling from the device layer to the Edge/Fog or cloud layer
is modified mainly to improve latency. The direction of the data flow and the de-

24 CHAPTER 2. STATE OF THE ART

Table 2.6: Monitored metrics
Event Study CPU Memory Storage Bandwidth Availability Latency Sensor data
E1 S5 X X
E1 S9 X
E1 S17 X X X
E1/E2 S19 X X
E2 S3 X
E2 S6 X
E2 S7 X
E2 S11 X
E2 S15 X
E2 S18 X X X
E2 S21 X
E2 S32 X
E3 S1 X X
E3 S2 X
E3 S8 X
E3 S24 X
E3 S27 X
E3 S38 X
E4 S4 X X X X X X
E4 S13 X X X X
E4 S14 X X X
E4 S16 X X X
E4 S28 X X X
E5 S1 X X
E5 S23 X
E5 S25 X X
E5 S30 X
E5 S33 X
E5 S34 X
E5 S35 X
E5 S37 X
E5 S39 X
E6 S12 X

2.2. ANALYSIS OF IOT SYSTEM ADAPTATION 25

Table 2.7: Adaptations

ID Adaptation Studies
A1 Data flow reconfiguration S3, S5, S8, S9, S10, S11,

S14, S15, S17, S19, S20,
S23, S25, S35, S37, S38

A2 Auto Scaling of services and applications S2, S7, S17, S18, S19,
S22, S31, S39

A3 Software deployment and upgrade S4, S13, S16, S28
A4 Offloading tasks S1, S6, S21, S26, S27, S29,

S30, S32, S33, S34, S36

vices involved in the communication, such as gateways and messaging servers, are
strategically selected to carry the data to the nodes that perform the processing.

Some authors propose to reconfigure the data flow for balancing the load be-
tween the edge/fog nodes, or to redirect the data flow to the node with the best
conditions (resource availability and lower response latency). For example, S8 pro-
poses a framework that enables the developer to specify dynamic QoS rules. A rule
is made up of a source device (e.g. a video camera), a target device (e.g., a web
server), a rule activation event (e.g. when a system sensor detects motion), and a
QoS requirement that must be guaranteed (e.g. 200ms communication latency be-
tween source and target). When the event configured in the rule is triggered, the
path of the data flow between the source and the destination is reconfigured to es-
tablish the optimal path through a set of switches. This architecture assumes that
there are several switches that enable communication between the device layer de-
vices and the cloud layer. However, the edge/fog layer is not included to do edge
processing, which could improve system QoS by lowering latency and bandwidth.
The system architecture proposed in S8 assumes that the edge/fog layer is composed
of devices that only serve the function of relaying the data, but the data processing
capacity in the edge devices is ignored. Additionally, it is necessary to consider us-
ing the MQTT protocol and broker for communication which offers lower power
consumption and low latency due to its very small message header and packet mes-
sage size (approximately 2 bytes) [171].

Auto-scaling of services and applications

This strategy consists of automatically deploying or terminating replicated services
and applications on the system’s edge/fog nodes or cloud servers. Auto-scaling is

26 CHAPTER 2. STATE OF THE ART

used to ensure stable application performance, and it is one of the most widely used
techniques in web applications deployed in the cloud. Auto-scaling is also used in
IoT systems but with additional considerations to take into account. For example,
when scaling a service on an edge node or fog, it is necessary to strategically select
the node that has availability of the necessary computing resources and that offers
the greatest communication latency benefits.

In S2, an auto-scaling method is proposed for a distributed intelligent urban
surveillance system. The proposed architecture has three layers: video cameras in
the device layer, desktops in the edge layer to analyze the video information, and
cloud servers that host the web application for the end user. When the video cam-
eras detect an emergency, the frame rates of video capturing increase and image
analysis for some objects turn to high-priority tasks. The system then scales the
data analysis application by deploying virtual machines to the edge nodes closest to
the emergency site. However, deploying the application at the node closest to the
device layer device does not always guarantee the best performance. Other factors
such as network latency and node specifications should be considered for applica-
tion allocation decisions. Additionally, the use of virtual machines has limitations
given the resource scarcity that characterizes edge nodes. Other virtualization tech-
nologies such as containers have advantages for deploying applications to edge/fog
layer nodes. In particular, the reduced size of the images and the low startup time
are advantages that make containers suitable for IoT systems.

Software deployment and upgrade

The process of deploying and updating software in a semi-automatic way is one
of the strategies used to solve problems, correct software issues, improve appli-
cation performance, and improve system security. However, software updates in
distributed IoT systems are also prone to failure during the process.

Containerization is one of the most used technologies that facilitates the semi-
automatic deployment of software, given the reduced size of images and the low
start time compared to virtual machines. These four studies (S4, S13, S28, and S39)
use docker technology to package and run the software versions in containers on
Fog nodes. For example, S13 proposes Foggy, a framework for continuous auto-
mated deployment in fog nodes. Foggy enables the definition of software contain-
ers allocation rules in Fog nodes. Foggy’s architecture is based on an orchestration
server responsible formonitoring the resources in the nodes and dynamically adapt-
ing the software allocation according to the rules defined by the user. However,
Foggy’s software allocation rules can only be configured according to fixed hard-
ware characteristics of the nodes, i.e., node selection does not depend on dynamic
system metrics such as latency, bandwidth consumption, and power consumption.

2.2. ANALYSIS OF IOT SYSTEM ADAPTATION 27

These QoS factors should also be considered for software allocation decisions in fog
nodes. Additionally, Foggy does not monitor the state of the running docker con-
tainers to detect and fix failures through actions such as rollback to the previous
stable version or redeployment of the software container.

Offloading tasks

The processing tasks executed at the edge/fog nodes can be classified according to
their importance and their required response time. While there are system tasks that
do not require immediate processing, other tasks such as real-time data analysis are
critical to the system and require low response latency. It is necessary to guarantee
low latency for these critical tasks, but it is not trivial to achieve this when dynamic
events occur in the system such as increased data flow from the device layer. The
adaptation strategy Offloading tasks addresses this problem in the following way:
to guarantee low response latency for critical processing tasks performed by the
edge/fog nodes, non-critical tasks are offloaded to the cloud servers to free up ca-
pacity in the edge/fog nodes. However, it is necessary to establish when it is really
necessary to offload tasks to the cloud servers.

S6 proposes an architecture that coordinates data processing tasks between an
edge node and the cloud servers. The edge node performs data processing tasks of
the data collected by IoT devices. A monitoring component frequently checks the
CPU usage of the edge node, and every time the value exceeds a usage limit (75%)
one of the non-critical tasks executed by the node is offloaded to a cloud server.
This frees up resources on the fog node for processing tasks that require low la-
tency. However, before moving tasks to cloud servers, the offload tasks between
neighboring edge/fog nodes that have the necessary resources available should be
considered to take advantage of edge and fog computing. In particular, response la-
tency is lower for tasks that can be executed in the edge/fog layer rather than in the
cloud layer. Additionally, decisions to move tasks from one node to another node
or to a cloud server could be determined by other factors such as latency, RAM us-
age, power consumption, and battery level (if the node is battery powered). These
factors must be monitored and analyzed to make intelligent offloading decisions
according to the QoS requirements of the system.

2.2.5 Open Challenges

The design of IoT systems involves coping with several challenges to ensure a good
QoS even when considering the dynamic nature of the IoT environment. Some
specific challenges were pointed out by the studies analyzed in this paper. Indeed,

28 CHAPTER 2. STATE OF THE ART

the conclusions above suggest already some areas that are not yet fully developed
even if some works start to appear that address them.

Nevertheless, we want to highlight additional significant open challenges we
believe need to be addressed to improve current adaptation strategies.

We have classified the problems and challenges into four topics that we sum-
marize below. In particular, topic 4 (Global self-adaptive architecture) is studied in
depth in this thesis.

1. Monitoring and logging the dynamic events themselves

Monitoring the system infrastructure is a key process in the design of a self-adaptive
architecture. However, designing a continuous, scalable, resilient, and non-intrusive
monitoring system for IoT systems is a challenge. In the literature, efforts are
focused on designing strategies to adapt the IoT system at run time. But self-
adaptations for system monitoring components also require attention. The mon-
itoring system must self-adapt to the characteristics of the heterogeneity of devices
(e.g. gateways, servers, switches, and user devices), heterogeneity according to vir-
tualization (e.g. virtual machines, containers, and pods), and scalability (join and
leave of devices). Additionally, it is necessary to effectively monitor and store the
data for historical queries and analysis to identify system improvements. Logging
of monitoring data implies the design of a domain model that abstracts the main
concepts of self-adaptive and multilayer IoT architectures.

2. Software deployment on heterogeneous devices

Some adaptation strategies such as service auto-scaling, software deployment, and
upgrades involve the deployment of new software versions in the different layers
of the system architecture. Making intelligent allocation decisions is one of the
challenging tasks for software deployment at edge/fog nodes. When deploying or
moving an application in the system, it is necessary to select the edge/fog nodes that
have enough resources to run the application, and to offer the appropriate QoS. Or-
chestrators like Kubernetes provide functionality through the scheduler component
to make allocation decisions based on CPU and RAM required by the container, but
other factors such as energy consumption, network latency, reliability, and band-
width usage should be considered when making allocation decisions.

3. Machine learning for self-adaptable systems

Machine learning systems can automatically identify normal and abnormal patterns
and alert a client or third partieswhen things deviate from observed standards, with-
out requiring prior configuration by human operators. For IoT systems, learning al-

2.2. ANALYSIS OF IOT SYSTEM ADAPTATION 29

gorithms can also help to prevent disruptive events affecting system availability and
QoS. While there are traditional challenges for the design of a learning algorithm
such as the selection of the efficient model, the amount of data, and data cleaning,
there are also other problems related to the technologies and processes to obtain
the data or features. For example, the monitoring of non-functional properties such
as accuracy, frequency, sensitivity, and drift is one of the challenges due to the het-
erogeneity of IoT devices in the device layer.

4. Global self-adaptive architecture

The studies included in this SLR propose techniques and strategies to address at
most two of the dynamic events. However, in some scenarios or domains, it is nec-
essary to propose solutions to support various/simultaneous dynamic events. For
example, a smart city system synchronizes the basic functions of a city based on
seven key components, including natural resources and energy, transport and mo-
bility, buildings, life, government, economy, and people [42]. Due to the large num-
ber of IoT devices considered, a smart city system can experience all the dynamic
events that we have identified in table 2.5.

Therefore, it is necessary to design a general architecture for IoT systems with
components to monitor, detect events, and self-adapt the system: an architecture
with the ability to adapt to various dynamic events. For example, a system that
can detect failures in software updates and perform operations such as software
rollback, while supporting new devices being added to the system. This same system
could also support other types of events such as dynamic data transfer rate and
network connectivity failures.

For designing this general self-adaptive architecture for IoT systems, some base
technologies are especially promising. For example, theMQTT communication pro-
tocol is ideal for IoT applications since it presents advantages concerning scalability,
asynchronism, decoupling between clients, low bandwidth, and power consump-
tion. Regarding virtualization technology, containerization offers several advan-
tages for software deployment in IoT systems. In particular, it is possible to deploy
containers on various types of hardware and operating systems, something very
useful considering the heterogeneity of nodes in the edge/fog layer. For example, it
is possible to deploy a container with an application on both a RaspberryPI2 and a
Linux server.

2https://www.raspberrypi.org

https://www.raspberrypi.org

30 CHAPTER 2. STATE OF THE ART

2.2.6 Our direction

This thesis focuses on addressing the challenges and concerns classified in Topic
4 of Section 2.2.5: design a general architecture/framework to support self-
adaptations in IoT systems. This general framework must support the activities
performed at design-time (to specify the system) and at runtime (to self-adapt the
system).

The complexity of the multi-layered architectures that are nowadays imple-
mented by IoT systems challenges their design and more so for systems that re-
quire self-adaptation schemes. To facilitate the definition of these complex systems
and provide a better understanding of these, models are commonly used. Models
raise the level of abstraction to focus on the relevant concepts of a domain, in this
case, self-adaptive multi-layered IoT systems domain. However, to build models,
a domain-specific language (DSL) is required to specify system concepts such as
nodes, sensors, actuators, applications, and adaptation rules.

Designing a DSL involves an in-depth study to understand the domain to be
modeled. In this thesis, we design a DSL to describe multi-layered IoT systems and
their adaptation scheme to copewith several types of dynamic events by performing
adaptations. This DSL supports the design time phase of our framework.

To manage the IoT system at runtime, it is necessary to build a solution capa-
ble of self-adapting the IoT system according to the adaptation scheme specified at
design time. To achieve this, it is required to design an architectural approach with
capabilities to monitor, detect dynamic events, and apply changes on the target IoT
system. This implies at least (1) the deployment of monitors that continuously col-
lect infrastructure and QoS metrics such as those in Table 2.6; (2) an analyzer com-
ponent that checks and detects abnormal values in the metrics (dynamic events),
and (3) an adaptation engine to perform changes or adaptations to the system. The
design of the framework to manage the system at runtime is another research ac-
tivity that we address in this thesis.

In this thesis, we address actions and adaptations patterns grouped in two cate-
gories: (1) architectural adaptations (such as those identified in Table 2.7) to guar-
antee system availability and performance despite dynamic events; and (2) system
actuators control to meet system functional requirements involving system ac-
tuator management (e.g., activating/deactivating alarms, turning on/off lamps, and
increasing the power of a fan). In Chapter 4, we discussed the specification of rules
involving these two types of actions or adaptations.

2.3. CONCLUSION 31

2.3 Conclusion

As the first research activity of this thesis, we have conducted an SLR to study the
dynamic events that impact the QoS of IoT systems, to analyze the strategies imple-
mented by the literature in order to address them, and to identify the weaknesses
of the approaches found in the state-of-the-art.

We identified six types of dynamic events or unexpected changes and four adap-
tation strategies in response to the events. Monitoring the resource consumption of
the edge/fog nodes is one of the most used strategies to detect some dynamic events
of the system. In particular, the consumption of CPU and RAMmemory are metrics
frequently monitored to identify when a node fails or is close to failure.

We have identified open challenges that we believe need to be addressed to im-
prove current adaptation strategies. These challenges are classified into four topics:
(1)monitoring and logging the dynamic events themselves, (2) software deployment on
heterogeneous devices, (3) machine learning for self-adaptable systems, and (4) global
self-adaptive architecture. In this thesis, we focus on the challenges of topic 4 to
support the design and management of self-adaptive multi-layer IoT architectures.
The design of a DSL for the specification of these systems at desig-time, and the
design of a framework to support the system at runtime are some of the tasks we
conducted to address these challenges.

Chapter 3

Overview

To meet increasingly restrictive requirements and improve QoS, Internet of Things
(IoT) systems have embraced multi-layered architectures leveraging edge and fog
computing. However, the dynamic and evolution of IoT environment can impact
QoS due to unexpected events. Therefore, proactive evolution and adaptation of
the IoT system becomes a necessity and concern that we address according to our
research objectives. We propose IoT@runtime, an approach for specifying andman-
aging self-adaptive IoT systems. This approach supports both design time (for spec-
ification) and runtime (for adaptation and reconfiguration) activities.

This chapter introduces our proposal. Section 3.1 presents an overview of our
architecture by distinguishing design time and runtime activities. Section 3.2 details
a running example used in several chapters of this document to better illustrate our
approach. Our research methodology is presented in Section 3.3. Finally, Section
3.4 concludes this chapter.

3.1 Framework Overview

IoT@runtime is a comprehensive approach formodeling andmanaging self-adaptive,
multi-layer IoT systems. This approach involves multiple technologies, techniques,
components and software tools in two stages: design time for the specification of
the self-adaptive IoT system, and runtime to support the operation and adaptation
of the system. Figure 3.1 summarizes an operational view of our architecture by
distinguishing design time (left-hand side) and runtime (right-hand side).

33

34 CHAPTER 3. OVERVIEW

Figure 3.1: Overview

3.1.1 Design time stage

The first step in designing and managing self-adaptive IoT systems is the specifica-
tion of the system, its environment, its adaptation plan and other domain properties.
To address this task, we have designed a DSL for modeling multi-layer IoT archi-
tectures (including devices and nodes of the physical, edge/fog and cloud layers),
container-based applications deployed on the nodes, and the adaptation rules to
ensure system operation.

As shown in the Figure 3.1, the user builds a model (using our DSL) that de-
scribes the multi-layered IoT system and its self-adaptive behaviour, based on a
defined metamodel. The code generator then transforms the model into text, pro-
ducing the code for the deployment of the IoT applications and the code required to
support the execution of the system at runtime (including the code for infrastructure
monitoring and system management tools). Both the DSL and the code generator
are implemented using MPS 1, a language workbench developed by JetBrains to de-
sign DSLs. We have used MPS because of the ability to configure multiple notations
(such as textual, graphical, or tabular) on a single model, and because of the variety
of integrated components and libraries that enable the design of the abstract syntax,
projectional editors, constraints, and the code generator (transformation chain) in
an integrated way. Other toolkits (such as GMF2, Sirius3, or Xtext4) focus on a single
notation, and would require additional effort for integration. The DSL and the code
generator are detailed in Chapter 4.

1https://www.jetbrains.com/mps/
2https://www.eclipse.org/modeling/gmp/
3https://www.eclipse.org/sirius/overview.html
4https://www.eclipse.org/Xtext/

3.2. RUNNING EXAMPLE: SMART BUILDING SCENARIO 35

3.1.2 Runtime stage

In the runtime stage, the operation and self-adaptation of the IoT system is per-
formed. To achieve this, we have designed the architecture based on the MAPE-K
loop, which has been widely employed for the design of self-adaptive systems. The
four stages of theMAPE-K loop enable theMonitoring or collection of information
on the current state of the system, the Analysis of the collected information, the
Planning of the list of actions or adaptations to be performed on the system, and
the Execution of the adaptation plan.

Our approach leverages different technologies and tools for each stage of the
MAPE-K loop. For example, we use Prometheus and several of its modules (such as
Alerting Rules and Alert Manager) to store the information, analyze it, and detect
when an adaptation should be applied to the system. We have also built the Adap-
tation Engine to executes the actions and adaptations on the IoT system through
the orchestrator. This runtime approach is detailed in Chapter 5, and the code for
the deployment and configuration of the tools and technologies is produced by the
code generator (see Section 4.4 for details).

3.2 Running Example: Smart Building Scenario

Smart buildings seek to optimize different features such as ventilation, heating,
lighting, energy efficiency, etc [98]. Optimizing these features requires making
quick, real-time decisions about security, temperature settings, emergency response,
and other types of critical system tasks. This involves the collection and generation
of terabytes of data per day, increasing bandwidth consumption and becoming un-
manageable by the cloud alone. In a single emergency scenario several automatic
tasks could be executed threatening the availability of the system due to the in-
creased consumption of bandwidth and computing resources. For example, when
a fire is detected inside the building, sensors increase their monitoring frequency,
fire alarms are turned on, video surveillance systems analyze the spread of the fire,
the shortest available evacuation routes are calculated for each zone and people are
oriented by signage, power is cut on circuits that can worsen the emergency, the
fire department is notified immediately, and a number of other automatic tasks can
be executed to protect and assist occupants.

3.2.1 Multilayered Architecture

Aiming to meet functional and non-functional requirements, smart buildings sys-
tems implementmulti-layered architectures that leverage edge/fog computing. While
critical tasks that require real-time data analysis are executed on edge/fog nodes

36 CHAPTER 3. OVERVIEW

(e.g. real time detection of emergencies), other tasks that do not demand immedi-
ate response are executed in the cloud (e.g. generation of historical data reports).
We will use a simple Smart Building scenario as a running example to better illus-
trate our approach. Other case studies modeling real-world Underground Mining
and Wastewater Treatment Plants (WWTPs) are presented in Chapter 6. We prefer
to introduce our approach modeling a Smart Building scenario because it has been
well-studied in the literature and may result more suitable to ease understanding.

Adopting the concept of smart building, a hotel company (Hotel Beach) wants
to reduce fire risks by automating disaster management in its hotels. A fire alarm
and monitoring system are implemented in each of the company’s hotels. We will
assume that all buildings (hotels) have three floors with two rooms each. Fig. 3.2
presents an overview of the 1st floor of this building. According to this, the infras-
tructure (device, edge/fog, and cloud layers) of the company hotel IoT system are as
follows.

• Device layer. Each room has a temperature sensor, a carbon monoxide (CO)
gas sensor, and a fire water valve. Furthermore, an alarm is deployed on the
lobby. Each sensor has a threshold measurement to activate the correspond-
ing alarm, e.g. a person should not be continuously exposed to CO gas level
of 50 parts per million (ppm) for more than 8 hours, and 400 ppm for more
than 4 minutes.

• Edge layer. In each room, an edge node receives the information collected
by the sensors of the device layer and run a software container (C1 and C2)
for analyzing sensor data in real time to check for the presence of smoke and
generate an alarm state that activates the actuators. A fog node (linked to the
edge nodes) is located in the 1st floor of the building. This node runs the C3
container (running App2, a machine learning model to predict fires on any
of the building’s floors), and C4 (running App3, in charge of receiving and
distributing data, typically a MQTT broken as we will see later on).

• Cloud layer. The cloud layer has a server or cloud node that runs the C5
container, a web application (App4) to display historical information of sensor
data and of fire incidents in any of the hotels property of the company.

Table 3.1 summarizes the applications features and the containers deployed in
the IoT system infrastructure. Ports, memory, and CPU values are approximate to
real applications. In Chapter 4 we introduce the modeling of the architecture of this
system, including the applications, containers, and adaptation.

3.3. RESEARCH METHODOLOGY 37

Figure 3.2: Overview of the smart building IoT system, first floor

3.2.2 System Adaptation

Although multi-layer architectures improve latency, bandwidth consumption and
reliability, it is still necessary to guarantee the availability of applications that per-
form critical system tasks. In any IoT system, there are critical applications that
should be available all the time. For example, the availability of the containers run-
ning App1 (real-time smoke monitoring to detect and alarm the presence of smoke)
should be guaranteed. However, some environmental factors can generate unex-
pected events impacting system operation and services availability. For example,
when an emergency state is detected, the increase in data collected at the device
layer may increase bandwidth consumption leading to system failures.

In these cases, the IoT system must self-adapt to guarantee its operation. For
instance, if the edge-a1 node fails, it will be necessary to migrate the C1 container
to another suitable node. These types of system architectural adaptations are ad-
dressed in our research, but also actions at the device layer to fulfill functional re-
quirements. For this running example, if a gas sensor detects CO gas greater than
400 ppm, an alarm should be triggered. Chapter 4 describes the modeling of system
rules to specify these scenarios.

3.3 Research Methodology

To develop and evaluate the artifacts of our proposal, we have followed the guide-
lines of the Design Science Research (DSR) methodology, which has been adopted in

38 CHAPTER 3. OVERVIEW

Table 3.1: Description of containerized applications, first floor

Application Requirements Containers
App1 Memory: 500 MB
(real-time CPU: 500 mCores
smoke Port: 8000 C1, C2
monitoring) Repo: hotel/app1:latest
App2 Mem: 900 MB
(fire CPU: 900 mCores
predictive Port: 5000 C3
model) Repo: hotel/app2:latest
App3 Memory: 700 MB
(MQTT CPU: 700 mCores
broker) Port: 1883 C4

Repo: mosquitto:2.0
App4 Memory: 2000 MB
(web CPU: 2000 mCores
application) Port: 8080 C5

Repo: hotel/app4:latest

information systems and computer science research areas for the creation and eval-
uation of IT artifacts [125]. DSR involves the construction of artifacts as decision
support systems, modeling tools, governance strategies, and methods for system
evaluation. Two high-level stages are performed in the DSR methodology: build
(construct an artifact for a specific purpose) and evaluate (determine how well the
artifact behaves) [106]. Peffers et al. [125] synthesizes this methodology into 6 ac-
tivities as shown in figure 3.3.

We addressed the first research activities (problem identification and definition
of research objectives) by conducting an SLR. Through this SLR (published in the
Journal of Internet Services and Applications [6]) we have identified the open chal-
lenges covered in this thesis. Then, we built the artifacts that make up our proposed
solution, defined a suitable context for its illustration, performed one or several eval-
uations, and finally sought a communication method such as conferences, journals,
or workshops.

Developing our approach solution involves the design and implementation of
several software artifacts such as metamodels, a code-generator, monitors, services,
and the remaining artifacts of the architecture presented in Figure 3.1. The devel-
opment and evaluation of the artifacts have been classified in two groups: artifacts

3.4. CONCLUSION 39

Figure 3.3: Design Science Research Methodology (DSR) process model [125]

for design time and artifacts for runtime.
Desing time: we first address the design of the DSL to model self-adaptive

multilayer IoT systems, and the code generator to obtain YAML manifest for ap-
plication deployment. In a second iteration, we developed two extensions of the
DSL for modeling IoT systems in two different domains; underground mining, and
Wastewater Treatment Plants (WWTPs). The usability of one of these DSL exten-
sions was validated through empirical experiments with a group of participants.

Runtime: To support the system at runtime, we have designed or configured
the artifacts that make up each of the stages of the MAPE-K loop. We also modified
the code generator to obtain the manifests that deploys and configures these arti-
facts. To evaluate the effectiveness of the tool, we have simulated scenarios to test
the different self-adaptations of the system.

3.4 Conclusion

In this chapter we presented an overview of our proposal, a comprehensive ap-
proach for modeling and managing self-adaptive, multi-layer IoT systems. This ap-
proach involves multiple technologies, techniques, components and software tools
in two stages: design time for the specification of the multi-layered IoT architecture
and its adaptive behaviour, and runtime to support the operation and adaptation of
the system.

A running example of a smart building system is also presented in this chapter.
This example is to better illustrate our approach in the following chapters. Finally,
we presented the main steps of the Design Science research methodology adopted
to develop and evaluate the software artifacts of this thesis.

Chapter 4

Modeling Self-adaptive IoT
Architectures

Modeling IoT architectures is a complex process that must cover as well the specifi-
cation of self-adaptation rules to ensure the optimized execution of the IoT system.
To facilitate this task, we propose a new IoTDomain-Specific Language (DSL) cover-
ing both the static and dynamic aspects of an IoT deployment. Our DSL is focused
on three main contributions: (1) modeling primitives covering multi-layered IoT
architectures, including IoT devices (sensors and actuators), edge, fog, and cloud
nodes; (2) modeling the deployment and grouping of container-based applications
on those nodes; and (3) a specific sublanguage to express rules.

In this chapter, we address the design of the components involved in the de-
sign time phase of our approach illustrated in Figure 3.1 (i.e., the DSL and the code
generator). Our DSL for modeling the static and dynamic aspects of the IoT sys-
tem is introduced as follows. First, Section 4.1 describes the abstract syntax and
the concrete syntax of the DSL elements for the specification of static aspects in-
cluding architecture and deployment of containerized applications. Then, Section
4.2 covers the dynamic ones, i.e. the specification of rules. Section 4.3 describes
the DSL implementation and Section 4.4 presents the code generator developed to
produce YAML manifests and configuration files. Finally, Section 4.5 presents an
installation and configuration guide for using the DSL, and Section 4.6 concludes
this chapter. To illustrate the concepts of the metamodel, we will use the running
example presented in Section 3.2.

41

42 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

4.1 Modeling of the IoT Architecture

Multi-layered architectures have emerged to increase the flexibility of pure cloud
deployments and help meet non-functional IoT system requirements. In particular,
edge computing and fog computing are solutions that propose to bring computation,
storage, communication, control, and decision making closer to IoT devices.

Edge and fog computing often leverage containerization as a virtualization tech-
nology. Containers, compared to virtual machines, are lightweight, simple to de-
ploy, support multiple architectures, have a short start-up time, and are suitable for
dealing with the heterogeneity of edge and fog nodes. To support high scalability,
message-driven asynchronous architectures are commonly implemented in cyber-
physical and IoT systems [73]. The publisher/subscriber pattern and the Message
Queing Telemetry Transport (MQTT) protocol are becoming the standard for M2M
communications [111], where messages are sent (by publishers) to a message broker
server and routed to destination clients (subscribers).

This DSL enables the specification of all these concepts as part of amulti-layered
IoT architecture.

4.1.1 Abstract syntax

The abstract syntax of the DSL is commonly defined through a metamodel that rep-
resents the domain concepts and their relationships. Fig. 4.1 shows the metamodel
that abstracts the concepts to define multi-layered IoT architectures. The sensors
and actuators of the device layer are modeled using the Sensor and Actuator con-
cepts that inherit from the IoTDevice concept. This generalization is restricted to
be complete and disjoint. All IoTDevices have a connectivity type (such as ethernet,
wifi, ZigBee, or another) represented through the Connectivity attribute.

We also cover the concepts for specifying publish/subscribe communication be-
tween IoT devices and nodes. IoTDevices are publishers or subscribers to a topic
specified by the relationship to the Topic) concept. The gateway of an IoTDevice
can be modeled through the gateway relationship with the EdgeNode concept. Via
this gateway, the sensor can communicate with other nodes, e.g. the MQTT bro-
ker node. Note the multiplicity of gateway relationship (0..1), this means that the
sensor/actuator may not connect to a gateway. Sometimes IoT devices may have
an integrated communication module that enable sending data directly to the cloud
without a gateway.

Monitoring systems commonly generate alarms when one of the sensors detects
a value that exceeds a limit. For example, gas monitoring systems set emergency
thresholds for each of the gases checked. In this metamodel, the threshold value and

4.1. MODELING OF THE IOT ARCHITECTURE 43

unit of the monitored variable by a sensor can be represented through the attributes
threshold and unit.

The location of IoTDevices can be specified through geographic coordinates (lat-
itude and longitude attributes). Both Sensors and Actuators have a type represented
by the concepts SensorType and ActuatorType. For instance, following the running
example (Fig. 3.2), there are temperature and smoke type sensors, and there are
valve and alarm type actuators.

Physical (or even virtual) spaces such as rooms, stairs, buildings, or tunnels can
be represented by the concept Region. A Region can contain subregions (relationship
subregions in the metamodel). For example, region Floor1 (Fig. 3.2) contains subre-
gions Room1, Room2, Lobby, and Stairs. IoTDevices, EdgeNodes, and FogNodes are
deployed and are located in a region or subregion (represented by region relation-
ships in the metamodel). Back to the running example, the edge-a1 node is located
in the RoomA1 region of Floor1 of the Hotel Beach, while the fog-f1 node is located
in the Lobby region of Floor1.

Edge, fog and cloud nodes are all instances of Node, one of the key concepts of
the metamodel. A node has the ability to host the software containers. Communi-
cation between nodes can be specified via the linkedNodes relationship as we may
want to indicate what nodes on a certain layer could act as reference nodes in an-
other layer (e.g. what cloud node should be the first option for a fog node). Nodes
can also be grouped in clusters that work together. A Cluster has at least one mas-
ter node (represented by the master relationship) and one or several worker nodes
(represented by theworkers relationship). The details of each node are expressed via
attributes such as ip address (ipAddress), operating system (OS), number of cores in
the processor (cpuCores), RAM memory (memory), storage capacity (storage), and
processor type (processor enum).

A Node can host several software containers according to its capabilities and
resources (primarily cpuCores,memory, and storage). The cpu and memory usage of
a container can be restricted through cpuLimit and memoryLimit attributes. Each
software container runs an application (represented by the conceptApplication) that
has a minimum of required resources specified by the attributes cpuRequired and
memmoryRequired. The repository of the application image is specified through
the imageRepo attribute, and the used ports through port and k3sPort attributes. The
container volumes and their paths (a mechanism for persisting data used and gen-
erated by containers) are represented by Volume concept. Finally, the MQTT broker
that receives and distributes the messages can also be specified and deployed in a
software container, and its broker topics are represented by the topics relationship.

44 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Fi
gu

re
4.1

:M
et
am

od
el
de
pi
ct
in
g
th
e
m
ul
ti-
la
ye
ra

rc
hi
te
ct
ur
e

4.1. MODELING OF THE IOT ARCHITECTURE 45

4.1.2 Concrete syntax

The concrete syntax refers to the type of notation (such as textual, or graphical)
to represent the concepts of the metamodel. Graphical DSLs involve the develop-
ment of models using graphic items such as blocks, arrows, axes, and so on. Textual
DSLs involve modeling using configuration files and text notes. Though most DSLs
employ a single type of notation they could benefit from offering several alterna-
tive notations, each one targeting a different type of DSL user profile. This is the
approach we follow here, leveraging the benefits of using a projectional editor.

Projectional editors enable the user’s editing actions to directly change the Ab-
stract Syntax Tree (AST) without using a parser [23]. That is, while the editing
experience simulates that of classical parsing-based editors, there is a single repre-
sentation of the model stored as an AST and rendered in a variety of perspectives
thanks to the corresponding projectional editors that can deal with mixed-language
code and support various notations such as tables, mathematical formulas, or dia-
grams.

Indeed, we take advantage of MPS projectional editors to define a set of com-
plementary notations for the metamodel concepts. We blend textual, tabular, and
tree view, depending on the element to be modeled. We next employ these nota-
tions to model our running example. More technical details about MPS and the
implementation of our concrete notations are presented in Section 4.3.

4.1.3 Well-Formedness Rules

Somemetamodel constraints cannot be defined using only elements of the graphical
metamodel syntax [26]. An alternative to address this is to use the Object Constraint
Language (OCL), a declarative language for describing metamodel rules that are
validated at the model level (known as well-formedness rules). The definition and
implementation of these rules improves the accuracy of the DSL and avoids errors
that could occur at runtime.

Figure 4.2 shows the well-formedness rules that we have defined using the OCL
language. The Node concept has four rules: one (WFR1) to guarantee that the host-
name is unique and the other three (WFR2, WFR3 and WFR4) to guarantee that the
attributes cpuCores,memory, and storage take positive values. We have also defined
a rule (WFR5) to ensure that the IoTDevices id is unique. Similarly, the Container,
Region, and Cluster concepts have a rule (WFR6) for the name attribute to be unique.
Additionally, we have defined a rule (WFR7) for the Container concept that guar-
antees that the owner Node has enough available resources (memory and CPU) to
host it. These rules have been expressed as invariants (inv), i.e., conditions that
must always be true for all instances of the class defined in the context.

46 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Figure 4.2: Well-formedness rules for multi-layer architecture metamodel

4.1.4 Example scenario

We present next how to model the IoT architecture of the running example (from
Section 3.2) using our DSL. When the user creates a new model, a template with the
concepts for specifying the IoT system is provided (see Figure 4.3). The definition
of concepts in the model template follow a logical order to describe and specify the
system architecture. For example, the regions defined in section 1 of the template
are required to specify the location of the nodes and IoT devices in sections 3 and 6.

Regions

Figure 4.4 shows the specification of the Hotel Beach regions, in particular those
on Floor 1, i.e. four subregions: two Rooms, the Lobby and the Stairs. The regions
defined in this tree diagram are then referenced in the specification of the nodes,
sensors, actuators and rules of the system.

Applications

Fig. 4.5 depicts the modeling of the IoT system applications, including its techni-
cal requirements and repository address. The memory and cpu requirements are
primarily used to determine if the nodes that will host the application container
have the necessary resources. The port specifications are to configure the container
ports, and the repository to download the image of the containerized application.

4.1. MODELING OF THE IOT ARCHITECTURE 47

Figure 4.3: Model template

Nodes

For describing the system nodes, we propose a tabular notation. Figure 4.6 shows
the specification of the nodes deployed in Floor 1 of the Hotel. The node description
includes the layer it belongs to (edge, fog, or cloud), the hardware properties (such as

48 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Figure 4.4: Regions modeling example

memory and storage resources), the regions where it is located, and the application
containers it hosts. Note that C4 is the only container that uses a volume for the
MQTT broker configuration parameters (mosquitto1 in this example).

Clusters

To specify a cluster of nodes, at least one master node and one worker node are
required. An example of clustermodeling is shown in Figure 4.7, inwhich the cluster
composed of the Hotel nodes is modeled. Although there is one or more master
nodes managing the cluster (usually cloud nodes), constant Internet connection is
not a mandatory for multi-layered architectures. The edge/fog nodes can operate
as a standalone network node with limited internet connectivity.

Broker topics

To specify the MQTT topics, the container running the broker must be selected.
Figure 4.8 shows the topics defined for the sensors and actuators deployed on Floor
1 of the Hotel, whose broker is running on the C4 container. The topics in this
example follow the nomenclature floor/room/sensor_type, however, these could be
specified following a more complex nomenclature according to the case.

1https://mosquitto.org/

4.2. MODELING OF RULES 49

Figure 4.5: Application modeling example

Sensors and Actuators

IoT devices can be modeled using a tabular notation similar to Nodes. Fig. 4.9 shows
the list of sensors and actuators located in the Floor 1 region, including their descrip-
tions such as units and threshold (for sensors only), region where it is deployed,
brand, communication protocol, gateway (if any), topic (either publisher or sub-
scriber), and location coordinates.

4.2 Modeling of Rules

The dynamic environment of an IoT system requires dealing with expected an un-
expected events. The former may trigger actions to comply with the standard be-
haviour of the system (e.g. to turn on an alarm upon detection of fire), unexpected
ones may require a self-adaptation of the system itself to continue its normal op-
eration. This section presents a rule-based language that can cover both types of
events (and even mix them in a single rule). This facilitates an homogeneous of all
the dynamic aspects of an IoT system.

To decidewhat unexpected environmental situation shouldwe include andwhat
the standard patterns of response are common in the self-adaptation of IoT systems,

50 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Figure 4.6: Nodes modeling example

we rely on our previous systematic literature review presented in Chapter 2.2. For
instance, the three architectural adaptations (offloading, scaling, and redeployment)
addressed in this study were identified in the SLR. Our language covers all of them
and even enables complex rules where policies involving several strategies can be
attempted in a given order.

4.2. MODELING OF RULES 51

Figure 4.7: Cluster modeling example

Figure 4.8: Broker topics modeling example

4.2.1 Abstract syntax

The metamodel representing the abstract syntax for defining the rules is presented
in Fig. 4.10.

52 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Figure 4.9: IoT devices modeling example

4.2. MODELING OF RULES 53

Fi
gu

re
4.1

0:
M
et
am

od
el

de
pi
ct
in
g
ru
le
s.

Th
e
co
nc
ep
ts

sh
ad
ed

w
ith

gr
ay

co
lo
r
(su

ch
as

Cl
us
te
r,
A
pp

lic
at
io
n,

an
d
N
od

e)
ha
ve

be
en

pr
ev
io
us
ly

de
fin

ed
in

th
e
m
et
am

od
el
in

Fi
gu

re
4.1

54 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Every rule is an instance of Rule that has a triggering condition which is an
expression. We reuse an existing Expression sublanguage to avoid redefining in our
language all the primitive data types and all the basic arithmetic and logic operations
to manipulate them. Such Expression language could be for instance the Object
Constraint Language (OCL) but to facilitate the implementation of the DSL later
on, we directly reused the MPS BaseLanguage2.

The BaseLanguage is a Java counterpart in MPS, since it shares with Java almost
the same set of constructs. The BaseLanguage is the most extended language in
MPS that includes concepts such as Expression (the concept we extend in our meta-
model). Expression is an abstract concept that represents expressions of the form
"a+ b", "ab < cd", "a∥b", and other types that include mathematical and logical op-
erators. Figure 4.11 shows an excerpt of the Expressionmetamodel with the concepts
we most use to represent rules. An Expression can be a boolean constant (Boolean-
Constant), a numeric value with unit of measure (Num_Value), or a binary operation
(BinaryOperation) composed of a left expression and a right expression (leftExpres-
sion and rightExpression relationships). BinaryOperations can bemathematical (such
as Plus,Mul, andMinus), logical (such asOr, And, and Equals), or binary comparison
operations (BinaryCompare) such as >, >=, <, or <=. This sublanguage allows the
design of complex rules composed of several expressions involving mathematical
and logical operators.

Our metamodel (Figure 4.10) extends the generic Expression concept by adding
sensor (SensorCondition and SensorRegionCondition) and QoS (QoSCondition) condi-
tions that can be combined also with all other types of expressions (e.g. BinaryOp-
eration) in a complex conditional expression.

A SensorCondition represents the occurrence of an event resulting from the anal-
ysis of sensor data (e.g., the detection of dioxide carbon gas by the gas-a1 sensor).
On the other hand, a SensorRegionCondition can be linked to sensor types in a region
to express conditions involving a group of sensors in that region. For example, the
detection of temperature rise by any of sensors in the Floor1 region.

Similarly, theQoSCondition condition is a relational expression that represents a
threshold of resource consumption or QoS metrics. This condition allows to check a
Metric (such as Latency, CPU consumption, and others) on a specific node (QoSNode
concept), on a specific container (QoSContainer concept), or a group of nodes be-
longing to a Region (QoSRegion concept) or Cluster (QoSCluster concept). For exam-
ple, the condition cpu(HotelBeach− > edge_nodes) > 50% is QoSRegion type
and is triggered when the CPU consumption on the edge nodes of the HotelBeach
exceeds 50%.

Moreover, we can define that the condition should be true over a certain period

2https://www.jetbrains.com/help/mps/base-language.html

4.2. MODELING OF RULES 55

Figure 4.11: Excerpt of Expression Language metamodel

(to avoid firing the rule in reaction to minor disturbances) before executing the
rule. Once fired, all or some of the actions are executed in order, depending on
the allActions attribute. If set to false, only the number of Actions specified by the
attribute actionsQuantity must be executed, starting with the first one in order and
continuing until the required number of actions have been successfully applied.

For the sake of clarity, we have grouped the rule concepts into two categories:
Architectural Adaptation Rules and Functional Rules but note that they could be all
combined, e.g., a sensor event could trigger a functional response such as triggering
an alarm and, at the same time, an automatic self-adaptation action, such as scaling
of apps related to the event to make sure the IoT system has the capacity to collect
more relevant data).

Among the Actions:

• the Offloading action consists in migrating a container from a source node
to a destination node. This migration can be between nodes of different lay-
ers. The container relationship represents the container that will be offloaded.
The target node is specified by the targetNode relationship. However, if the
target node does not have the resources to host the container, a cluster or a
group of nodes in a Region can be specified (targetRegion and targetCluster

56 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

relationships) to offload the container.

• The Scaling action involves deploying replicas of an application. This appli-
cation is represented by the app relationship, and the number of replicas to
be deployed is defined by the instances attribute. The replicas of the applica-
tion are deployed in one or several nodes of the system represented by the
targetNodes, targetCluster, and targetRegion relationships.

• The Redeployment action consists in stopping and redeploying a container
running on a node. The container to redeploy is indicated by the container
relationship.

• Finally, the OperateActuator action is to control the actuators of the system
(e.g. to activate or deactivate an alarm). The message attribute represents the
message that will be published in the broker and interpreted by the actuator.
This action can control actuators that require only one control value such as
On/Off.

4.2.2 Concrete syntax

These rules are specified thanks to a textual notation using as keywords the names
of the metaclasses of the abstract syntax. The conditions follow the grammar of
a relational expression with the use of mathematical symbols (such as <, >, and
=) and logical operators (such as & and ∥). The rule editor (see Section 4.3) offers
a powerful autocomplete feature to guide the designer through the rule creation
process.

4.2.3 Well-Formedness Rules

We have defined three well-formedness rules using OCL (see Figure 4.12) to validate
the correctness of the model describing the IoT system rules. The WFR8 rule is
to initialize the allActions parameter equal to true of each rule. The WFR9 rule
guarantees that when creating an event of type SensorRegionCondition there is at
least one Sensor of type SensorType related in the specified Region. For example,
the condition Stairs[temperature] > 50oC detects if the temperature in the Stairs
region exceeds 50oC , but this condition can only be specified if there is at least one
temperature sensor deployed on the Stairs. Finally, the WFR10 rule ensures that the
instances parameter of the Scaling concept is greater than zero.

4.2. MODELING OF RULES 57

Figure 4.12: Well-formedness rules for rules metamodel

4.2.4 Example Scenario

We show how to use the rule’s concrete syntax to model two rules from the smart
building example.

First, to guarantee the execution of the C4 container deployed on the fog-f1
node, we modeled the rule as shown in (Fig. 4.13). This rule offloads the container
C4 hosted on node fog-f1 to a nearby node (e.g., node edge-b1) when the CPU con-
sumption exceeds 80% for one minute. If the edge-b1 node does not have the neces-
sary resources to host that new container (when the rule is activated), a Region (e.g.
Floor1) can be specified so that a suitable node will be searched there. However, if
this offloading action cannot be executed, for example, because in Floor1 there is no
node capable of hosting the container, then we must define a backup action. There-
fore, we have modeled a second action (Scaling) to deploy a new container instance
of the App3 application on any of the nodes of the Hotel Beach. For this rule, only
one action (the first or the second one) will be executed. Therefore, the checkbox
all actions must be unchecked and the number of actions to be performed must be
set to one.

Secondly, we model another rule (see Fig. 4.14) to activate the alarm (a-lobby)
when any gas sensors in the Floor1 region (gas-a1 or gas-b1) detects a gas concen-
tration greater than 400ppm for 10 seconds. The "On" message is published in the
broker topic consumed by the actuator (a-lobby alarm). Note that there are two
ways to model this rule. While Option 1 involves all CO type sensors on Floor 1,
Option 2 directly involves both gas sensors.

58 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Figure 4.13: Rule 1 modeling example

Figure 4.14: Rule 2 modeling example

4.3 Building a Modeling Environment for the DSL

Our DSL is implemented using MPS (Meta Programming System), an open-source
language workbench developed by JetBrains. This workbench enables language ori-
ented programming with a projectional editor in persistent abstract representation
[161]. The projective edition of MPS supports language extension and composition
possibilities, as well as a flexible combination of a wide range of textual, tabular,
mathematical and graphical notations [29].

4.3. BUILDING A MODELING ENVIRONMENT FOR THE DSL 59

Projectional editors such asMPS enable editing of themodel bymeans of projec-
tions of the abstract syntax, but the model is stored in a format (e.g. XML) indepen-
dent of its concrete syntax. In other words, the user interacts with these projections,
which are then translated by the editor tomodify the persistedmodel. Some benefits
of projectional editing are discussed below [162].

• No grammar or parser is required.

• Graphical, semi-graphical, and textual notation can be combined. For exam-
ple, in Chapter 6.2 we present a graphical notation for specifying a block
diagram, which uses text to define the name of each block.

• The IDE used for model editing can provide code completion, error checking
and syntax highlighting.

• It is possible to provide several representations (projections) for the same
model, since the model is stored independently of the concrete syntax. For
example, we provide two different notations (textual and tabular) to specify
the sensors and actuators of the IoT system.

Defining a language in MPS involves the design of several aspects. The defi-
nition of our DSL includes six aspects: Structure to define the language concepts
(abstract syntax), Editor to define the editors for those concepts (concrete syntax),
Constraints and Type-System to define a set of time-system rules and constraints
(well-formedness rules), Behaviour to define reusable methods and functions, and
Generator to define a code generator. These aspects are described below.

4.3.1 Structure Aspect

The definition of language begins with abstract syntax. In MPS, the structure de-
fines the Abstract Syntax Tree (AST) of the DSL by defining all metamodel concepts.
Each concept has properties (attributes), children (composition relationships), and
references. Concepts can extend from other concepts to represent inheritance re-
lationships. For example, in our metamodel (Figure 4.1), the EdgeNode concept ex-
tends from the Node concept.

Figure 4.15 shows the definition of the Container concept. Container extends
BaseConcept (root concept in MPS) and implements the INamedConcept interface to
inherit a name field. This concept cannot be root and has no alias or description.
Container concept has two integer properties or attributes (cpuLimit and memo-
ryLimit), two children or composition relations (topics and volumes), and a reference
to Application concept.

60 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Figure 4.15: Container concept definition in MPS

4.3.2 Editor Aspect

Projection editors define the AST code editing rules, i.e. the concrete syntax of the
language. The design of the editors greatly influences the DSL usability, since these
define the notation that the user will actually use to edit the model.

Editors in MPS are based on different types of cells (the smallest unit relevant
for projection). Defining an editor consists of arranging cells and defining their con-
tent [162]. We have defined textual, tabular, and tree view editors by implementing
the mbeddr3 extension of MPS. This extension simplifies the definition of cells to
build different types of notations. For example, Fig. 4.16 shows the tabular editor for
modeling the Sensor concept. We have used the partial table command to define the
table structure (cells, content, and column headers). Cell contents can be keywords
(e.g., Sensor in the first defined cell), concept properties (e.g., name in the second de-
fined cell), properties of child nodes (e.g., name of concept Type in the third defined
cell), or refer to a group of nodes (e.g., regions in the sixth defined cell). By defining
this editor, the user is enabled to model Sensors using a tabular notation as shown
in Fig. 4.9.

3http://mbeddr.com/

4.3. BUILDING A MODELING ENVIRONMENT FOR THE DSL 61

Figure 4.16: Definition of the tabular editor for the Sensor concept

4.3.3 Constraints and Type-System Aspects

Constraints aspects define well-formedness rules in the editors. Constraints restrict
the relationships between nodes as well as the allowed values for properties. We
have used this constraintmechanism to embed in the editor several well-formedness
rules required in our DSL specification. For instance, we have added constraints to
avoid repeated names, constraints to limit the potential values of some numerical at-
tributes, constraints to restrict the potential relationships between nodes, and other
constraints that prevent ill-formed models from being built. As an example, the
well-formedness rule to avoid repeated names for containers (WFR6 in Figure 4.2)
is shown in Fig. 4.17. We use the can be child method to check whether instances of
the Container concept can be hooked as child nodes of other nodes. MPS invokes
this method whenever a container node is modified in the AST, and returns false
(i.e., container not allowed) if its name is repeated with that of another container.

Similar to constraints, the type-system aspect allows to provide rules to check
the model code.The MPS type-system engine will evaluate the rules on-the-fly, cal-
culate types for nodes, and report errors. For example, Figure 4.18 shows the rule

62 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Figure 4.17: Container constraint to avoid repeated names

to generate an error message in the model when the containers allocated to a node
exceed the node’s memory and CPU capacities (WFR7 in Figure 4.2). That is, when
the available memory and CPU of the node is less than zero. The methods avail-
ableMemory and availableCPU are defined in the Behaviour aspect of MPS (Section
4.3.4).

Figure 4.18: Type-system rule to check node resources

4.3.4 Behaviour Aspect

The behavior aspect is used to encapsulate functionality that is related to the con-
cept in the way of object-oriented programming. The methods defined in the be-
haviour can be instantiated in the other aspects of the model. For example, Figure
4.19 shows the methods defined for the Node concept (Note that the availableMem-
ory and availableCPU methods are used in the type-system rule showed in Figure

4.4. CODE GENERATOR 63

4.18). To calculate the available memory of a node, first the total memory required
(memory_used variable) of the containerized applications that are hosted on the
node is calculated by iterating the node’s containers (for loop). Then the method
calculates and returns the available memory by subtracting the used memory from
the node memory.

Figure 4.19: Behaviour methods of Node concept

4.4 Code Generator

We have implemented a model-to-text (M2T) transformation that generates several
YAML4 files to deploy IoT system container-based applications and runtime sup-

4YAML is a data serialization language typically used in the design of configuration files

64 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

port tools including the implementation of rules using PromQL5 language. More
specifically, the generated code includes configuration and deployment files to the
following components (most of these components are detailed in Chapter 5):

• The container-based IoT applications specified in the input model. Following
the running example of Section 3.2, the YAML manifests for deployment of
containers C1, C2, C3, C4, and C5 are generated

• YAML Manifests to deploy the monitoring tools and exporters such as kube-
state-metrics6, node-exporter, and mqtt-exporter7

• YAML code to deploy and configure the Prometheus Storage, Prometheus
Alerting Rules, and Prometheus Alert Manager components. The PromQL
code to define the rules (e.g., the code shown in Listing 5.4) is also generated
as a Prometheus configuration file

• YAML manifiest to deploy the Adaptation Engine

• and theGrafana application to display themonitored data stored in the Prometheus
database.

To design the M2T transformation in MPS, we have used template-based gen-
erators, which consist of two main-blocks: Mapping configurations and templates
[162].

4.4.1 Mapping Configuration

Mapping configurations link the model elements with the generation of templates
by means of generation rules. Our Maping configuration define 29 root mapping
rules to create new artefacts (templates that generate the YAML files) from the ex-
isting model, and 15 reduction rules for in-place transformations.

Figure 4.20 shows a root mapping rule and a reduction rule. The mapping rule
generates the deployment and configuration template for pods8 and application
containers named iot-system/pods.yaml. This rule creates a pods.yaml file for each
IoT_System (root concept of the AST) defined. The reduction rule transforms adap-
tations of typeOperate_Actuator into code that will be later executed by the Adapta-
tion Engine at runtime (details of the execution engine are presented in Chapter 5).
Several property macros (dollar sign) are used to replace the properties of the model.

5Prometheus Query Language to select and aggregate time series data in real time
6https://github.com/kubernetes/kube-state-metrics
7https://github.com/fhemberger/mqtt_exporter
8A pod is the smallest unit of Kubernetes applications

4.4. CODE GENERATOR 65

For example, the property macro $[ip] was configured to return the ip address of
the node hosting the MQTT broker. For each adaptation and some expressions we
have defined a reduction rule.

Figure 4.20: Mapping configuration rules

4.4.2 Templates

In the template is where the transformation and code generation is performed. We
have implemented the PlainText Generator 9 plugin to define the templates of our
generator. The templates contain different types of macros used to calculate the
value of a property (e.g., to get the name of a container), to get the target of a refer-
ence, or to control template filling at generation time.

Figure 4.21 shows an excerpt of the template that generates the YAML code for
the deployment of container-based applications via pods (Note that this template
es referenced in the root mapping rule in Figure 4.20). First we attach two LOOP
macros to the template that contain the node.nodes and node.containers expressions
respectively (these expressions are entered through the inspector window and are
not shown in the Figure). This enables the loop through and generation of the
deployment code of a pod for each container. We also use the property macro (dollar
sign) to replace the properties of the container in the generated template such as
the name, the image repository, the limit and required resources, the ports, and the
volumes if any.

9https://jetbrains.github.io/MPS-extensions/extensions/plaintext-gen/

66 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

The code generated to deploy the application container C1 in the edge-a1 node
of the running example is shown in Figure 4.22. Note that the parameters such
as image, request resources (memory and cpu), and containerPort match the App1
specification (Figure 4.5). Finally, the node that will host the pod is restricted by the
nodeSelector tag.

4.5 Installation and Configuration

You can find the DSL code in our repository10. To use the DSL, you have to install
MPS, install some plugins, and open the project using the Toolkit. The software
requirements are listed below.

• Jetbrains MPS 2020.3.1 or 2021.2.211

• mbeddr platform (MPS plugin)12

• plaintext-gen (MPS plugin)

• MPS Table Editor Component (MPS plugin)

In the Appendix B you can find the detailed guide to install and use the DSL,
generate the code, and run the framework.

4.6 Conclusion

In this chapter we have presented a DSL for modeling multi-layered architectures of
IoT systems and their rules (architectural adaptations and functional rules). We have
introduced the abstract and concrete syntax of the DSL by illustrating the concepts
through a running example of smart building. The abstract syntax is presented
through meta-models that abstract the concepts that allow specifying the multi-
layer architecture of the IoT system (including devices and nodes of the device,
edge, fog and cloud layers), the deployment of container-based applications, and
the dynamic rules to guarantee the operation of the system.

The DSL is implemented as a projectional editor created with the Jetbrains MPS
tool. This gives us the flexibility to offer, and mix, a variety of concrete notations for
the different concepts of the DSL. The DSL design includes the definition of several

10https://github.com/SOM-Research/selfadaptive-IoT-DSL.git
11https://blog.jetbrains.com/mps/2021/05/mps-2021-1-has-been-released/
12http://mbeddr.com/platform.html

4.6. CONCLUSION 67

aspects such as Structure for the abstract syntax, Editor for the concrete syntax, and
Constraints to define well-formedness rules.

We have also presented a code generator designed in MPS to generate software
artifacts (YAML files) for the deployment and management of the IoT system at
runtime. To generate the code, M2T transformations are performed by configuring
mappings and templates in MPS. Transformation rules (such as root mapping and
reduction rules) are defined to generate templates and obtain the generated code.
The software artifacts generated include YAML manifests for deploying and con-
figuring containerized IoT applications, kubernetes monitoring tools, Pormetheus
tools, the Adaptation Engine, and Grafana.

68 CHAPTER 4. MODELING SELF-ADAPTIVE IOT ARCHITECTURES

Figure 4.21: Excerpt of the M2T transformation for the YAML code generation of
the IoT applications

4.6. CONCLUSION 69

Figure 4.22: Generated code for C1 container deployment

Chapter 5

Adapting IoT systems at runtime

Engineering IoT systems is a challenging task in part due to the dynamicity and
uncertainty of the environment [9]. IoT systems should be designed to meet their
goals by adapting to dynamic changes. In Chapter 4, we have presented our DSL
for the specification of multilayered IoT architectures, architectural adaptation and
functional rules, and the code generator. In this chapter we detail the design of our
approach to support the self-adaptation of the IoT system at runtime. This approach
is based on the MAPE-K loop, a reference model to design of self-adaptive systems
[92].

The rest of this chapter is organized as follows: Section 5.1 describes our runtime
approach to support IoT system adaptations at runtime. Section 5.2 illustrates our
approach through the running example of the smart building. Finally, Section 5.4
concludes the chapter.

5.1 Runtime Framework

The MAPE-K loop, proposed by IBM for autonomous computing, has been often
employed for the design of self-adaptive systems. Indeed, MAPE-K is a reference
model to implement adaptation mechanisms in auto-adaptive systems. This model
includes four activities (monitor, analyze, plan, and execute) in an iterative feedback
cycle that operate on a knowledge base (see Figure 3.1). These four activities pro-
duce and exchange knowledge and information to apply adaptations due to changes
in the IoT system.

Based on theMAPE-K loop, our architecture is composed of a set of components
and technologies to monitor, analyze, plan, and execute adaptations as illustrated
in Figure 5.1).

71

72 CHAPTER 5. ADAPTING IOT SYSTEMS AT RUNTIME

We next describe how our architecture particularizes the generic MAPE-K con-
cepts for self-adaptive IoT systems.

Figure 5.1: Runtime Approach based on MAPE-K loop

5.1.1 Monitor

In the Monitor stage, information about the current state of the IoT system is col-
lected and stored. Figure 5.2 shows the Monitor stage of our framework and the
YAML manifests used for deployment and configuration. We have implemented
Prometheus Storage1 (a time-series database TSDB) to store the information col-
lected by three monitors and exporters (kube-state metrics, Node exporter, and
MQTT exporter). We have adopted a time-series database because, compared to
other types of databases (e.g., documentary or relational databases), Prometheus
is optimized to store information in a time-efficient format, enhancing the queries
performed in time windows. These queries are necessary to verify the activation of
adaptation rules at run-time. Additionally, Prometheus contains modules and com-
ponents that facilitate the tasks performed in the later stages of our framework such
as analysis and planning (discussed in previous sections).

Four YAML manifests are required to deploy and configure Prometheus TSDB
(other similar manifests are needed for monitors and exporters): deployment.yaml
to deploy the Prometheus TSDB inside a Kubernetes pod, service.yaml to make it

1https://prometheus.io/docs/prometheus/latest/storage/

5.1. RUNTIME FRAMEWORK 73

accessible from outside the cluster, config-map.yaml for configuration parameters,
and clusterRole.yaml to assign the necessary privileges inside the cluster.

Exporters are deployed to convert existing metrics from third-party apps to
Prometheus metrics format. Prometheus stores data as streams of timestamped val-
ues belonging to the samemetric and the same set of labeled dimensions. Four types
of metrics are handled by Prometheus:

1. Counter is an accumulative metric whose value can only increase but not
decrease.

2. Gauge is a metric that represents a numerical value that can go up and down
at any given time (e.g., processor temperature).

3. Histograms and

4. Summaries are complex metrics that record a number of observations and
the sum of the observed values.

The storage of infrastructure metrics (such as CPU usage) and QoS is mostly
through Gauge metrics, but for some database queries we use Histograms and Sum-
maries (e.g. to get the CPU usage of a node in the last 5 minutes).

Figure 5.2: Monitor stage

The collected information is classified into two groups: (1) infrastructure and
QoS metrics, and (2) data sensor metrics (published in the system’s MQTT broker).
These two kinds of information are aligned with the addressed types of rules, i.e.,
architectural adaptation and functional rules.

74 CHAPTER 5. ADAPTING IOT SYSTEMS AT RUNTIME

Infrastructure and QoS Metrics

To collect infrastructure and QoS metrics we used two monitors in addition to the
basic Kubernetes monitor: the kube-state-metrics2 service to collect metrics about
the states of objects in Kubernetes such as nodes, pods, and deployments; and the
Node Exporter3 to collect Linux system-level metrics from all Kubernetes nodes. It
collects hardware and operating system level metrics that are exposed by the kernel
such as CPU usage and network traffic received.

These two technologies enable the monitoring of metrics such as those pre-
sented in Table 2.6 to detect different types of dynamic events. Table 5.1 lists the
infrastructure and QoS metrics that can be configured in a rule using our DSL, the
time series name stored in Prometheus which is used to calculate the DSL metric,
the type of metric, the exporter/service capturing the metric, and a description of
the Prometheus metric. Although the DSL allows to relate latency in the rules, this
is the only metric that is not collected. There are several types of latency that could
be monitored in the system, however, the technologies we have implemented do
not support this monitoring.

2https://github.com/kubernetes/kube-state-metrics
3https://github.com/prometheus/node_exporter

5.1. RUNTIME FRAMEWORK 75

Ta
bl
e
5.1

:Q
oS

an
d
In
fra

st
ru
ct
ur
e
m
et
ric

s

D
SL

m
et
ric

Pr
om

et
he
us

tim
e
se
rie

sn
am

e
M
et
ric

ty
pe

Ex
po

rte
r/
Se
rv
ic
e

D
es
cr
ip
tio

n
Av

ai
la
bi
lit
y

up
Ga

ug
e

Ku
be
-s
ta
te
-m

et
ric

s
Eq

ua
lt
o
1
if
th
e
co
m
po

ne
nt

be
in
g
m
on

ito
re
d
is
av
ai
la
bl
e,

0
ot
he
rw

ise
CP

U
no

de
_c
pu

_s
ec
on

ds
_t
ot
al

co
un

te
r

N
od

e
Ex

po
rte

r
Co

un
ts
th
e
nu

m
be
ro

f
se
co
nd

st
he

CP
U
ha
sb

ee
n

ru
nn

in
g
in

a
pa
rti
cu
la
rm

od
e

RA
M

no
de
_m

em
or
y_

M
em

Av
ai
la
bl
e_
by

te
s

Ga
ug

e
N
od

e
Ex

po
rte

r
Ge

ts
th
e
av
ai
la
bl
e
an
d
to
ta
l

no
de
_m

em
or
y_

M
em

To
ta
l_
by

te
s

Ra
m

m
em

or
y
of

th
e
no

de
D
isk

us
ag
e

no
de
_fi

le
sy
st
em

_a
va
il_

by
te
s

Ga
ug

e
N
od

e
Ex

po
rte

r
Ge

ts
th
e
av
ai
la
bl
e
an
d
to
ta
l

no
de
_fi

le
sy
st
em

_s
iz
e_
by

te
s

di
sk

sp
ac
e
of

th
e
no

de
Ba

nd
w
id
th

in
no

de
_n

et
w
or
k_
re
ce
iv
e_
by

te
s_
to
ta
l

Co
un

te
r

N
od

e
Ex

po
rte

r
Co

un
ts
th
e
nu

m
be
ro

fb
yt
es

of
in
co
m
in
g
ne
tw

or
k
tra

ffi
c

to
th
e
no

de
Ba

nd
w
id
th

ou
t

no
de
_n

et
w
or
k_
tra

ns
m
it_

by
te
s_
to
ta
l

Co
un

te
r

N
od

e
Ex

po
rte

r
Co

un
ts
th
e
nu

m
be
ro

fb
yt
es

of
ou

tg
oi
ng

ne
tw

or
k
tra

ffi
c

fro
m

th
e
no

de

76 CHAPTER 5. ADAPTING IOT SYSTEMS AT RUNTIME

Data Sensor Metrics

To analyse information collected by sensors, first the data published in the MQTT
broker topics must be stored in the Prometheus database. To achieve this, theMQTT
exporter4 is deployed, which subscribes to the broker topics to receive the sensor
data and converts it to the Prometheus metric format.

Similar to other exporters,MQTT Exporter is deployed in a Kubernetes pod and
configured through a ConfigMap object, which allows storing data such as key-
value pairs, environment variables or command-line arguments. The configuration
includes the host and port of the MQTT broker, the topics to be subscribed, the
type of metric and other setup parameters. Listing 5.1 presents a portion of the
ConfigMap produced by the code generator for our running example. Note that the
host (line 9) and port (line 10) correspond to the ip address of the node hosting
the broker (fog-f1 in Figure 4.6) and the port specified for the application (App3 in
Figure 4.5). Lines 13-23 configure the exporter to subscribe to the smoke sensor
topic deployed in roomA1: line 13 defines the name of the Prometheus time series
that will store the topical data; line 14 provides a description of the time series; line
15 defines the type of Prometheus metric (Gauge in this example); line 15 define the
topic to subscribe; and lines 17-23 configure labels on the stored data.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: mqtt -exporter -config
5 namespace: monitoring
6 data:
7 conf.yaml: |
8 mqtt:
9 host: ’192.168.10.3 ’
10 port: 30070
11
12 metrics:
13 - name: ’floor1_roomA1_smoke ’
14 help: ’Topic floor1/roomA1/smoke ’
15 type: ’gauge ’
16 topic: ’floor1/roomA1/smoke ’
17 label_configs:
18 - source_labels: [’__msg_topic__ ’]
19 separator: ’/’
20 regex: ’(.*)’
21 target_label: ’__topic__ ’
22 replacement: ’\1’
23 action: ’replace ’

4https://github.com/fhemberger/mqtt_exporter

5.1. RUNTIME FRAMEWORK 77

Listing 5.1: MQTT exporter configuration

5.1.2 Analyze

The information collected in the Monitor stage must be analyzed, and dynamic
events that require adaptations must be identified. To deal with this, we have
used Prometheus Alerting Rules5 (see Figure 5.3) to define alert conditions based on
the rules consigned in the manifest rules.yaml. Prometheus Alerting Rules queries
Prometheus TSDB using the PromQL query language. An alert is sent to the next
MAPE-K loop stage (Plan) whenever one of the rule conditions is firing. Alerting
Rules is a Prometheus TSDB feature so it does not require dedicated manifests to
deploy.

Figure 5.3: Analyze stage

Each rule consists of a name, an expression, a time period, and labels and anno-
tations to store alert information. The code presented in Listing 5.2 is an example
of an alert rule configuration for Prometheus Alerting Rules. The expression of this
rule get the percentage of ram consumption (using the total ram and the available
ram) of thefog-f1 node and checks if it exceeds 80%. The for tag defines how long
the expression must be true to generate the alert (one minute). Finally, we use the
labels and annotations to include information about the actions linked to the alert.
Each IoT system rule (either architectural adaptation or functional rule) specified
through the DSL is transformed into an alert rule of Prometheus.

1 - alert: HighMemoryConsumption

5https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

78 CHAPTER 5. ADAPTING IOT SYSTEMS AT RUNTIME

2 expr: (node_memory_MemTotal_bytes{node_hostname ="fog-f1"} -
node_memory_MemAvailable_bytes{node_hostname ="fog-f1"}) /
node_memory_MemTotal_bytes{node_hostname ="fog-f1"} * 100 > 80

3 for: 1m
4 labels:
5 severity: critical
6 annotations:
7 adaptations: "{...}"

Listing 5.2: Example rule configuration

5.1.3 Plan

According to the analysis performed in the previous stage, an adaptation plan is
generated with the appropriate actions to adapt the system at runtime. The adapta-
tion plan contains the list of actions (scaling, offloading, redeployment, or operate
actuator) that the user has defined for each rule via the DSL. In this stage (see Figure
5.4), Prometheus Alert Manager is used to handle the alerts from the previous stage
(Analyze) and routing the adaptation plan to the next stage (Execute). Notification
receivers can be configured to send the alert message to third-party systems such as
email, slack, or telegram. We configured a webhook receiver to notify the alerts and
adaptation plan to the Adaptation Engine. Therefore, the adaptation plan is sent
as an HTTP POST request in JSON6 format to the configured endpoint (i.e., to the
Adaptation Engine).

Figure 5.4: Plan stage

Three YAML manifests are required for the deployment and configuration of
Prometheus Alert Manager: deployment.yaml to deploy it as a container inside a
pod, service.yaml tomake it accessible fromoutside the cluster, and config-map.yaml

6(JavaScript Object Notation) is a lightweight data exchange format

5.1. RUNTIME FRAMEWORK 79

for its configuration which includes the notification receiver (the webhook config-
ured).

5.1.4 Execute

In the Execute stage (see Figure 5.5), adaptations are applied to the IoT system fol-
lowing the actions defined in the adaptation plan. To achieve this, we have built the
Adaptation Engine, an application developed using Python7, flask8, and the python
API9 tomanage the Kubernetes or K3S orchestrator. TheAdaptation Engine is freely
available in our repository10 and also the image of the container11 ready to be exe-
cuted. Similar to the Prometheus Alert Manager, three YAML manifests are needed
at this stage: deployment.yaml to deploy the Adaptation Engine as a container, ser-
vice.yaml to configure its accessibility, and clusterRole.yaml to assign management
privileges over the IoT system infrastructure (e.g. privileges to delete or create pods).

Figure 5.5: Execute stage

The Adaptation Engine can apply two sets of actions: (1) architectural adap-
tations through the orchestrator (e.g., autoscaling an application or offloading a
pod); and (2) system actuators control to meet system functional requirements
involving system actuator management (e.g., activating/deactivating alarms, turn-
ing on/off lamps, and increasing the power of a fan)

7https://www.python.org/
8https://flask.palletsprojects.com/en/2.1.x/
9https://github.com/kubernetes-client/python
10https://github.com/ivan-alfonso/adapter-engine.git
11https://hub.docker.com/r/ivanalfonso/adaptation-engine

80 CHAPTER 5. ADAPTING IOT SYSTEMS AT RUNTIME

There are three architectural adaptations that the Adaptation Engine is able to
perform: (1) scaling an application by deploying a new pod on one of the nodes, (2)
offloading a container/pod to a different node, and (3) redeploying a pod/container.
These three architectural adaptationsmainly benefit IoT application availability and
system performance. On the other hand, the system actuators control is performed
by sending control messages (defined by the user) to the actuator MQTT topic.

Using the Python API for Kubernetes, the Adaptation Engine manages the ob-
jects in the Kubernetes cluster to perform the architectural adaptations. We have
defined methods for creating, deleting, and scaling pods. For example, Listing 5.3
shows an excerpt themethod used by the Adaptation Engine to create a podwithout
node selection preferences to host it. Line 1 imports the library. Line 3 defines the
method with all the input parameters needed to create the pod (these parameters
are included in the adaptation plan sent from the Plan stage). Lines 4-5 create the
pod object and assign its metadata (such as name). Line 6 defines the memory and
cpu requirements of the container created in line 7. Line 8 sets the repository of the
container image. Line 10 verifies that the pod has no node selection preferences.
The software containers are assigned to the pod on lines 11-12, and the pod is cre-
ated on line 13. Finally, we verify if the pod was created correctly (lines 14-16). We
have created the verify_pod_creation method to obtain the pod status and verify its
creation. To create pods that have node selection preferences, we use the Kuber-
netes affinity and anti-affinity specifications, which restrict the nodes that will host
the pod.

1 from kubernetes import client , config
2
3 def create_pod(v1, pod_name , c_name , image , namespace , requirements ,

selector_nodes):
4 pod=client.V1Pod()
5 pod.metadata=client.V1ObjectMeta(name=pod_name)
6 requirements=client.V1ResourceRequirements(requests=requirements)
7 container=client.V1Container(name=c_name ,resources=requirements)
8 container.image=image
9
10 if selector_nodes =="":
11 spec=client.V1PodSpec(containers =[container])
12 pod.spec = spec
13 v1.create_namespaced_pod(namespace=namespace ,body=pod)
14 if verify_pod_creation(v1, pod_name):
15 return True
16 return "pod creation failed ..."

Listing 5.3: Code excerpt to create a pod

5.2. EXAMPLE SCENARIO 81

5.2 Example scenario

As a scenario, we will exemplify the stages of the framework through the rule spec-
ified in Figure 4.13. Code for the rule management is automatically generated (Sec-
tion 4.4), including YAML manifests for deployment, configuration and execution
of the monitors, exporters, Prometheus, the Adaptation Engine and other software
components implemented in the MAPE-K loop.

• In the Monitoring stage, the exporters gather information about CPU con-
sumption of the fog-f1 node. This information is stored in the Prometheus
database.

• Then, in the Analysis stage, the condition of the rule is verified by executing
query expressions in PromQL language. For example, the expression (exe-
cuted by Prometheus Alerting Rules) that checks if the CPU consumption of
the fog-f1 node exceeds 80% for 1 minute is presented in listing 5.4. Note that
we are calculating the average amount of CPU time used excluding the idle
time of the node. If the condition is true, the alert signal is sent to the Alert
Manager component of the next stage of the cycle (Plan).

• When the alert is received, the adaptation plan is built containing the two
actions (offloading and scaling) and their corresponding information in JSON
format. For example, Listing 5.5 shows the JSON built by the code generator
for the offloading action. The information attached to the JSON object in-
cludes the name of the pod/container to be offloaded (pod_name), the image
of the application running the container (image), the Kubernetes/K3S names-
pace, the memory and cpu requirements of the application (requirements),
and the taget nodes and target regions where the C4 container would be of-
floaded, for this example, the edge-b1 node and the Floor 1 region.

• In the Execute stage, the Adaptation Engine component first performs the
Offloading action, and only if it fails, then the second action (Scaling) is per-
formed.

1 - alert: ram -consumption
2 expr: 100 - (avg by(node_hostname) (rate(node_cpu_seconds_total{

mode= "idle",node_hostname ="fog-f1"}[15s])) * 100) > 80
3 for: 1m

Listing 5.4: Query expression to check CPU consumption of fog1-f1 node

82 CHAPTER 5. ADAPTING IOT SYSTEMS AT RUNTIME

1 {"offloading":{
2 "pod_name":"C4",
3 "image":" mosquitto :2.0",
4 "namespace":" default",
5 "requirements":{
6 "memory":"700M",
7 "cpu":"700m"
8 },
9 "hosts":{
10 "node":{
11 "operator":"In",
12 "values":["edge -b1"]
13 },
14 "region":{
15 "operator":"In",
16 "values":["Floor 1"]},
17 "cluster":{
18 "operator":"In",
19 "values":[]
20 }
21 }
22 }
23 }

Listing 5.5: JSON adaptation plan for offloading action

5.3 Installation and Configuration

The requirements to deploy and run our framework are listed below.

• Kubernetes (v1.23.8 or later) or K3S (v1.23.8+k3s1 or later) orchestrator to
manage the node cluster. We suggest K3S, a lightweight Kubernetes distribu-
tion built for IoT and edge computing.

• kubectl (v1.23.8 or later).

To run the framework tools and applications on the IoT system infrastructure,
the YAML manifests (built by the code generator) must be executed on the master
node of the cluster. Figure 5.6 presents the directory of generated folders and files
(left side) and a snippet of the start.sh script (right side) for the deployment of IoT
tools and applications. Executing the generated code creates several Kubernetes
objects in the cluster such as ConfigMaps, Deployments, Services, and Pods. To run
the framework and all these Kubernetes objects just run the start.sh script, which
uses kubectl (the command line tool of kubernetes/K3S).

5.4. CONCLUSION 83

Figure 5.6: Directory of generated files

In Appendix B you can find the detailed guide to install and use the DSL, gen-
erate the code, and run the framework.

5.4 Conclusion

In this chapter we have presented the runtime approach to support the operation
and self-adaptation of the IoT system specified by the DSL. This runtime framework
is based on the MAPE-K loop and involves the implementation of several technolo-
gies to perform monitoring and adaptation of the system. Both the monitoring data
from the infrastructure metrics and the data collected by the system sensors are

84 CHAPTER 5. ADAPTING IOT SYSTEMS AT RUNTIME

stored in the Prometheus time series database. The collection of infrastructure and
QoS metrics is performed with technologies such as kube-state-metrics and node
exporter, while an MQTT exporter subscribed to the broker’s topology is used to
obtain the data collected by the sensors.

The analysis of the information and the triggering of alerts is performed by
PromQL queries to the database and rules configured in the Prometheus Alerting
Rules component. Finally, an adaptation engine developed in Python adapts the
system according to an adaptation plan generated by the detection of a dynamic
event.

Chapter 6

Extending DSL for specific cases

Extensibility is the ability of software to enhance or accept significant extensions
without major code modifications to its basic architecture [84]. Extensible soft-
ware systems take into account future growth by anticipating the need to add new
functionality. Extensible DSLs allow new concepts to be added to the metamodel
to enrich the language. Regarding IoT system modeling, new concepts could be
specified depending on the application domain to obtain a better description of the
system and its environment. For example, to model an IoT system deployed in a
underground mine, it would be useful to specify domain-specific concepts such as
tunnels, rooms, and working faces.

Our DSL can be used as is to model any type of multi-layered IoT system. How-
ever, it has also been designed to be easily extensible (i.e., including new concepts
and updating the editors to enrich the language) so that we can further tailor it to
specific types of IoT systems. This Chapter presents two extensions of our DSL:
(1) in Section 6.1, we describe a DSL extension to model IoT systems for under-
ground mining as this is a key economic sector in the local region of the PhD stu-
dent and there is a need for a better way to model these systems, e.g. for analysis
of regulatory compliance; (2) Section 6.2 introduces a DSL extension to model IoT
systems for Wastewater Treatment Plants (WWTPs), including its its process block
diagram. The implementation of IoT systems in this domain is one of the case stud-
ies addressed in the European project TRANSACT1, in whichwe participate. Finally,
Section 6.3 concludes the chapter.

1https://transact-ecsel.eu/

85

86 CHAPTER 6. EXTENDING DSL FOR SPECIFIC CASES

6.1 Modeling IoT systems for the Underground Mining
Industry

Since 2016, policies have been proposed in some countries to reduce the production
of carbon to reduce the pollution that this activity causes. For example, in China,
the main coal-producing and consuming country, laws were proposed to achieve a
15% carbon reduction by 2040 compared to 2016 consumption [59]. These policies
will lead to a decrease in global carbon production and also increase competition
in the market [101]. Therefore, the coal mining industry has been significantly im-
proving aspects such as ecological restoration, worker safety, production efficiency,
and environmental pollution. This has been possible by implementing systems and
technologies that allow monitoring, control, and automation of processes.

One of the aspects most enhanced by the implementation of IoT systems in un-
derground mining is worker safety. Workers are exposed to many risk factors such
as explosive and toxic gases, risk of geotechnical failure, fire, high temperatures,
and humidity [96]. IoT can improve worker safety through the use of monitoring
and alarm systems, voice communication systems, and geolocation of workers.

In Colombia, the safety regulation for underground mining works (decree 1886
of 2015) determines limits for the concentration of explosive and toxic gases. If any
of these limits is exceeded, a series of actions/adaptationsmust be performed such as
turning on alarms, activating the ventilation system, closing or opening ventilation
ducts, and other tasks that can be executed by manipulating the system actuators
on specific regions of the mine. Automating these tasks, ensuring real-time data
analysis for hundreds or thousands of sensors, and addressing cloud connectivity
constraints due to the remote areas in which mines are often located requires non-
cloud-dependent IoT systems with multi-layered architectures that leverage edge/-
fog computing.

6.1.1 Extending the metamodel

To better cope with these underground mining scenarios, our extended DSL offers
new modeling primitives (see Figure 6.1). All concepts that inherit from Region rep-
resent physical spaces within an underground coal mine such as tunnels, working
faces, Entries, and rooms. A Tunnel can be Internal or Access. Each mine access
tunnel (Drift, Slope, or Shaft) must have one or more entrances (represented by
the entries relationship). Finally, checkpoints (specific locations of the mine where
gases, temperature, oxygen, and airflow are monitored) are specified through the
CheckPoint concept. Each CheckPoint could contain multiple IoTDevices (sensors or
actuators) represented by the devices relationship in the metamodel.

6.1. MODELING IOT SYSTEMS FOR THE UNDERGROUND MINING INDUSTRY 87

Figure 6.1: Excerpt of the DSL extension metamodel for underground mines spec-
ification. The Region and IoTDevice concepts have been previously defined in the
metamodel in Figure 4.1

We enable a tree-based notation for modeling the relevant regions2 that make
up the mine structure. Figure 6.2 presents an example of the modeling of an under-
ground mine containing two entries (Entry A and Entry B) in each of its inclined
access tunnels (Slope A and Slope B), an internal tunnel (Internal), and a (Room) with
two exploitation work fronts (W-front 1 andW-front 2). The control points are mod-
eled using textual+tabular notation while the rest of the concepts to represent the
IoT system and the rules (architectural adaptation and functional rules) are mod-
eled following the concrete syntax presented in Chapter 4. Figure 6.3 presents an
example of modeling a control point that is located in the mine room. This control
point contains an actuator (alarm) and three sensors, one for methane (CH4), one
for carbon dioxide (C02), and one for temperature.

2Note that our DSL is focused on the structure and rules governing the “behaviour” of the IoT
system of the mine, it does not intend to replace other types of 3D mine mining models

88 CHAPTER 6. EXTENDING DSL FOR SPECIFIC CASES

Figure 6.2: Mine structure modeling

Figure 6.3: Mine checkpoint modeling

System actuator control

Our DSL enables the specification of functional rules in order to address functional
requirements of the system by controlling the state of the actuators. For example,
activating emergency alarms, turning on the ventilation system, or disabling ma-
chinery. The functional rules are specified as explained in Section 4.2. However,
in this DSL extension we added support for involving control points directly in the
rules.

At each mine control point, the airflow should be controlled by the fans. While
very fast air currents can produce and propagate fires, very low air currents may
not be efficient in dissipating gas concentrations. This extension of the DSL enables
the modeling of conditions such as (ControlPointA → airF low) > (2m/s).
This condition checks if any of the airflow sensors belonging to the ControlPointA
exceeds 2m/s.

6.1. MODELING IOT SYSTEMS FOR THE UNDERGROUND MINING INDUSTRY 89

Architectural adaptations

Architectural adaptations of the system are also necessary in the underground min-
ing scenario. There are several factors that can impact system operation. For ex-
ample, the sampling frequencies of the sensors deployed in the mine may vary de-
pending on conditions such as the time of day (higher monitoring frequency during
working hours), the number of workers, or gas concentrations detected. Very high
collection frequencies increase bandwidth and resource consumption causing fail-
ures if the system is not designed to cope.

Another factor that impacts system performance is sudden node unavailability.
When an edge/fog node fails, the tasks or applications it hosted should be offloaded
to nearby nodes. Node unavailability can occur due to depletion of the battery that
powers the node (when it is battery powered), node overload, or damage due to
hostile environment or emergencies (e.g. a landslide).

These scenarios that impact system performance can be addressed by specify-
ing architectural adaptation rules. The IoT system architecture and rules can be
specified using the textual and tabular editors presented in Section 4.2. For exam-
ple, Figure 6.4 shows a rule that scales 5 instances of the gas-detection application
when an increase in sensor sampling frequency (i.e., increase in input bandwidth
consumption in the gateway node) is detected. The new 5 instances will be deployed
on any of the nodes located in the Room region.

Figure 6.4: Rule example for IoT system in Mining

The DSL editor extended to the underground mining domain is freely available
in our repository3

Concrete Syntax

This DSL extension includes the definition of new editors in MPS for modeling the
mine structure (tree-view editors) and the control points (tabular editors). Figure 6.5

3https://github.com/SOM-Research/IoT-Mining-DSL

90 CHAPTER 6. EXTENDING DSL FOR SPECIFIC CASES

shows the tree-view editor for the Drift concept composed of a swing component,
the name, the length of the Drift access, and the set of subregions represented as the
branches of the tree.

Java Swing components are inserted into the editor to create graphical shapes.
The code for the swing component to create the Drift Access graphical shape is
shown in Listing 6.1. The graphical shape is drawn on a JPanel object (container
to place a set of components that can generate a graphical representation) defined
in line 4. The dimensions of this panel depend on the size of the font used in the
model. The paintComponent method defined on line 10 contains the instructions
to define the shape, lines, and colors of the drawing. We have defined a graphical
shape (swing component) for each concept that makes up the mine structure such
asWorking Face, Drift Access, Room, and Mine, as shown in Figure 6.2.

1 component provider: (node , editorContext)->JComponent {
2 final int fontSize = EditorSettings.getInstance ().getFontSize ();
3 final int desiredWidth = fontSize * 2;
4 JPanel panel = new JPanel () {
5 @Override
6 public Dimension getPreferredSize () {
7 return new Dimension(desiredWidth , fontSize);
8 }
9 @Override
10 protected void paintComponent(Graphics g) {
11 super.paintComponent(g);
12 int height = getHeight ();
13 g.setColor(Color.GRAY);
14 ((Graphics2D) g).setStroke(new BasicStroke (2));
15 ((Graphics2D) g).setRenderingHint(RenderingHints.

KEY_ANTIALIASING , RenderingHints.VALUE_ANTIALIAS_ON);
16 g.drawLine(0, height / 4, desiredWidth , height / 4);
17 g.drawLine(0, height - 2, desiredWidth , height - 2);
18 }
19 };
20 panel.setBackground(new Color(1, 0, 0, 0));
21 panel;
22 }

Listing 6.1: Swing component code to draw the Drift Access shape

Code Generator and Framework

This extension of our DSL does not involve modifications to the code generator nor
to the framework that supports runtime adaptations of the IoT system. Therefore,

6.2. MODELING IOT SYSTEMS FOR WASTEWATER TREATMENT PLANTS
(WWTPS) 91

Figure 6.5: Tree-view editor for the Drift concept

the code generator and framework implemented with this DSL are the same as those
presented in Chapters 4.4 and 5 respectively.

6.2 Modeling IoT Systems for Wastewater Treatment
Plants (WWTPs)

WWTPs collecting urban and industrial wastewater combine several serial pro-
cesses for achieving the required quality to be discharged into the environment
or reused. Sometimes, treated water is discharged into sensitive or protected en-
vironmental areas, so ensuring proper water treatment has a strong impact on the
environment, the welfare of the population and agriculture in the surrounding ar-
eas. Therefore, physic-chemical and biological procedures and treatments must be
rigorously monitored and controlled.

According to the European TRANSACT Project, WWTPs are automated with
Supervisory Control and Data Acquisition (SCADA) systems that centralize the
control and monitoring of the WWTP executing multiple local control loops in a
monolithic and constrained system. One of the objectives of the project is to de-
sign a distributed multilayer architecture for the transition and evolution of the
monolithic systems currently implemented by WWTPs. By integrating cloud and
edge/fog capabilities into the architecture, the project seeks to optimize data anal-
ysis processes, implement spill prediction models, adopt predictive maintenance
strategies, and scale critical processes by leveraging the edge layer.

However, to address the TRANSCAT objectives in this WWTPs use case, a lan-
guage is required to enable system architecture modeling, application deployment,
and an adaptation plan including system device control adaptations and architec-
ture adaptations.

92 CHAPTER 6. EXTENDING DSL FOR SPECIFIC CASES

6.2.1 Extending the metamodel

The process flow of aWWTP is typically represented by a process block diagram, in
which each block represents a physicochemical or biological treatment to remove
solids and contaminants, break down organic matter and restore the oxygen content
of the treated water [79]. Each treatment involves sensors and actuators that help
monitor and automate the decontamination processes. For example, in desanding
and degreasing treatments, probes are installed to monitor water pH, conductivity,
suspended solids (SS), chemical oxygen demand (COD) and other important vari-
ables depending on the type of process.

To provide a way to specify the block process diagram of WWTPs and IoT sys-
tems immersed in these treatment processes, our extended DSL enables the mod-
eling of new primitives that make up the process block diagram of the plant (see
Figure 6.6). Concepts that inherit from Treatment represent a sector of the plant
that performs either water or sludge treatments such as Decanter, GristCahmber,
or Filtrator. The Flow concept represents the inflows and outflows (either sludge or
water) to each Treatment. A Treatment can have several inflows and outflows repre-
sented by the relationships from and to. The relationship region specifies the region
in which the Treatment is physically located, and the relationship devices allows
specifying the IoT devices, either sensors or actuators, used in each Treatment.

Figure 6.6: Excerpt of the DSL extension metamodel for WWTPs specification. The
Region and IoTDevice concepts have been previously defined in the metamodel in
Figure 4.1

To model the process block diagram we have developed a graphical editor using

6.2. MODELING IOT SYSTEMS FOR WASTEWATER TREATMENT PLANTS
(WWTPS) 93

the MPS Diagrams plugin4. This plugin allows to define shadows using java code
to graphically represent the metamodel concepts. For example, shapes for Treat-
ments and arrows for water and sludge Flows. Figure 6.7 shows the process block
diagram of the Algemesí WWTP, in Spain (one of the plants studied in the TRANS-
ACT project). Each shaded shape represents one of the plant Treatments, while the
arrows represent the flows of water or sludge between the Treatments. The color
of the shaded shape or arrow denotes the type of fluid: blue when the Treatment or
Fluid is water, and yellow when it is sludge.

Figure 6.7: Algemesí WWTP block process diagram specification using the DSL

In the Algemesí WWTP, there are five water treatments, three sludge treat-
ments, and several water and sludge flows between them (Figure 6.7). In each of
these treatments, several variables are monitored to supervise and control the pu-
rification processes. For the specification of the sensors and actuators for each treat-
ment, we provide a textual and tabular notation. For example, Figure 6.8 shows the
specification of the Grit Chamber, which contains three sensors to monitor the liq-
uid characteristics (pH, electrical conductivity, and total suspended solids), a sensor
to measure the tank level, and an actuator (valve) to regulate the fluid level in the
tank.

The dynamic environment also generates unexpected changes in WWTPs that
must be dealt at runtime. For example, in rainy seasons, some WWTPs exceed
treatment capacity causing a negative impact on the quality of the environment
due to overflow and discharge of wastewater into the environment [79]. Although

4https://jetbrains.github.io/MPS-extensions/extensions/diagrams

94 CHAPTER 6. EXTENDING DSL FOR SPECIFIC CASES

Figure 6.8: Grit Chamber Treatment modeling

increases in plant inflow are difficult to deal with, some actions can be taken to
reduce the environmental impact of unwanted runoff. For example, the automatic
generation of alarms, the control of valves, or the manipulation of other plant actu-
ators when an unexpected event is detected.

These types of scenarios can be modeled using this extension of the DSL, in-
cluding rules that directly involve the variables monitored in the plant Treatments.
For example, assuming that in the Grit Chamber of the Algemesí WWTP, the valve
should be opened when the water level exceeds the limit (300 cm according to the
sensor specification in Figure6.8) for 5 minutes, then the rule could be specified as
shown in Figure 6.9.

Figure 6.9: WWTP rule example

Concrete Syntax

To enable graphical notation of the WWTP process block diagram, we have de-
fined graphical editors in MPS to use shapes for draw the Treatments and arrows
for water or sludge Flows. Figure 6.10 presents the graphical editor designed for
the BioReactor concept. The graphical form of the concept is defined using the dia-
gram.box instruction. In the editor section we define the displayed text and in the

6.2. MODELING IOT SYSTEMS FOR WASTEWATER TREATMENT PLANTS
(WWTPS) 95

shape section the graphical shape (i.e. Bio_Reactor). To define these shapes we use
a DSL provided by MPS, which allows to define shapes using Java objects such as
arcs, rectangles, lines, and areas. For example, Figure 6.11 shows the Bio_Reactor
shape specification formed by an area that subtracts the rectangle rect2 from rect1.
The resulting shape for BioReactor concept can be seen in Figure 6.7.

Figure 6.10: Graphical editor to represent the BioReactor concept in the process
block diagram

Figure 6.11: Definition of the Bio_Reactor shape

96 CHAPTER 6. EXTENDING DSL FOR SPECIFIC CASES

Code Generator and Framework

The DSL for modeling IoT systems for WWTPs requires modifications to the code
generator. Specifically, it is necessary to add the Treatment concept in the transfor-
mation rules and generation of the rules in PromQL language. Although the DSL
allows the specification of rules involving a specific Treatment (e.g. the rule in Fig-
ure 6.9), currently the code generator does not support these rules to be processed
by our runtime framework. However, all other rules, including architectural adapta-
tion and functional rules that do not directly involve a Treatment in their condition,
are supported by the code generator and managed at runtime by the framework.

6.3 Conclusion

In this chapter we presented two DSL extensions for modeling self-adaptive IoT
systems. The first one focused on systems implemented in the underground coal
mining domain, and the second one focused on WWTP systems.

The first DSL extension covers the specification of concepts of the underground
coal mining domain, including the modeling of mine areas (e.g., tunnels, working
faces, and rooms) using a tree notation. Modeling of control points within the mine
and their IoT devices (sensors and actuators) involved is also addressed in this DSL
extension. These new concepts can be used for the specification of the architectural
and functional rules.

The second DSL extension address the modeling of the WWTP process block
diagrams through a graphic representation of the sequence of various treatments.
The treatments are modeled as shaded shapes and the water or sludge flows are rep-
resented as directed arrows. The IoT devices involved in each water/sludge treat-
ment are specified using tabular notation. Similar to the first DSL extension (mining
domain), the new concepts can be linked to build rules.

Chapter 7

Experimental Evaluation

Although DSLs are intended to reduce the complexity of software system develop-
ment, a poorly designed DSL can complicate its adoption by domain users. This is
why usability studies are so important in software engineering [15]. Usability is a
measure of effectiveness, efficiency and satisfaction with which users can perform
tasks with a tool.

This chapter presents the empirical evaluations we have conducted to assess the
usability of the DSL, and the self-adaptive capability of our approach. In Section 7.1,
we present two empirical evaluations of the DSL to assess its expressiveness and
ease of use. In Section 7.2 We evaluated the self-adapting feature of our approach
in three scenarios to test the three adaptations (scaling, offloading and redistribu-
tion) that we addressed. Section 7.3 present the evaluation of our MAPE-K based
framework to identify scalability limitations and boundaries to perform concurrent
adaptations. Finally, Section 7.4 concludes this chapter.

7.1 DSL Empirical Evaluation

Based on the basic methodology for conducting usability studies [134], we have
designed and conducted two experimental studies to validate the expressiveness
and ease of use of our DSL. Materials and exercises provided to the subjects, the
questionnaires used and the anonymized data collected can be found in our Github
repository1. The experiments and their results are outlined below.

1https://github.com/SOM-Research/IoT-Mining-DSL

97

98 CHAPTER 7. EXPERIMENTAL EVALUATION

7.1.1 Experimental Study 1: DSL Validation - Architectural
Concepts

The first experimental study aimed to validate the expressiveness and easy of use
of concepts more focused on multi-level cloud architecture modeling: edge, fog,
and cloud nodes, container-based applications, and architectural adaptation rules.
Five computer science researchers accepted our invitation to participate in this
experiment: two doctoral students, two postdoc, and one master student. A pre-
questionnaire and an exercise divided into two sessions (Sessions 1 and 2) was con-
ducted.

Design and setup

The experimental study consisted of an asynchronous screening test (pre-questionnaire)
to assess subjects’ prior knowledge and suitability for participation, and a syn-
chronous exercise (virtual meeting) with two parts (Sessions 1 and 2). The materials
and exercises provided to the participants, the questionnaires and the anonymized
answers can be found in the repository of our DSL extended to the mining industry
domain2.

• Pre-questionnaire (10 min): the questionnaire Q0 (screening test) was com-
pleted by the participants to ensure that they had a basic level of knowledge
of IoT systems, containerization technologies, and modeling tools.

• Session 1 (50 min): we have introduced a 20 minutes presentation with the
basic concepts of IoT system architectures (layers, nodes, container-based ap-
plications) and modeling examples to describe the architecture using the DSL.
Then the participants performed a modeling exercise of an IoT system ar-
chitecture with five edge nodes, two fog nodes, one cloud node, and several
software containers. Finally, the questionnaire Q1 was filled out about the ex-
pressiveness and ease of use of the DSL for modeling the system architecture.

• Session 2 (40 min): We have presented the basic concepts and examples for
specifying system architectural adaptation rules. Then, participants performed
a modeling exercise of five architecture adaptation rules involving infrastruc-
ture metrics (such as CPU consumption, RAM, and availability) and architec-
ture adaptations such as application scaling or container offloading. Finally,
the questionnaire Q2 was completed to gather information about the expres-
siveness and ease of use perceived by the participants.

2https://github.com/SOM-Research/IoT-Mining-DSL

7.1. DSL EMPIRICAL EVALUATION 99

The experimental study was conducted in Spanish on three different dates in
2022. The PhD student of this thesis conducted the virtual meetings and ensured
that all were equally well executed.

Results

Figure 7.1 shows the level of knowledge reported by the participants about IoT sys-
tems (architecture, deployment, and operation) and containerization as a virtualiza-
tion technology. Although most participants reported a low level knowledge, they
are familiar with monitoring QoS metrics (such as latency, availability, bandwidth,
CPU consumption) and architecture adaptations such as auto-scaling and offload-
ing.

Figure 7.1: IoT and containerization expertise of participants

According to the information collected from the questionnaires, most partici-
pants have reported that it was very easy or easy to model the system architecture
(nodes, applications and containers) and its adaptation rules (see Figure 7.2). Fur-
thermore, the results presented in Figure 7.3 (errors in the models built by the par-
ticipants) demonstrate the ease of use, even for non-expert users in the IoT domain.
The only mistake made by a participant in specifying the condition of an adaptation
rule was a wrong selection of the targetNode to be checked.

The suggestions and opinions of the participants about including new features
or improvements to the DSL are as follows:

• Some suggestions about typo errors and minor interface improvements (edi-
tors) were reported and have already been addressed.

100 CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.2: DSL ease of use (experiment 2)

Figure 7.3: Percentage and number of right and wrong answers (experiment 2)

• Although the DSL provides textual and tabular notation for modeling the
architecture nodes, including graphical notation (such as a deployment dia-
gram) could be useful to easily follow the hierarchy of the architecture nodes.

• There may be applications that require more than one port to be exposed.
However, the DSL does not allow more than one port to be associated with
each application. The suggestion is to enable the specification of multiple
ports for a single application.

7.1.2 Experimental Study 2: DSL Validation - Mining Concepts

We have designed the second experimental study to validate the expressiveness and
usability of theDSL regarding themodeling of themine structure, the control points,
sensors and actuators, and functional rules involving control of actuators (e.g. turn

7.1. DSL EMPIRICAL EVALUATION 101

on the mine ventilation system when the methane gas sensor exceeds the threshold
value).

Design and setup

Eight subjects participated in the experimental study: Three electronic engineers,
one industrial engineer, one systems engineer, one mining engineer, and two au-
tomation engineers. All participants have previously conducted projects or work
in the mining domain, so they were familiar with this domain, but had not been
exposed to our DSL before. The goal was to check whether they were able to use it
and get their feedback on the experience.

The protocol for this experimental study was similar to the previous one. A pre-
questionnaire and an exercise divided into two sessions (Sessions 1 and 2) were con-
ducted. The materials and exercises provided to the participants, the questionnaires
and the anonymized answers can be found in the repository of our DSL extended
to the mining industry domain3.

• Pre-questionnaire (10 min): this screening questionnaire (Q0) was conducted
prior to the start of Sessions 1 and 2 to ensure that participants had a basic
level of mining knowledge including the structure of underground coal mines,
gas monitoring systems, and modeling tools in this domain.

• Session 1 (50 min): In the first 20 minutes of Session 1, we introduce the ba-
sic knowledge of IoT systems and the use of the DSL implemented in MPS to
model the structure of an underground mines, the control points and the IoT
devices deployed (sensors and actuators). Next, the participants performed
the first modeling exercise about an underground coal mine (with the struc-
ture shown in Figure 6.2), two control points (one at each working face) with
three gas sensors and an alarm, a fan, and a control door in the internal tun-
nel. Each participant was provided with a virtual machine configured with
the necessary software to perform the modeling exercise. Finally, the partic-
ipants filled out a questionnaire (Q1) about the usability and expressiveness
of the DSL to model the concepts of the first exercise.

• Session 2 (40 min): In Session 2, we first introduced the basic concepts of
self-adaptive systems and the design of functional rules using our DSL. Next,
participants performed the second exercise: modeling three functional rules
involving sensor data and actuator operation. For example, if any of the
methane gas sensors throughout the mine exceed the threshold value for 5

3https://github.com/SOM-Research/IoT-Mining-DSL

102 CHAPTER 7. EXPERIMENTAL EVALUATION

seconds, then turn on the fan and activate the alarms. Finally, participants
completed the questionnaire Q2 to report their experience modeling the rules.
Q2 also contained open-ended questions to obtain feedback on the use of the
entire tool and suggestions for improvement.

Results

Four of the participants were involved in education (either students, teachers, or re-
searchers), while the remaining four were involved in industry. Figure 7.4 presents
the level of general mining knowledge (very low, low, medium, high, and very high)
of the eight participants. All of them are aware of the terminology used in the design
and structure of underground coal mines. Only two participants were not familiar
with cyber-physical or IoT systems for mining. The modeling tools in mining con-
text that they have used are AutoCAD4 and Minesight5 for the graphical design
of the mine structure, and VentSim6 for ventilation system simulations. However,
these mining modeling tools do not allow modeling of self-adaptive IoT systems.
None of the participants were familiar with MPS.

Figure 7.4: Participants’ mining expertise

Figure 7.5 presents the responses from questionnaires Q1 and Q2 related to the
ease of use of the DSL. Most of them reported that the modeling of the mine struc-
ture, the control points, the devices (sensors and actuators), and the adaptation rules
were easy. The results are positive and can also be evidenced by the number of right
and wrong concepts modeled by the participants (Figure 7.6). The number of errors
were low (12 of 188 modeled concepts): three incorrect Rule-conditions by wrong
selection of the unit of measure, four incorrect Actuators by wrong assignment of

4https://www.autodesk.com/products/autocad
5https://www.ici.edu.pe/brochure/cursos-personalizados/ICI-MINESIGHT-Personalizado.pdf
6https://ventsim.com

7.1. DSL EMPIRICAL EVALUATION 103

actuator type and location within the mine, three missing Sensors not modeled, and
two incorrect Regions (working faces) whose type was not selected.

Figure 7.5: DSL ease of use (experiment 1)

Figure 7.6: Percentage and number of right and wrong answers (experiment 1)

Through the open-ended questions in questionnaires Q1 and Q2, participants
suggested the following improvements to the DSL.

• Include the specification of the coordinates for each region and control points
of the mine. Additionally, it would be useful to specify the connection be-
tween internal tunnels.

• The condition of a rule has a single time period. However, it would be use-
ful to associate two time periods for conditions composed of two expres-

104 CHAPTER 7. EXPERIMENTAL EVALUATION

sions. For example, the condition tempSensorA > 30C(10seconds) &&
tempSensorB > 35C(20seconds).

• The mine ventilation system can be activated periodically at the same time
each day. It would be useful if the DSL could model rules whose condition is
associated with the time of day.

7.1.3 Threats to Validity

Although validation problems in empirical studies are always possible, we have
looked for methods to ensure the quality of the results analyzing two types of
threats: internal and external.

Internal validation concerns factors that could affect the results of the evalua-
tion. To avoid defects in the planning of the experiments and the questionnaires
(protocol), the PhD student and advisors discussed the protocol including the mod-
eling exercises, the dependent variables, and the questions of the questionnaires. In
addition, a senior researcher in empirical experiments validated the questionnaires.
Another common thread is related to the low number of samples to successfully
reveal a pattern in the results. Thirteen users total participated in this empirical
validation. Five participants were involved in Experiment 1, and eight different
ones in Experiment 2. Although the size of the participant group for this type of
validation continues to be a matter of discussion, studies suggest 3 to 10 partici-
pants (depending on the level of complexity) are sufficient. For example, a popular
guideline in this area is given by Nielsen and Landauer [120], who suggest that five
participants are likely to discover 80% of the problems

External validity addresses threats related to the ability to generalize results to
other environments. For example, to validate the population and avoid sampling
bias, we conducted a pre-questionnaire to the participants to ensure that they had
the necessary basic knowledge and that there was no substantial difference between
participants. In addition, at the beginning of each session, we introduced the defini-
tion of the concepts required for the experiment. It is important to emphasize that
the participants of Experiment 1 were computer science researchers while those of
Experiment 2 were related to the topics of the mining domain.

7.2 Evaluation of System Self-Adaptations

To evaluate the self-adaptation capability of our approach, we conducted three em-
pirical evaluations, one for each type of architectural adaptation (scaling, offloading,
and redeployment). For each adaptation assessment we have designed a simple sce-
nario in which an IoT system faces an event that forces adaptations. The goal of

7.2. EVALUATION OF SYSTEM SELF-ADAPTATIONS 105

this evaluations is to compare the availability and performance of a non-adaptive
IoT system with that of a self-adaptive IoT system that is modeled and managed
using our approach. To do so, we have collected and analyzed metrics such as CPU
consumption, node availability, and data processing time.

7.2.1 Experiment Design and Setup

To test the three architectural adaptations, we have designed a test scenario with the
IoT system shown in Figure 7.7. The system architecture consists of four tempera-
ture sensors, two edge nodes (t2.micro AWS instances7), one fog node (t2.medium
AWS instance), and three applications (broker-app, realtime-app, and predictive-app)
executed by four software containers (C1, C2, C3, and C4).

• broker-app: MQTT broker that manages messages published by sensor de-
vices. We used EclipseMosquitto8 asmessage broker because it is lightweight,
easy to configure, and is suitable for running at the edge layer. This broker is
deployed on the edge-2 node and executed by the C1 container.

• realtime-app: application subscribed to the MQTT broker to to consume the
data, coming from the sensors, and perform real-time data analysis. For each
sensor data received on the broker topics, this application creates a thread
or subprocess that performs a series of operations to intentionally generate
workload on the node. After processing each sensor data, the result is pub-
lished in another broker topic.

• predictive-app: this application simulates the execution of a predictive algo-
rithm to forcast possible temperature emergencies. The algorithm (subscribed
to the broker’s topics) receives data from sensors and performs mathematical
routines using the NumPy9 package.

Additionally, we have developed a Python script which publishes random values
on topics of the MQTT broker to simulate the four temperature sensors. During the
test execution, the sampling rate of the sensors is increased incrementally to perturb
the system and induce self-adaptation.

Figure 7.7 does not show how containers C2, C3, and C4 are deployed on the
nodes, because the use of these containers will depend on the type of adaptation to
be tested. Section 7.2.2 shows the protocol of the experiments including the deploy-
ment and adaptation of these containers.

7https://aws.amazon.com/es/ec2/instance-types/t2/
8https://mosquitto.org/
9https://numpy.org/

106 CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.7: General test scenario for adaptations

7.2.2 Protocol

For each type of architectural adaptation we performed a trial that generally follows
the same protocol consisting of the following steps:

1. Model the IoT system (using our DSL) including the rule to be tested. The
model built for these experiments can be consulted in Appendix C.

2. Run the code generator using the model built in the first step.

3. Deploy the IoT applications and execute our runtime framework (which is
described in Chapter 5) using the YAMLmanifests built by the code generator.

4. Generate disturbances or dynamic events andmonitor availability and perfor-
mance of the system when: (a) the system has no self-adaptation capabilities,
and (b) the system self-adapts using our framework.

The variable we manipulate in these experiments (independent variable) is
the sampling frequency of the sensors in order to generate node overhead, while
the variables we monitor (dependent variables) are the availability and perfor-
mance of the nodes. Although the protocol of the three experiments are similar,
some aspects change depending on the type of adaptation (scaling, offloading, re-
deploying) to be tested.

7.2. EVALUATION OF SYSTEM SELF-ADAPTATIONS 107

Scaling an application

The experiment scenario to test Scaling adaptation consists of two steps as shown
in Figure 7.8.

Figure 7.8: Scaling adaptation test scenario

In step 1, we gradually increase the sampling or monitoring frequency of the
sensors to overload the edge-1 node by increasing the amount of data to be processed
by the C2 container. Initially, we simulate sending 5 data per second to the MQTT
broker for two minutes. Then we increase to 12 data per second for the next two
minutes. Finally we increase to 30 data per second. We have set these values to
intentionally generate a progressive increase in the node’s workload.

In step 2, after overloading the edge-1 node, the realtime-app application is
scaled. The Adaptation Engine of our framework deploys the C3 container on the
fog-1 node. Then, the data coming from the sensors are distributed for analysis be-
tween the C2 and C3 containers. This distribution of messages among subscribers
is achieved by a balancing strategy known as MQTT shared subscription [111]. In
a shared subscription, all clients sharing the same subscription receive messages
alternately, i.e., each message will only be sent to one of the subscribed clients.

Figure 7.9 shows the rule that we have specified using the DSL to test the Scala-
bility adaptation. This rule states that if the CPU usage of the edge-1 node is greater
than 80% for 30 seconds, then scale an instance of the realtime-app application on
the fog-1 node. For this rule, we have chosen to check the CPU usage of the node
as it is a metric that reflects the work overhead of the node.

108 CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.9: Scaling adaptation rule

Offloading a container

The experiment scenario to test the Offloading adaptation consists of two steps as
shown in Figure 7.10.

Figure 7.10: Offloading adaptation test scenario

Similar to our previous experiment, in step 1 the sampling frequency of the
sensors is gradually increased (5, 12 and 20 data per second) until an overload is
generated in the node edge-1 due to the increase of sensor data processed by the
C2 container. The frequency of data generation is different from our previous trial
(Scaling an application), because the scenario is different (for this trial, two contain-
ers on the node are executed). This node (edge-1) hosts the C2 and C4 containers

7.2. EVALUATION OF SYSTEM SELF-ADAPTATIONS 109

that run the realtime-app and predictive-app applications. Then, in step 2, the system
offloads the C4 container to the fog-1 node freeing resources on the edge-1 node.

The rule modeled is shown in Figure 7.11: if the CPU usage of node edge-1
exceeds 80% for 30 seconds, then the C4 container is offloaded to node fog-1.

Figure 7.11: Offloading adaptation rule

Redeploying a container

The scenario for testing the Redeployment adaptation is the same as shown in Fig-
ure 7.7. First we force a failure in the C1 container by logging into the pod using
the command line tool and stopping some system processes. Then, our runtime
framework, which constantly monitors the state of containers, detects container
unavailability and redeploys it using the Adaptation Engine.

The rule modeled for testing the Redeployment of a container is shown in Figure
7.12. If the container C1 is detected to be unavailable for more than 20 seconds, then
it is redeployed.

Figure 7.12: Redeployment adaptation rule

7.2.3 Results

In the test scenario for each type of adaptation, the system was monitored in two
cases: (1) without implementing adaptations, and (2) self-adapting the system ac-

110 CHAPTER 7. EXPERIMENTAL EVALUATION

cording to the configured adaptation rules. The results for each type of adaptation
are compared below.

Scaling an application

Figure 7.13 presents the CPU usage of the edge-1 node by increasing the sampling
frequency of the sensors. The colored shaded areas represent different sampling
frequencies of the sensors. The blue shading indicates that the sensors publish data
to the broker at a frequency of 5 data/sec, the green shading 12 data/sec, and the
purple shading 30 data/sec. 30 data/sec induces 100% CPU usage on the node. This
is dependent on the type of applications implemented and the characteristics of the
node. In these tests, we deployed applications that generate a high workload on the
most limited AWS instances.

For both cases (non-adaptive and self-adaptive), it was evidenced how the CPU
consumption of the node increased when the amount of data to be processed in-
creased too. However, when the CPU usage grew to 100%, the edge-1 node failed at
tfail time (Figure 7.13(a)) for the case of not using adaptations, while implementing
the adaptation rule the system auto-scaled the realtime-app application (at tscale
time), the workload was reduced for the edge-1 node (7.13(b)), preventing it from
failing.

Similarly, Figure 7.14 shows the time spent by the C2 container to process the
data published in the broker by the sensors. For a non-adaptive system (Figure
7.14(a)) the processing time for some data was reached to grow up to 13.5 sec until
the node failed due to work overload. On the other hand, the self-adaptive system
(Figure 7.14(b)) reached processing times of 8.8 sec, then the system auto-scaled the
realtime-app application at tscale time and the data processing time dropped back
below 1 sec.

7.2. EVALUATION OF SYSTEM SELF-ADAPTATIONS 111

(a) edge-1 node CPU usage (non-adaptive system)

(b) edge-1 node CPU usage (self-adaptive system; scaling the realtime-app) application

Figure 7.13: edge-1 node CPU usage; scaling adaptation

(a) Data processing time (non-adaptive system)

(b) Data processing time (self-adaptive system; scaling the realtime-app)

Figure 7.14: Processing time data of C2 container; scaling adaptation

112 CHAPTER 7. EXPERIMENTAL EVALUATION

Offloading a container

The CPU consumption of the edge-1 node is shown in Figure 7.15. As in the results
of the Scaling adaptation fitting, the colored shades in the figure represent different
data sending frequencies from the sensors. Note that there is a constant CPU usage
(43% approx.) before increasing the sampling frequency of the sensors. This CPU
usage is caused by C4 container that simulates the predictive algorithm. As the
sampling frequency increased, the CPU consumption of the node also increased. For
the non-adaptive system (Figure 7.15(a)) the node overloaded (CPU usage reached
100%) and failed 26 seconds (tfail) after increasing the sampling rate from 12 to 20
data per second. In the case of the self-adaptive system, the CPU consumption of the
node did not reach 100% due to the adaptation. The C4 container was offloaded to
the fog-1 node at toffload time reducing the workload on the edge-1 node, preventing
it from failing.

Figure 7.16 shows the processing time of the C2 container data. This processing
time increased considerably when the node used 100% of CPU as is the case of the
non-adaptive system (Figure 7.16(b)), in which the processing time of some data
reached 17 seconds before the node failed. On the other hand, the self-adaptive
system experience processing times of less than 0.3 seconds. This behavior because
the edge-1 node never reached high CPU consumption.

Redeploying a container

For this Redeployment test, the dependent variable is the availability of the con-
tainer to be adapted (i.e. to be redeployed). Therefore, we present and analyze the
results about the availability of the container.

Figure 7.17 shows the state (available or unavailable) of the C4 container for
both cases: non-adaptive and self-adaptive systems. In the case of the non-adaptive
system, the container is unavailable once its failure has been induced at time t1. On
the contrary case, the self-adaptive system detects that the container is unavailable
for 20 seconds and starts the redeployment process. It took approximately 35 sec-
onds to remove the C4 container and redeploy it. After this procedure, the container
changed its status to available again.

7.2.4 Threats to Validity

The threats identified in this experiment and how we addressed them are presented
below.

Random irrelevancies in the setting: some factors outside the experiment
(such as network instability or unexpected node failures) could disturb the outcome.
In this experiment, we tried to guarantee the stability of the infrastructure using

7.2. EVALUATION OF SYSTEM SELF-ADAPTATIONS 113

(a) edge-1 node CPU usage (non-adaptive system)

(b) edge-1 node CPU usage (self-adaptive system; offloading C4 container)

Figure 7.15: edge-1 node CPU usage; offloading adaptation

AWS cloud services, which guarantee high availability. Additionally, to avoid dis-
turbances in the delivery of the data sent by sensors, we ran the scripts (simulating
the sensors) on an EC2 instance of AWS deployed in the same virtual private cloud
as the nodes. This way we guarantee that the data generated in the device layer will
be published in the broker on a regular basis and with low latency.

Measurements of dependent variables should be reliable: to ensure the
reliability of the measurement of dependent variables (e.g., latency and availability),
we have run each experiment at least three times and obtained very similar results.
To collect these variables data, we used the monitors and exporters deployed by the
framework and consulted the information in the Prometheus time series database.

Mono-operation bias: the study should include the analysis of more than one
dependent variable. In our experiments, we analyzed various QoS metrics and in-

114 CHAPTER 7. EXPERIMENTAL EVALUATION

(a) Data processing time (non-adaptive system)

(b) Data processing time (self-adaptive system; offloading C4 container)

Figure 7.16: Processing time data of C2 container; offloading adaptation

7.3. EVALUATION OF FRAMEWORK SCALABILITY 115

Figure 7.17: Availability of the C4 container; deployment adaptation

frastructure of nodes and containers. For example, we collected and displayed CPU
utilization, availability, and data processing latency. Additionally, for the Redeploy-
ing a container adaptation experiment, in addition to analyzing the availability met-
ric, we also capture the unavailability time of the container while it is redeployed.

Size of the test scenario: one of the threats is related to the size of the IoT
system to be modeled and tested. Since the objective of this validation was to test
the architectural adaptations individually, we proposed a small scenario composed
of an IoT systemwith two edge nodes and one fog node. This scenario was sufficient
to model an adaptation rule that allowed testing each adaptation. Nevertheless, we
have planned a large scenario (as presented in Section 7.3) to validate the scalability
of our approach and the execution of concurrent adaptations.

7.3 Evaluation of Framework Scalability

To evaluate the ability and performance of our framework to address the growth of
concurrent adaptations (i.e. increase in the number of triggered rules and actions
to be performed) on an IoT system, we have conducted two experiments: the first
one that triggers simultaneous rules composed of a single action, and the second
one that triggers simultaneous rules composed of a group of actions. The goal of
this experiment study is to identify approach scalability to perform concurrent
adaptations of our MAPE-K based framework to adapt the IoT system at runtime.
The design, protocol, and results of the experiment are presented below.

116 CHAPTER 7. EXPERIMENTAL EVALUATION

7.3.1 Design and Setup

To test the scalability of our framework, we have designed a test scenario emulating
an IoT environmental monitoring system in three underground coal mines (Figure
7.18). For simplicity, we assume that the three mines have the same structure (tun-
nels, work fronts, etc.) and the same monitoring system (nodes and applications).
Each mine has ten work fronts 10 constantly monitored to ensure the safety of the
workers. The IoT system architecture is composed as follows.

• The device layer is composed of several types of sensors deployed at different
work fronts. Each work front contains sensors to monitor methane (CH4),
carbon dioxide (CO2), carbon monoxide (CO), Hydrogen sulfide (H2S), Sulfur
dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), temperature, and
air velocity. The information collected by the sensors is sent to a messaging
broker (deployed on edge-1 for the Mine 1).

• The edge and fog layer nodes run different applications to detect emergen-
cies, control actuators, store information locally and aggregate information
to be sent to the cloud nodes.

• The cloud layer web application to visualize incident reports and query ag-
gregated historical data on the environmental status of mines. A database is
also deployed on one of the cloud nodes to store aggregated data.

To set up the test environment, we provisioned EC2 instances from AWS. In-
stances t2.micro (1 vCPU and 1 GB of memory) for edge nodes, instances t2.small (1
vCPU and 2 GB of memory) for fog nodes, and instances t2.medium (2 vCPU and 4
GB of memory) for cloud nodes. The collection and sending of data from the sensors
was simulated using a script written in Python language.

As indicated in the legend of Figure 7.18, the containerized applications de-
ployed on the nodes include: an MQTT broker that receives and distributes all sen-
sor data; stel-app and twa-app check that the values of the monitored gases do not
exceed their allowable STEL and TWAvalues; temp-app checks that the temperature
at the different work fronts does not exceed the allowable limit value (depending on
wind speed); local-app is a local application for real-time querying of sensor data;
local-database stores the data locally before being aggregated and sent to the cloud;
finally, web-app and cloud-database enable to store and query the aggregated data
in the cloud. In this experiment, the development of all functional requirements
of these applications is out of scope. Instead, we have developed applications with

10A large underground coal mine in Colombia could have around ten active work fronts, either
mining, advancement, or development.

7.3. EVALUATION OF FRAMEWORK SCALABILITY 117

the basic functionalities including the container images. For example, the twa-app
application we developed subscribes to the broker to receive the sensor data and
performs a data analysis, but does not calculate the actual TWA value.

This IoT scenario for underground coal mining is intended to be close to a real
implementation following the rules established in the Colombian mining regula-
tions [132]. For example, the STEL and TWA values are suggested by this regula-
tion.

118 CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.18: Large mining IoT system to be modeled

7.3. EVALUATION OF FRAMEWORK SCALABILITY 119

Experiment 1

In Experiment 1, we have tested the activation and execution of simultaneous rules
composed of a single action. We have defined and triggered a rule for 1, 5, 10, 20,
and 30 work fronts (five independent tests).

Figure 7.19 shows the rule forWork Front 1 (a similar rule was specified for each
work front): if the CPU consumption of node edge-3 exceeds 80% for 60 seconds,
then offloading the container c3 to node edge-2. In this experiment we have chosen
the offloading action, which implies more effort for the Adaptation Engine, since it
involves the removal and creation of a container on a different node.

Figure 7.19: Rule forWork front 1 - single action

Experiment 2

In Experiment 2, we have defined rules involving several actions. Similar to Exper-
iment 1, we have defined rules for 1, 5, 10 and 20 work fronts (4 independent tests).
Figure 7.20 shows the rule forWork Front 1 (for the other work fronts, the rules are
similar), whose list of actions includes one offloading, three scaling, and two rede-
ployment. Note that each scaling action is intended to deploy three instances of the
application into any node in the mine.

120 CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.20: Rule forWork front 1 - multiple actions

7.3.2 Experiment Protocol

Both Experiment 1 and Experiment 2 follow the same protocol, consisting of the
following steps.

1. Model the IoT system (using our DSL) including the rules to be tested. The
model built for these experiments can be consulted in Appendix A.

2. Run the code generator using the model built in the first step.

3. Deploy the IoT applications and execute our runtime framework using the
YAML manifests built by the code generator.

4. Execute the Python script that simulates the generation of sensor data and
publishes the messages to the broker. In this way, the necessary workload is
generated on the nodes for the rules to be fired.

The independent variable in both experiments is the frequency of data genera-
tion. We set the necessary data frequency (90 samples per minute for each sensor)

7.3. EVALUATION OF FRAMEWORK SCALABILITY 121

to trigger the rules. As for the dependent variables, in Experiment 1 we focused on
monitoring the time spent by the system to detect the event, to generate the adap-
tation plan, and to adapt the system. In Experiment 2, in addition to monitoring the
time spent on adaptation, we also focused on analyzing if there is any error that is
raised when performing adaptations and the reasons for them.

7.3.3 Results and Analysis

Experiment 1

Figure 7.21 shows the results of the tests performed in this experiment. The infor-
mation in the table includes:

• the number of rules configured in the test;

• the number of errors or failed adaptations;

• the event detection delay refers to the time the system (Prometheus Alerting
Rules) takes from the detection of the first rule, to the last one (e.g., for test #
2, the system takes 10,30 seconds from the detection of the event of rule 1 to
the detection of the event of rule 5);

• the time the system (Prometheus Alert Manager) takes to generate the adap-
tation plan and send it to the Adaptation Engine;

• and finally, the time the system (Adaptation Engine) takes to perform the
Offloading adaptation, which involves the creation of a new container and
the deletion of the old one.

The time spent in the monitoring stage to collect QoS and infrastructure metrics
has not been monitored because this is a configurable fixed value for Prometheus.
For these experiments, we have set the Prometheus monitoring frequency equal to
4 times every minute (i.e., monitoring every 15 seconds), and the rule evaluation
frequency equal to 6 times per minute (i.e., evaluation every 10 seconds). These
values were adequate to not generate significant workload on the edge nodes (EC2
t2.micro instances with limited resources).

Findings from the results of this experiment are presented below.

• Ideally the event detection delay (column 4 in Table of Figure 7.21) should
be equal to zero, i.e., all events should be detected at the same time since
the increase in CPU consumption was caused at the same time in all nodes.
However, there are delays between 10 and 15 seconds approximately, due to

122 CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.21: Experiment 1 results

the parameters configured in Prometheus (monitoring_interval = 15s and
evaluation_interval = 10s). Because Prometheus does not synchronize
the monitoring and evaluation times, this delay could take a random value
between zero (if monitoring and evaluation happen at the same time as the
event) and 25 seconds (monitored_interval + evaluation_interval). This
is the reason why test # 4 (with 30 triggered rules) has a lower delay (9.96
seconds) compared to the other tests involving less number of triggered rules.
In sum, if the monitoring and evaluation frequencies are increased, the event
detection delays could be reduced. However, increasing these frequencies
would produce significant workload on resource-poor nodes.

• In all cases (even configuring 30 rules), all actions (offloading) were performed
successfully. Approximately one second is required for Prometheus Alert
Manager to process an alert, generate the adaptation plan, and send it to the
Adaptation Engine. The adaptation time depends on the type of action: the
Adaptation Engine, via the K3S orchestrator, takes approximately 2 seconds
to create a pod (which hosts a container) and 31 seconds to delete a pod. In this
experiment, MAPE-K components did not fail. In Experiment 2 we subjected
the framework to more exhaustive tests increasing the number of adaptation
executes (details can be found in Section 7.3.3).

7.3. EVALUATION OF FRAMEWORK SCALABILITY 123

• The average time taken by the adaptation engine to perform a container of-
fload is about 33 seconds, with the removal of the container being the most
time consuming task (about 31 seconds). This time is due to the grace period
(default 30 seconds) that K3S uses to perform the deletion of a pod. When K3S
receives the command or API call to terminate a pod, it immediately changes
its status to "Terminating" and stops sending traffic to the pod. When the
grace period expires, all processes within the pod are killed and the pod is
removed. Although our DSL does not currently support grace period config-
uration, we plan to include the specification of this parameter to ensure safe
termination of containers for adaptations that require it (such as offloading
or redeployment actions).

Experiment 2

In Experiment 2, we set up rules composed of several actions (summarized in the
legend of Figure 7.22) and ran multiple tests by increasing the number of configured
rules. The results obtained are presented in Figure 7.22, including the number of
tested rules and actions, the number of failed or unsuccessful actions, the number
of nodes that failed (some tests produced high memory and cpu pressure, inducing
failed nodes), and the average time taken by the Adaptation Engine to perform the
successful actions.

Figure 7.22: Experiment 2 results

Findings from the results of this experiment are presented below.

124 CHAPTER 7. EXPERIMENTAL EVALUATION

• For tests 1 and 2 all actions were performed successfully. However, tests 3
and 4 presented failed actions (i.e. adaptations that could not be completed by
the Adaptation Engine component, mainly Scaling type actions (A2, A3, and
A4). These scaling actions were not completed, because there were no more
resources available on any of the mine nodes to deploy the new container
instances. Even some edge nodes (5 for test 3 and 21 for test 4) failed due to
work overload causing that some of the A6 actions were also not completed
successfully. These results demonstrate that the successful implementation
of the adaptations strongly relies on the availability of resources of the target
nodes of the actions. In this sense, one of the improvements for our DSL
could be to generate warnings to the user when insufficient resources are
detected to perform the modeled rules. In this way we could prevent the
implementation of infeasible rules that could fail due to lack of resources.

• The nodes that failed during tests 3 and 4 showed high CPU consumption
due to the number of containers assigned to them. Whenever a new pod is
deployed on a cluster of nodes (e.g., on one of the edge nodes in mine1), the
Kubernetes Scheduler11 becomes responsible for finding the best node for that
pod to run on. Although the Scheduler checks the node resources, it does not
analyze the real-time consumption of CPU and Ram memory. Therefore, for
Scaling actions in tests 3 and 4, the Scheduler assigned containers to nodes
(without checking their current state) causing them to fail. The design and
implementation of a Scheduler that analyzes real-time metrics (such as CPU
consumption) could avoid this kind of errors.

• The types of actions that require more time to be performed are Offloading
and Redeployment. This is because these actions involve the removal of a
pod, a task that takes about 31 seconds due to the default grace period set by
the K3S orchestrator. On the other hand, the average time it takes to perform
the Scaling action depends on the number of instances to be deployed. The
Adaptation Engine takes about six seconds to scale three pods or containers,
while it takes about four seconds to scale two pods or containers.

7.3.4 Threats to Validity

The threat random irrelevances in the setting was addressed in the same way as we
discussed in Section 7.2.4. Other threats identified in this experiment and how we
addressed them are presented below.

11https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

7.4. CONCLUSION 125

Measurements of dependent variables should be reliable: to ensure the re-
liability of the measurement of the dependent variables (e.g., time consumed adapt-
ing the system), we performed each experiment at least three times and obtained
very similar results. To obtain these metrics, we generated and reviewed log files
that record the time and result of each of the tasks performed by the framework
components. For example, a log file records the time at which the Adaptation En-
gine receives the adaptation plan, the time at which each action finishes (including
the K3S API command responses), and the result.

Mono-operation bias: To avoid this threat, we have planned two experiments
involving several tests. Each experiment contains different adaptation rules to an-
alyze constraints on the performance of concurrent adaptations. We increased the
number of configured rules and collected more than one dependent variable to an-
alyze the system behavior.

Size of the test scenario: The number of nodes (edge, fog, and cloud), sen-
sors, and the size of the mine structure was one of the threats we had to validate.
For this, we proposed a scenario with underground coal mines containing 10 work
fronts, something usual in medium and large scale mining in the department of
Boyacá, Colombia (region that supports part of the doctoral thesis). The simulated
sensors covered the generation of data for the variables required by Colombianmin-
ing regulations (seven types of gases, temperature, and wind speed). The applica-
tions performed the operations that are also required by the regulation. Finally, we
provisioned 68 AWS EC2 instances (63 edge nodes, 3 fog nodes, and 2 cloud nodes).

7.4 Conclusion

In this chapter, we present the empirical evaluations we performed to validate our
approach: (1) experiments to validate the usability and expressibility of the DSL, (2)
experiments to validate the functionality of the three types of architectural adap-
tations, and (3) experiments to identify scalability limitations and boundaries to
perform concurrent adaptations of our MAPE-K based framework.

The validation of usability and expressiveness of the DSL is divided into two
experiments. The first experiment was conducted with computer science partic-
ipants (doctoral students and postdoctoral researchers) to evaluate the modeling
of architectural aspects of the IoT system, container deployment, and architectural
adaptation rules. The second experiment was conducted with participants from the
mining area to evaluate the modeling of concepts (in the extended DSL for mining)
such as mine structure, control points, sensors, actuators and functional rules (e.g.
triggering of alarms due to toxic gas detection). The participants found the DSL
useful, sufficiently expressive, and easy to use. Although they were not familiar

126 CHAPTER 7. EXPERIMENTAL EVALUATION

with the MPS prior to the experiment, most participants reported that the learning
curve is low. The lower error rate demonstrates the ease of use of the DSL, even for
users who are not experts in Mining, IoT, MPS, or other modeling tools.

We designed three experiments to functionally validate the architectural adap-
tations and compare the availability and performance of a non-adaptive IoT sys-
tem with that of a self-adaptive IoT system that is modeled and managed using
our approach. The protocol of these experiments includes the modeling of the self-
adaptive IoT system, code generation, deployment and self-adaptation of the sys-
tem. The results of these experiments show that the framework is functionally en-
abled to execute the modeled architectural adaptations for an IoT system using our
DSL. Additionally, the results show that these runtime adaptations can favor and
maintain desirable values for IoT system performance and availability.

Finally, experiments to evaluate the scalability of the framework revealed some
important limitations and considerations. First, the frequency of monitoring (in-
frastructure and QoS) and rule evaluation are factors that can delay the detection
of events. Setting these frequencies to high values (e.g., 1 check per second) would
allow Prometheus to identify events in very short times. However, high monitoring
frequencies can generate considerable overheads inducing failures in nodes with
low resources (e.g., some edge nodes). Second, although the Scheduler performs a
filtering process to select the appropriate node when a new container is deployed,
this component of the orchestrator does not analyze metrics of the current CPU and
Ram memory consumption of the nodes. This can lead to node failures when the
Scheduler assigns pods to nodes that are being overloaded. One strategy to address
this concern is to design a Scheduler component that analyzes additional metrics
(such as current CPU, memory, bandwidth, and power consumption) to select the
appropriate node for deployment tasks.

Chapter 8

Related Work

Self-adaptive systems have been studied for several decades. Wong et. al. [167] clas-
sify the evolution of self-adaptive systems into stages. In the first stage (1990-2002),
a theoretical model of self-adaptive systems was proposed and the first studies on
evolution, self-supervision, control theory, and run-time design emerged [36, 19].
The second stage (2003-2005) was dominated by studies proposing novel perspec-
tives but without concrete implementations. In the third stage (2006-2010), research
was focused on autonomous and self-adaptive web services. Runtime solutions pre-
dominated over design time solutions. For example, modesl@runtime approach [25]
was introduced (the use of software models for adaptive mechanisms to manage
complexity in runtime environments). The last stage (2011-2022) shows a transition
between the domains of research interest. The adaptability of IoT systems and In-
frastructure as a Code (IaaS) becomes the focus. However, the exponential increase
and variability of IoT devices, and the unpredictable behavior of the environment
introduces self-adaptation challenges to maintain quality levels.

In this chapter, we analyze and compare the studies published to date that are
related to our research topic. In particular, languages for specifying IoT systems
are analyzed in Section 8.1 and frameworks for supporting system adaptability at
runtime are studied in Section 8.2.

8.1 Languages and metamodels for modeling IoT
systems

Although there is currently no globally accepted metamodel for specifying the ar-
chitecture and adaptability of IoT systems, languages for this purpose must be suf-
ficiently expressive to represent the domain. Some approaches [112, 99, 58, 174] use
generic languages such as Unified Modeling Language (UML), Finite-state machine

127

128 CHAPTER 8. RELATED WORK

(FSM), Queuing Network (QNs), and YAML to model aspects of the IoT system such
as its architecture, software deployment, or self-adaptive capabilities. However, to
model the complexity of self-adaptive multilayer architectures, it is necessary to
define DSLs that allow representing the entire domain. We have classified the lit-
erature studies into two groups: DSLs for modeling the IoT system architecture,
and DSLs that address the specification of self-adaptive capabilities. Some studies
belong to both groups.

8.1.1 DSLs for IoT Architectures

The modeling of cloud architectures is one domain that has been extensively
studied. DSLs are proposed in [138, 149, 24, 11] to provision infrastructure, develop
and deploy applications for different cloud providers. These studies aim to automate
and improve continuous deployment processes through the design of high-level
models using textual or graphical notations. Nevertheless, these proposals do not
cover multi-layered architectures involving fog nodes, edge nodes, or IoT devices.
This is also the case for Infrastructure-as-code (IaC) tools such as Terraform, Chef,
Ansible, or Puppet.

Given the complexity of the IoT domain, MDE and DSLs have also been ex-
ploited to support the specification of several aspects of an IoT system.

Some IoT DSLs have been focused on reducing application development
anddeployment of IoT applications at nodes and end-devices. For example, Gomez
et al. [72] presents EL4IoT, a DSL to model the software system and the operating
system configuration in order to generate code for low-end devices running the
Contiki-OS1. EL4IoT generates C code and XML configuration files for the end de-
vice. Similarly, Pramudianto et al. [130] proposes IoTLink, a model driven tool
to support the connection tasks between IoT devices and virtual objects (such as
databases or REST services). IoTLink generates Java executable code that, when
executed, can act as proxies for the physical devices involved in the system. An-
other DSL focused on application development is presented in [67]. This graphical
DSL called MOCSL aims to support the development of native applications for in-
terconnected smart objects. MOCSL offers a graphical editor to specify the sensors
and actuators used on a smartphone or an Arduino board. A native application is
generated (source code for smartphone or c code for Arduino) to collect sensor data
or manipulate actuators. However, EL4IoT, IoTLink, and MOCLS are solutions fo-
cused primarily on supporting device layer tasks, without addressing other layers
and system adaptability.

1https://www.contiki-ng.org/

8.1. LANGUAGES AND METAMODELS FOR MODELING IOT SYSTEMS 129

Other studies proposeDSLs focused exclusively onmodeling IoT architec-
tures such as a [58, 43, 136, 55] discussed below.

A DSL is presented in [58] for modeling IoT systems through a stereotype-based
UML profile diagrams. An IoT system is made up of Things, either virtual (e.g.,
software) or real (e.g., a node). A Thing can contain a collection of items such as
inputs (sensors), outputs (actuators), and software components. The DSL enables
the specification of methods inside a UML Class block that represents actions at
the device layer (e.g., opening a window). However, this DSL requires more spe-
cific stereotypes that allow specifying the concept of a multilayer architecture such
as edge and fog nodes. Similarly, Costa et al. [43] propose SySML4IoT, a SysML
profile for modeling IoT applications. In SySML4IoT a system is composed of De-
vices (sensor, actuator, or tag) and Services. The concept Area is used to specify
the physical location that is affected by the service (e.g. room, building, or floor).
However, SySML4IoT is focused on modeling the physical layer without studying
the specification of architectural concepts of other layers such as servers and their
specifications, or communication protocols.

Salihbegovic et al. [136] propose DSL-4-IoT, a graphical DSL to represent the
structure of IoT systems using hierarchical blocks grouped as systems, subsystems,
devices, and virtual or physical channels. Configuration files are generated to run
the system using the OpenHAB2 platform, a framework for managing gateways
for smart home applications. Although DSL-4-IoT enables the modeling of the sys-
tem structure including the definition of edge nodes as the gateway, other aspects
such as asynchronous communications and run-time system adaptability are not
addressed.

Erazo et al. [55] propose Monitor-IoT, a domain-specific language to facilitate
and streamline the design of multi-layer monitoring architectures for IoT systems.
Monitor-IoT provides a graphical notation for the specification of multi-layer IoT
systems including support for modeling data collection, transportation, processing,
and storage processes. Both asynchronous and synchronous communications can
be modeled with this DSL, but system self-adaptive capabilities are not addressed.

8.1.2 DSLs for IoT Self-Adaptation

The studies analyzed in this section, in addition to covering the modeling of the IoT
system architecture, also address the adaptability of the system in some aspects. For
example, Barriga et al. [16] presents SimulateIoT, an approach to design and run IoT
simulation environments. SimulateIoT addresses the design of a DSL to model the
IoT system and its environment. This DSL includes the specification of IoT devices,

2https://www.openhab.org/

130 CHAPTER 8. RELATED WORK

nodes in different layers (edge, fog and cloud), asynchronous communication (pub-
lish/subscribe), databases, and event processing engines. SimulateIoT also includes
themodeling of rules for the generation of notifications by analyzing topic data from
sensors/actuators. for instance, a notification can be configured when the temper-
ature collected by a sensor exceeds a threshold. However, infrastructure metrics,
QoS monitoring, and architectural adaptations are not supported.

CAPS [116] is a Cyber-Physical Systems (CPS) modeling tool that addresses the
specification of software architecture, hardware configuration, and physical space.
The software architecture specification allows modeling software components and
their behavior based on events and actions. Events are responses to some internal
change in the software component (e.g., a timer fired or a message received), and
actions are atomic tasks that the component can perform (e.g., starting or stopping a
timer, or sending a message to another component). However, the modeling of the
system behavior addresses adaptations at the software component level without
supporting architectural or device-level adaptations. Furthermore, CAPS does not
cover the specification of the concepts of multi-layer architectures.

SMADA-Fog [127] is a model-based approach not exclusively focused on the
IoT domain, but it could be used to model self-adaptive IoT systems. SMADA-Fog
address the deployment and adaptation of container-based applications in Fog com-
puting scenarios. SAMADA-Fog proposes a metamodel that enables modeling the
deployment and adaptation of containers on nodes (edge, fog, and cloud). SMADA-
Fog enables the specification of consumer devices (such as laptops, smartphones,
and IoT devices) and network devices, but does not address the modeling of sensors
and actuators because it is a DSL focused on fog computing applications. SMADA-
Fog addresses the specification of rules whose conditionality involves QoS metrics
and architectural adaptations such as scaling, optimizing a metric, blocking a ser-
vice, and creating/shutting down a service. The deployment and adaptation model
of the system is specified by means of environments designed in Node-RED3. How-
ever, rules for operating or controlling the system’s actuators are not supported. In
addition, the physical regions and location of devices and nodes are not addressed
concepts by the metamodel.

8.1.3 Discussion

Table 8.1 presents a comparative analysis between the DSLs studied and our DSL.
The comparative information includes: (1) the notation of the language (e.g., textual,
graphical, or tabular); (2) whether the language addresses modeling of IoT devices,
including sensors and actuators; (3) whether the language addresses specification

3Node-RED is a programming tool for wiring together hardware devices, APIs and online services

8.1. LANGUAGES AND METAMODELS FOR MODELING IOT SYSTEMS 131

of physical regions or locations such as rooms, buildings, or tunnels; (4) whether
the language addresses modeling of edge, fog, and cloud nodes; (5) whether the
language enables the specification of hardware properties of nodes such as memory,
CPU, storage, operating system, and other characteristics; (6) the software resources
that can be modeled with the language (e.g., databases, software containers, and
message brokers); and (7) the types of conditions and actions that make up the rules.
The main limitations we identified in the literature for modeling self-adaptive IoT
systems are listed below.

• The literature has focused primarily on application development and deploy-
ment issues, without addressing the specification of rules or policies that gov-
ern the adaptability of the IoT system at runtime. The few DSLs that do ad-
dress adaptations focus on a single type (e.g., architectural, physical layer, or
network adaptations) and do not provide a sufficiently expressive language
for creating complex rules. Our DSL addresses the specification of rules for
modeling self-adaptation schemes and functional rules for controlling IoT sys-
tem actuators. Definition of complex composite rules relating infrastructure
metrics (such as CPU and RAM usage), QoS (such as availability and latency)
and sensor data (such as temperature and oxygen) are covered in our proposal.

• Multi-layer architectures that take advantage of edge and fog computing are
becoming increasingly popular. Modeling languages for IoT architectures
must address the specification of the concepts that enable the implementation
of these technologies. There are only three studies [55, 16, 141] that enable
the modeling of sensor/actuator devices, edge, fog and cloud nodes; and one
of these does not allow modeling the specifications (CPU, RAM, storage, etc.)
of the nodes (an important aspect considering that edge and fog nodes have
limited resources). These are aspects that we address in our DSL.

• Specifying the location (e.g. by coordinates or regions) of the devices and
nodes that make up the system infrastructure is important for defining rules
that involve conditions or adaptations linked to a physical region of the envi-
ronment. For example, in monitoring systems it is necessary to guarantee the
availability of services deployed in critical surveillance zones. This is another
aspect that we cover by enabling the modeling of physical regions and loca-
tion coordinates. On the other hand, a few works such as [130, 43, 16, 116]
address the modeling of physical regions or spaces such as buildings, rooms,
or corridors. However, none of these enable the definition of rules involving
the region.

132 CHAPTER 8. RELATED WORK

• None of the analyzed DSLs evaluate their extensibility capability to expand
the abstract syntax by including new concepts to the metamodel. This is one
of the features supported by our DSL. In Chapter 6 we present the design of
two extensions of the DSL to model self-adaptive IoT systems in two different
domains.

To summarize, although there is some literature focused on the design of DSLs
to define IoT systems at different levels of abstraction, the self-adaptation capabil-
ities for multi-layer IoT systems (including device, edge, fog, and cloud) has not
been properly explored. Our DSL is the first proposal that enables the modeling of
multi-layer IoT architectures and the definition of complex rules covering all lay-
ers (and combinations of) and involving multiple conditions and actions that can,
potentially, involve groups of nodes in the same region or cluster of the IoT system.

8.1. LANGUAGES AND METAMODELS FOR MODELING IOT SYSTEMS 133
Io
T
de

vi
ce

N
od

e
H
ar
dw

ar
e
pr

op
.

R
ul
es

R
ef
er
en

ce
N
ot
at
io
n

(se
ns
or
/a
ct
ua
to
r)

Lo
ca
ti
on

Ed
ge

Fo
g

C
lo
ud

(c
pu

,r
am

,m
em

or
y,

ip
,O

S,
et
c.)

So
ft
w
ar
e

C
on

di
ti
on

s
A
ct
io
ns

EL
4I
oT

[7
2]

Te
xt
ua
l

Ye
s

N
o

Ye
s

N
o

N
o

N
o

ap
pl
ic
at
io
n
an
d

Co
nt
ik
i-O

S
co
nfi

g.

N
o

N
o

Io
TL

in
k
[1
30
]

Te
xt
ua
l

Ye
s

Ye
s

N
o

N
o

N
o

N
o

A
PI
,

se
rv
ic
e,

da
ta
ba
se

N
o

N
o

Et
er
ov
ic
et

al
.[
58
]

Gr
ap
hi
ca
l

Ye
s

N
o

N
o

N
o

N
o

N
o

So
ftw

ar
e

co
m
-

po
ne
nt
s

N
o

Sy
st
em

ac
tu
at
or

co
nt
ro
l

Sy
SM

L4
Io
T
[4
3]

Gr
ap
hi
ca
l

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Se
rv
ic
es

N
o

N
o

M
on

ito
r-
Io
T
[5
5]

Gr
ap
hi
ca
l

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

A
pp

,
br
o-

ke
r,

A
PI
,

an
d

m
id
dl
ew

ar
e,

da
ta
ba
se

N
o

N
o

M
O
CS

L
[6
7]

Gr
ap
hi
ca
l

Ye
s

N
o

N
o

N
o

N
o

N
o

A
pp

lic
at
io
n

N
o

N
o

D
SL

-4
-Io

T
[1
36
]

Gr
ap
hi
ca
l

Ye
s

N
o

N
o

N
o

Ye
s

N
o

Se
rv
ic
e

N
o

N
o

Si
m
ul
at
or
Io
T
[1
6]

Gr
ap
hi
ca
l

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ev
en
t

pr
oc
es
s-

in
g
en
gi
ne
,b
ro
-

ke
r,
da
ta
ba
se
s

Se
ns
or

da
ta

N
ot
ifi
ca
tio

ns

CA
PS

[1
16
]

Gr
ap
hi
ca
l

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

So
ft.

co
m
po

-
ne
nt

In
te
rn
al

ch
an
ge

in
th
e
so
ft.

co
m
po

-
ne
nt

So
ft.

co
m
po

ne
nt

ta
sk
s

SM
A
DA

-F
og

[1
27
]

Gr
ap
hi
ca
l

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Co
nt
ai
ne
r

Q
oS

co
nd

iti
on

s
A
rc
hi
te
ct
ur
al

O
ur

D
SL

Gr
ap
hi
ca
l,

te
xt
ua
l,

ta
bu

la
r

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

A
pp

,
br
ok

er
,

co
nt
ai
ne
r

Se
ns
or

da
ta

or
Q
oS

co
nd

iti
on

s
A
rc
hi
te
ct
ur
al

an
d

sy
st
em

ac
tu
at
or

co
nt
ro
l

Ta
bl
e
8.1

:C
om

pa
ra
tiv

e
an
al
ys
is
of

D
SL

sa
nd

m
et
am

od
el
sf
or

Io
T
sy
st
em

m
od

el
in
g

134 CHAPTER 8. RELATED WORK

8.2 Frameworks for IoT system self-adaptations

In this section, we analyze frameworks for handling self-adaptive IoT systems at
runtime. We have categorized the analyzed studies into two groups: (1) general
frameworks or approaches which use general-purpose languages and (2) model-
based frameworks which use DSLs such as those discussed in Section 8.1.1.

8.2.1 General Approaches or Frameworks

The Rainbow framework [68] represents one of the earliest attempts to support self-
adaptation of software systems. This framework, based on MAPE-K loop, enables
the specification of the system architectural model using the Acme language4 and
the specification of adaptation rules by means of scripts. Although Rainbow defines
the stages of the MAPE-K cycle to perform the continuous feedback of the system
state and to generate adaptation plans, the monitors (in charge of monitoring the
system) and the effectors or actuators (in charge of applying the system actions)
must be developed and provided by the user. This is why Rainbow does not offer a
fixed list of adaptations, since they depend on the monitors and effectors that the
system provide.

Moghaddam et al. [112] propose IAS, an IoT architectural self-adaptation frame-
work. IAS is based on Queuing Networks (QNs) for modeling architectural patterns
that the system adopts to improve non-functional attributes. Three architectural
patterns can be modeled using IAS and QNs: centralized comprises processing on
a central local or remote controller, distributed includes processing on independent
or collaborative controllers, and hierarchical contains independent or hybrid con-
trollers (i.e., with distributed collaboration). The controllers are based on MAPE-K
loop which ensure compliance with the functional requirements of the system. Al-
though the adaptations addressed by IAS include modification of the architectural
pattern of the system drivers, support for deployment and adaptation of container-
based applications is out of scope. In addition, the use of QNs as a modeling lan-
guage hampers the specification of IoT domain-specific aspects.

Lee et al. [99] present a self-adaptive framework to dynamically satisfy func-
tional requirements for IoT systems. This framework, based on MAPE-K loop, en-
ables modeling of the IoT environment through a finite-state machine, which in-
cludes four types of states: satisfied to represent satisfied requirements, unsatisfied
to represent unsatisfied requirements, adaptive represents states in which an adap-
tive activity can be performed, and normal represents states that do not affect soft-
ware adaptation. This framework is focused on managing adaptations of the device

4Acme is a simple, generic software architecture description language that can be used as a foun-
dation for developing new architectural design and analysis tools

8.2. FRAMEWORKS FOR IOT SYSTEM SELF-ADAPTATIONS 135

layer of the system by manipulating the actuators (e.g., opening a window when
the temperature exceeds a limit). However, architectural rules for the other layers
of the system are not supported.

Weyns et al. [165] propose MARTA, an architecture-based adaptation approach
to automate the management of IoT systems employing runtime models and lever-
aging the MAPE-K loop. Each rule is specified by a quality model that stores a con-
dition and one or more adaptations (e.g., packet loss < 10%, minimize energy con-
sumption). Although MARTA addresses the monitoring of network metrics such as
latency and packet loss, other infrastructure metrics (such as CPU and node Ram us-
age) are not collected. In addition, the monitors and effectors that adapt the system
are designed for a particular case, making reusability challenging.

A few works such as [174, 143, 85, 140] focus on system adaptations to opti-
mize the deployment of IoT applications on edge and fognodes. These studies
propose the use of orchestrators such as Kubernetes and Docker Swarm. For exam-
ple, Yigitoglu et al. [174] present Foggy, a framework for continuous automated
deployment in fog nodes. Foggy enables the definition of four software deploy-
ment rules in Fog nodes. Foggy’s architecture is based on an orchestration server
responsible for monitoring the resources in the nodes and dynamically adapting the
software allocation according to the rules defined by the user. However, Foggy is fo-
cused on adapting the system exclusively to support the continuous deployment of
applications. IoT system adaptations caused by dynamic events other than software
deployment failures are not supported.

8.2.2 Modeling-based solutions

Self-adaptivemodeling-based systems have also been extensively studied for cloud-
based applications. Works such as [39, 61, 35, 81, 56] propose partial solutions as
they either restrict the parts of the system that could be adapted (e.g. only the global
monitoring component to adapt to manual changes in the deployed components) or
offer some type of adaptation rules but with limited expressiveness and rules that
must be manually triggered instead of being self-adaptive.

AMAPE-K based framework to evaluate and select the architectural pattern that
favors quality attributes in different scenarios is porposed by Muccini et al. [117].
In particular, the power consumption of the devices is prioritized and evaluated by
implementing architectural patterns such as master/slave and centralized for the
components of the MAPE-K cycle. This framework enables system modeling us-
ing CAPS [116], a tool for architecting situational-Aware Cyber-Physical systems.
However, the CAPS DSL, being focused on modeling cyber-physical systems, has
limitations for modeling the multi-layer architectures of IoT systems as mentioned

136 CHAPTER 8. RELATED WORK

in Section 8.1. Additionally, the specification of rules for operating or controlling
the system actuators is not supported.

The following works are more related to our proposal. Hussein et al. [83]
present a framework to support the design and operation of self-adaptive IoT sys-
tems. The specification of the system requires two models: a model that captures
the functionality of the system and a model that describes the adaptation. The func-
tionality is specified using SySML4IoT [43] (a SySML profile for modeling IoT appli-
cations), while the adaptations are modeled using a state machine. The adaptations
addressed by this framework consist of changing the state (active/inactive) of the
system services when an availability failure is detected in sensors or services. For
example, when a temperature sensor in a room fails, the temperature control inside
the room is deactivated. However, SySML does not address the modeling concepts
of multi-tier architectures such as edge and cloud nodes making it difficult to spec-
ify and execute architectural adaptations. In addition, infrastructure metrics and
sensor data monitoring are not collected.

Petrovic et al. [127] propose SMADA-Fog, a semantic model-driven approach to
deployment and adaptation of container-based applications in Fog computing sce-
narios. The deployment and adaptationmodel of the system is specified bymeans of
environments designed in Node-RED5. SMADA-Fog addresses architectural adapta-
tions to manage containers deployed using Docker-Swarm, an orchestrator to man-
age Docker containers. To adapt the system, a code generator produces Docker
commands and SDN rules that spawn the desired services on target servers and
shape the traffic between them. However, SMADA-Fog does not allow the speci-
fication of complex rules composed of various conditions and actions. Moreover,
grouping nodes and IoT devices according to their location is not possible, forbid-
ding the possibility to apply adaptations on group of nodes belonging to a cluster
or a given region.

Discussion

Table 8.2 compares the frameworks analyzed in this section with our proposal. The
comparative information includes: (1) the application domain of the framework;
(2) the approach used for specification or modeling of the self-adaptive system; (3)
the aspects of the system that are modeled such as system architecture, software de-
ployment, or adaptation policies; (4) the actions and adaptation strategies addressed
(e.g., architectural adaptations or system actuator control); and (5) the metrics col-
lected to monitor the state of the system and detect events that trigger adaptations.
The relevant findings and differences are listed below.

5Node-RED is a programming tool for wiring together hardware devices, APIs and online services

8.2. FRAMEWORKS FOR IOT SYSTEM SELF-ADAPTATIONS 137

• The specification of rules for an IoT system requires a language expressive
enough to model and support complex rules composed of various types of ex-
pressions and adaptations. Most frameworks use general-purpose languages
to model both the system and its adaptivity. For example, Acme in Rainbow
[68], QNs in IAS [112], or finite state machinemodels in Lee et al. [99]. In con-
trast, our framework uses a DSL specialized in modeling rules (architectural
adaptations and functional rules) for the IoT system.

• System state monitoring is one of the key tasks in frameworks that support
self-adaptation. There are several types of metrics that can be collected to
monitor system state: QoS metrics such as availability, latency, and power
consumption; infrastructure metrics such as CPU consumption, Ram mem-
ory consumption, and free disk space; and sensor data metrics collected with
IoT system sensors such as temperature, humidity, motion, and gas concen-
tration. Most of the frameworks analyzed focus on monitoring only one type
of metrics. For example, IAS [112] focuses on performance, MARTA [165]
and SMADA-Fog focus on QoS, and Lee et al. [99] focus on sensor data. Our
framework uses monitoring tools that collect QoS, infrastructure, and sensor
data metrics.

To summarize, our model-based framework is the first to support the specifica-
tion of architectural adaptations and functional rules, collecting infrastructure, QoS,
and sensor data metrics. This framework integrates a DSL for self-adaptive IoT sys-
tem specification that encompasses architecture modeling, software, and rules (both
architectural adaptation and functional rules). In addition to self-adapting the sys-
tem at runtime, this framework also supports the deployment of container-based
applications using orchestrators such as Kubernetes and K3S, technologies that be-
come popular for running applications on edge, fog, and cloud nodes.

138 CHAPTER 8. RELATED WORK

R
ef
er
en

ce
D
om

ai
n

M
od

el
li
ng

ap
pr

oa
ch

M
od

el
ed

as
pe

ct
s

A
ct
io
ns

an
d
ad

ap
t.

st
ra
te
gi
es

M
et
ri
cs

co
ll
ec
te
d

Ra
in
bo

w
[6
8]

Ge
ne
ra
l

pu
rp
os
e

Ac
m
e

A
rc
hi
te
ct
ur
e

an
d

ad
ap
ta
tio

n
ru
le
s

D
ep
en
ds

on
us
er
-

su
pp

lie
d
eff

ec
to
rs

de
pe
nd

s
on

us
er
-

su
pp

lie
d
m
on

ito
rs

IA
S
[1
12
]

Io
T

Q
ue
ui
ng

N
et
w
or
ks

(Q
N
s)

A
rc
hi
te
ct
ur
al
pa
tte

rn
ad
ap
ta
tio

n
A
rc
hi
te
ct
ur
al
pa
tte

rn
ad
ap
ta
tio

n
Pe
rfo

rm
an
ce

Le
e
et

al
.[
99
]

Io
T

Fi
ni
te
-s
ta
te

m
ac
hi
ne

Fu
nc
tio

na
lr
ul
es

Sy
st
em

ac
tu
at
or

co
n-

tro
l

Se
ns
or

da
ta

M
A
RT

A
[1
65
]

Io
T

Q
ua
lit
y
m
od

el
s

Fu
nc
tio

na
lr
ul
es

Sy
st
em

ac
tu
at
or

co
nt
ro
l
(se

tti
ng

th
e

po
w
er

an
d
sa
m
pl
in
g

fre
qu

en
cy

of
th
e

de
vi
ce
s)

Pa
ck
et

lo
ss
,

la
-

te
nc
y,

an
d

en
er
gy

co
ns
um

pt
io
n

M
uc
ci
ni

et
al
.

Io
T

CA
PS

A
rc
hi
te
rtu

ra
l

pa
t-

te
rn
s

A
rc
hi
te
ct
ur
al
pa
tte

rn
ad
ap
ta
tio

n
En

er
gy

co
ns
um

p-
tio

n
H
us
se
in

et
al
.[
83
]

Io
T

Sy
SM

L4
Io
T
an
d
fin

ite
-

st
at
e
m
ac
hi
ne

Fu
nc
tio

na
lit
y

an
d

ad
ap
ta
bi
lit
y

on
/o
ff
se
rv
ic
es

Av
ai
la
bi
lit
y
of

se
n-

so
rs

an
d
se
rv
ic
es

SM
A
DA

-F
og

[1
27
]

Fo
g

Co
m
p.

N
od

e-
Re

d
A
rc
hi
te
ct
ur
e,

ap
pl
i-

ca
tio

n
de
pl
oy

m
en
t,

an
d
ad
ap
ta
tio

n
ru
le
s

A
rc
hi
te
ct
ur
al

ad
ap
-

ta
tio

ns
Q
oS

m
et
ric

s

Fo
gg

y
[1
74
]

Fo
g

Co
m
p.

YA
M
L

So
ftw

ar
e

D
ep
lo
y-

m
en
t

A
llo

ca
tio

n
st
ra
te
gi
es

In
fra

st
ru
ct
ur
e

an
d

la
te
nc
y

O
ur

pr
op

os
al

Io
T

D
SL

A
rc
hi
te
ct
ur
e,

ap
pl
i-

ca
tio

n
de
pl
oy

m
en
t,

ar
ch
ite

ct
ur
al

ad
ap
t.

an
d
fu
nc
tio

na
lr
ul
es

A
rc
hi
te
ct
ur
al

ad
ap
-

ta
tio

ns
an
d

sy
st
em

ac
tu
at
or

co
nt
ro
l

In
fra

st
ru
ct
ur
e,

Q
oS
,

an
d

se
ns
or

da
ta

Ta
bl
e
8.2

:C
om

pa
ra
tiv

e
an
al
ys
is
of

fra
m
ew

or
ks

to
su
pp

or
tI
oT

sy
st
em

se
lf-
ad
ap
ta
tio

ns

Chapter 9

Conclusions and Further
Research

In this chapter, we first synthesize and conclude all the contributions of this thesis
(Section 9.1). In Section 9.2.1, we list the publications and software artifacts de-
veloped and available. Finally, Section 9.3 presents several perspectives for future
research.

9.1 Summary of Contributions

The exponential growth of the Internet of Things (IoT) over the last few decades
has revolutionized many areas such as education, healthcare, industry, and even
our social relationships. Today, we interact with IoT systems in many daily activi-
ties to optimize or improve our quality of life. This growth of IoT has generated new
and increasingly restrictive requirements for the system in terms of performance.
Because of this, IoT system architectures have evolved by implementing paradigms
such as edge and fog computing. Multi-layer architectures that leverage edge and
fog computing can improve quality of service (QoS), latency, and bandwidth con-
sumption. However, the design of these complex architectures is challenging, es-
pecially when the system must self-adapt at runtime due to the dynamicity of the
environment.

IoT systems are exposed to dynamic environments that generate unexpected
changes impacting QoS. Commonly systems are not designed to cope with these
dynamic events, but architectures with self-adapting capabilities could be defined
to address this problem. In this sense, the main contribution of this thesis is a
model-based approach to support the design, deployment, and management of self-
adaptive IoT systems. This approach is divided into two stages: design time for the

139

140 CHAPTER 9. CONCLUSIONS AND FURTHER RESEARCH

specification of the self-adaptive IoT system, and runtime to support the operation
and adaptation of the system.

To enable the modeling of the IoT system and generate code for the deployment
and self-adaptation of the system, the design time stage is composed of:

• a DSL for IoT systems focusing on three main contributions: (1) modeling
primitives covering multi-layer architectures of IoT systems, including con-
cepts such as IoT devices (sensors or actuators), edge, fog and cloud nodes;
(2) modeling the deployment and grouping of container-based applications
on those nodes; and (3) a specific sublanguage to express architectural adap-
tation rules (to guarantee QoS at runtime, availability, and performance), and
functional rules (to addres fuctional requirements that involve system actua-
tor control). We have implemented this DSL using a projectional-based editor
that allows mixing various notations to define the concrete syntax of the lan-
guage. In this way, the IoT system can be specified by a model containing
text, tables, and graphics.

• Acode generator. Themodel (built using theDSL) describing the self-adaptive
IoT system is the input to a code generator we have designed. This generator
produces several YAML1 manifests with two purposes: (1) to configure and
deploy the IoT system container-based applications and (2) to configure and
deploy the tools and technologies used in the framework that supports the
execution and adaptation of the system at runtime.

To support the system adaptation at runtime stage of our approach, we have de-
veloped a framework to monitor and adapt the IoT system following the adaptation
plan specified in the model. This framework is based on the MAPE-K loop com-
posed of several stages including system status monitoring, data analysis, action
planning, and execution of adaptations. Our framework deploys exporters to col-
lect infrastructure metrics (such as CPU and Ram usage), QoS (such as availability),
and system sensor data. These metrics are stored using Prometheus (a time series
database) and queried using PromQL language to verify rules. We have developed
an Adaptation Engine to perform two types of system actions when necessary: ar-
chitecture adaptations (such as offloading and scaling apps) and system actuator
control (to meet system functional requirements).

We have introduced two extensions to our DSL highlighting the extensibility ca-
pability to add new concepts in the abstract syntax. The first extension focuses on
modeling IoT systems in the underground mining industry while the second exten-
sion focuses on IoT systems implemented inwastewater treatment plants (WWTPs).

1YAML is a data serialization language typically used in the design of configuration files

9.2. PUBLICATIONS AND SOFTWARE ARTIFACTS 141

In addition to the metamodel, the projectional editors were also extended to offer
new modeling notations for underground mine specification, and for modeling of
WWTP process block diagrams.

Finally, to validate our DSL and framework, we have designed and conducted
empirical experiments: (1) to validate the expressiveness and usability of our DSL
extended to the mining domain (13 participants attended the experiment), (2) to
test the self-adaptive capability of our approach (one test scenario for each of the
architectural adaptations), and (3) to evaluate the ability and performance of our
framework to address the growth of concurrent adaptations. The reported results
demonstrate that the DSL is expressive enough to model self-adaptive IoT systems
and has a favorable learning curve. Moreover, experiments with the framework
validate its functionality and ability to self-adapt the system at runtime.

9.2 Publications and Software Artifacts

This section shows how the work that supports this dissertation has been published
in journals and conferences. We also list the software artifacts developed and their
repositories.

9.2.1 Publications

Conferences

• D. Prens, I. Alfonso, K. Garcés and J. Guerra-Gomez. Continuous Delivery
of Software on IoT Devices. 2019 ACM/IEEE 22nd International Conference
on Model Driven Engineering Languages and Systems Companion (MODELS-
C), 2019, pp. 734-735. This paper was one of our first steps in defining a
metamodel to support the deployment of applications in IoT systems.

• I. Alfonso, "A Software Deployment and Self-adaptation of IoT Systems" Pro-
ceedings of the XXIII Iberoamerican Conference on Software Engineering, CIbSE
2020, November 9-13, 2020, pp. 630-637. This paper contains the thesis pro-
posal presented at the CIBSE 2020 Doctoral Symposium.

• I. Alfonso, K. Garcés, H. Castro and J. Cabot. Modeling self-adaptative IoT
architectures. 2021 ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems Companion (MODELS-C), 2021, pp. 761-766.
This paper contains the first version of our DSL and supports part of the con-
tent of Chapter 4.

• I. Alfonso, K. Garcés, H. Castro and J. Cabot. Modelado de Sistemas IoT para
la Industria en Minería Subterránea de Carbón. XXVI Jornadas de Ingeniería

142 CHAPTER 9. CONCLUSIONS AND FURTHER RESEARCH

del Software y Bases de Datos (JISBD), 2022. In this paper we present the ex-
tension of our DSL for modeling IoT systems in the mining industry domain.
This paper supports part of Chapter 6.1.

Journals

• I. Alfonso, K. Garcés, H. Castro and J. Cabot. Self-adaptive architectures in
IoT systems: a systematic literature review. Journal of Internet Services and
Applications, 2021, 12(1), 1-28. This paper support the content presented in
Chapter 2.2.

• Under revision: I. Alfonso, K. Garcés, H. Castro and J. Cabot. Amodel-based
infrastructure for the specification and runtime execution of self-adaptive
IoT architectures. Computing journal. Submitted in June 2022. This paper
presents the design of the final version of our DSL, the framework to support
the runtime self-adaptations, and the empirical experiments to validate the
usability of the language. This paper supports part of the chapters 4, 5, and 7.

Award

• Premio al trabajo liderado por estudiante de doctorado del track de Ingeniería
del Software Dirigido por Modelos (ISDM) de las XXVI Jornadas de Ingeniería
del Software y Bases de Datos (JISBD), por el artículo "Modelado de Sistemas
IoT para la Industria en Minería Subterránea de Carbón".

9.2.2 Software Artifacts

The artifacts developed in this thesis include a DSL, two DSL extensions, a code
generator, and an adaptation engine.

• Code generator and language workbench for the specification of self-adaptive
IoT systems.
Repository: https://github.com/SOM-Research/selfadaptive-IoT-DSL

• Code generator and language workbench extension for the specification of
self-adaptive IoT systems in the Underground Mining Industry.
Repository: https://github.com/SOM-Research/IoT-Mining-DSL

• Code generator and language workbench extension for the specification of
self-adaptive IoT systems in WWTPs.
Repository: https://github.com/SOM-Research/WWTP-DSL

9.3. FURTHER RESEARCH 143

• Adaptation engine to adapt the system at runtime.

Repository: https://github.com/ivan-alfonso/adapter-engine.git

Docker-hub image: https://hub.docker.com/r/ivanalfonso/adaptation-engine

9.3 Further Research

The research conducted in this thesis could be extended into three lines of future re-
search: (1) specific enhancements to our approach, (2) software deployment strate-
gies in IoT systems, and (3) integration of machine learning strategies to suggest
rules.

9.3.1 Approach improvements

Although our approach supports the specification, deployment and management of
self-adaptive IoT systems, we have identified some limitations and specific improve-
ments that we plan to address in the future as follows.

Mobility of devices

One of the dynamic events addressed that can affect the IoT system is device mobil-
ity. When a device changes location, a set of steps are performed: (1) new commu-
nication must be established between the device and the suitable edge/fog node; (2)
the availability of resources must be guaranteed to deploy the service in the edge/-
fog nodes in order to manage that device; and (3) in case the device changes location
again, it is evaluated if it must be connected to other edge/fog nodes that are closer
to obtain better latency. The mobility of many devices could lead to increased la-
tency, higher resource consumption, and unavailability of system services, as the
increased volume of data generated by devices can congest the network and create
bottlenecks.

Although our approach enables the configuration of rules to deal with the ef-
fects of device mobility, the DSL does not currently address the modeling of mobile
devices. We are interested in including the necessary concepts to the metamodel
for modeling device mobility, as well as including new metrics to quickly identify
this event. For example, monitor the number of clients connected to gateways or
edge nodes and create adaptation rules to identify and deal with the increase of
connected devices. To achieve this, it would also be necessary to generate code to
deploy newmonitors with the ability to collect these newmetrics and run exporters
to translate the information into the Prometheus database format.

144 CHAPTER 9. CONCLUSIONS AND FURTHER RESEARCH

Communication protocols support

In order to achieve a high degree of scalability, message-driven asynchronous ar-
chitectures are typically preferred [73]. In particular, the MQTT protocol is imple-
mented to set up asynchronous (publish/subscribe) communications between IoT
devices and higher layer nodes. For this reason, we address the specification of these
concepts in our DSL. However, other protocols such as AMQP (Advanced Message
Queuing Protocol), CoAP (Constrained Application Protocol), and DDS (Data Dis-
tribution Service) are gaining popularity for use in some IoT systems. The choice of
protocol depends on the requirements and characteristics of the system. For exam-
ple, unlike MQTT, CoAP has the capability of automatic discovery of devices, but
since it is built on top of UDP, SSL (Secure Sockets Layer) and TLS (Transport Layer
Security) are not available for this protocol.

Addressing other communication protocols is another projected future task.
This would involve incorporating the concepts for each protocol in our metamodel,
defining new editors to enable the configuration of the protocols, and generating the
code to deploy new monitors and exporters that collect the information according
to the protocol used.

DSL tool support

Regarding the implementation of DSL usingMPS, there are two directions wewould
like to address.

The first activity consists of bringing the IoT system modeling to the web, i.e.
providing a web version of our DSL. There are a few tools that could be explored for
this purpose. For example, Modelix2 is an open source platform that aims to allow
the editing of models from the browser, for languages created in MPS. Another al-
ternative could be MPSServer3, a tool to remotely access the project and edit models
in MPS framework.

The second activity consists of designing a graphical editor to model the IoT
system architecture. For some of the participants of our DSL usability validation
it would be more comfortable to model the architecture using graphical notation.
This graphical editor should at least include the use of different types of shapes to
represent the IoT devices, the nodes (edge, fog, and cloud), the regions, the software
containers, and arrows to represent the data flow. MPS currently provides plugins to
support graphical modeling. For example, our DSL extension for WWTPs uses the
MPS Diagrams plugin to enable process block diagram specification using graphical

2https://modelix.github.io/
3https://github.com/strumenta/mpsserver

9.3. FURTHER RESEARCH 145

notation. These plugins could be reused to provide graphical notation for system
architecture modeling.

AsyncAPI Integration

To achieve high degree of scalability, improved performance and reliability, IoT sys-
tems often implement event-driven architectures [74]. One of the most commonly
used patterns in this type of architecture is publish/subscribe. One biggest chal-
lenge of these architectures is to maintain message consistency. That is, the topics
and format of the messages published by the system’s sensors must be consistent
throughout the life cycle of the system. A slight change in the format of the mes-
sages could cause a system failure. The AsyncAPI4 specification was proposed to
address this challenge. This specification allows to represent concepts such as mes-
sage brokers, topics of interest, and the different message formats associated with
each topic. One of the future tasks is to integrate the AsyncAPI specification with
our DSL to support different formats in the messages published by the sensors and
to address the consistency issues that may currently arise.

9.3.2 Software Deployment Strategies

Managing software deployments and updates in multilayered IoT systems poses
challenges due to resource limitations and the heterogeneity of communication,
devices, and protocols [31]. Edge and fog nodes have limited resources that in-
duce functional failures if software deployments are not properly configured and
planned. Setup of software deployments across edge, fog, and cloud nodes can be a
time-consuming and error-inducing task. While our approach supports the deploy-
ment of container-based applications using an orchestrator such as Kubernetes, an-
other of our future directions is focused on implementing deployment strategies to
enable continuous deployment and reduce the likelihood of failure. The strategies
to be investigated are categorized into two groups: deployment patterns y allocation
strategies.

Deployment Patterns

Deployment patterns provide control over the deployment of new software versions
to reduce the risk of a process failure and increase reliability. Implementing these
patterns reduces application downtime in an upgrade process and enables incidents
to be managed and resolved with minimal impact to end users [18]. There are three
popular patterns for managing deployment: canary, blue-green, and rolling.

4https://www.asyncapi.com/

146 CHAPTER 9. CONCLUSIONS AND FURTHER RESEARCH

Figure 9.1: Deployment process of the canary pattern

The canary pattern suggests deploying the new software version in a subgroup
of nodes (known as canary) to evaluate this version before deploying it in all the
nodes of the system. Figure 9.1 shows the stages of canary deployment in a cluster
of three nodes: (1) the canary node(s) that will host the new software version is
chosen (commonly 30% of all nodes); (2) the canary node(s) are deactivated to deploy
the new release (App v2); (3) traffic is redirected to the canary node to evaluate
functional and non-functional aspects and to determine if the application is stable;
(4) if the assessment of the canary was successful and the application runs properly,
the new release (App v2) is deployed in the rest of the nodes; (5) finally, the traffic
is redirected to all the nodes. On the other hand, if the assessment of the canary
detects errors or inconsistencies in the application, the rollback is performed in the
canary nodes before deploying the application in the remaining nodes.

The blue-green pattern, also called big flip or red/black deployment [18] con-
sists of two different environments. The blue environment runs in production with
the current software version, and the green environment is idle waiting for a new
deployment. After performing a new deployment in green and verifying that it
works correctly, the traffic is switched to the green environment, and the nodes in
the blue environment are put into idle mode. On the other hand, the rolling pattern
allows the software to be progressively updated (node by node) in a group of nodes
or servers. Each node is taken offline while the new software version is deployed
and evaluated. If the evaluation is successful, the node is enabled to receive traffic,

9.3. FURTHER RESEARCH 147

and the next node is taken offline to be upgraded.
As part of future work, we plan to study the implementation of software de-

ployment patterns for the IoT system. Our DSL could be extended to enable the
specification of application deployment and update using these patterns. This in-
volves an in-depth study to abstract the domain concepts, merge them to the current
metamodel, and define the concrete syntax. System monitoring to collect QoS and
infrastructure metrics is currently supported by our framework. Some additional
metrics should be collected to measure the impact of deployed software updates.
Additionally, adaptations such as canary propagation or rollback should be inte-
grated into the adaptation engine.

Allocation Strategies

Unlike the cloud layer, the edge and fog layers are composed of nodes with process-
ing and storage limitations that restrict application deployment. One challenges
posed by this fact is related to making intelligent allocation decisions to guaran-
tee QoS. To deploy or offload an application in the system, it is important to select
edge/fog nodes that have sufficient resources to host and run the application prop-
erly. Orchestrators commonly provide a component in charge of making allocation
decisions. For example, Kubernetes uses its scheduler component to determine and
select the appropriate node to host the pod and container. However, this scheduler
only analyze the resources requested (CPU and RAM) by the container [140]. Other
factors such as node CPU consumption, energy consumption, network latency, reli-
ability, and bandwidth usage should be considered to make allocation decisions. For
example, when deploying a container that houses a real-time application, in which
low latency is one of the essential requirements, it is important to select the nodes
that can offer the lowest latency.

Currently, our framework uses the Kubernetes scheduler for allocation deci-
sions. Especially when scaling or offloading adaptations are executed without de-
fine a target node to deploy the new container. For example, the Scaling adaptation
defined in the adaptation rule in Figure 4.13, defines a target region (Beach Hotel)
but not a target node. Then, when the scaling is performed, the Kubernetes sched-
uler selects a node in the Hotel Beach region with the necessary resources to host
the node. However, the scheduler has some limitations as described above. For this
reason, the design (or implementation if it exists) of a scheduler that considers ad-
ditional factors such as node CPU consumption, power consumption, latency, and
bandwidth consumption is one of the future directions of this thesis.

148 CHAPTER 9. CONCLUSIONS AND FURTHER RESEARCH

9.3.3 Security Strategies

With the growth of IoT systems and interconnected devices, the number of vulner-
abilities that put sensitive or relevant information at risk is also increasing. The
impact of an attack on the devices in any of the layers of the architecture can cause
loss of critical information, disasters in the processes that control the system, un-
availability of the system, among others. Therefore, it is essential to ensure the
security of the IoT system to defend against attacks.

Although this thesis does not address the security of IoT systems, it is a relevant
topic to cover in the future. The implementation of security strategies to ensure
the confidentiality, integrity, and availability of information at different levels is a
necessity for IoT systems. Belowwe propose two contributions to promote security.

• Role-based access control (RBAC) is an access control strategy that restricts
users based on roles and privileges. RBAC enables the assignment of per-
missions by grouping users into a set of roles that are ordered by hierarchy
[107]. For instance, security strategies based on roles and privileges com-
monly implemented in MQTT asynchronous communications are username
and password authentication and Access Control List (to control subscrib-
ing and publishing on broker topics). Additionally, some adaptations are so
critical that they require authorization from a user (at runtime) before being
executed automatically by the system. For example, in a WWTP the opening
of a valve that pours a toxic chemical into a tank can be semi-automated by
defining a rule, but each time the valve is to be opened, the authorization of
the plant manager is required. This type of processes and privileges can be
handled by RBAC. Therefore, We plan to extend our DSL to enable the specifi-
cation of RBAC policies at different levels. For example to control publication
or subscription to the broker, or to authorize critical system adaptations.

• There are a large number of attacks that can be conducted in IoT environ-
ments. These are grouped into four categories [129]: Probe (consists of ex-
ploiting network vulnerabilities), User to Root Attacks (U2R consists of ille-
gally gaining root access to a computer resource), Remote to Local Attacks
(R2L consists of exploiting vulnerabilities by sending packets to gain ille-
gal local access to resources on that network), and Denial of Service At-
tacks (DoS consists of making a service inaccessible). Several studies such
as [88, 129, 66, 60] have proposed strategies to detect these attacks by ana-
lyzing the data stream in real time. One of our future lines is focused on the
design or reuse of detection strategies for these attacks to enable the defi-
nition of rules involving security concerns. For example, rules to define an
action in case of detecting a DoS attack.

9.3. FURTHER RESEARCH 149

9.3.4 Machine Learning Algorithms to Support Adaptation

Machine learning is a branch of artificial intelligence that consists of a program’s
ability to learn automatically to identify patterns and make predictions with mini-
mal human intervention. Machine learning algorithms can be designed to support
activities at different stages of the MAPE-K loop of self-adaptive systems [70]. We
have identified some tasks in ourMAPE-K based framework that could be supported
by machine learning algorithms.

• Prediction of dynamic events. The prediction of dynamic events and ab-
normal use of resources (such as CPU, memory, and energy) by the nodes
and containers of the IoT system is one of the topics that we seek to address
through learning algorithms. For example, in [144], a learning algorithm is
designed to predict the energy consumption of smart buildings, and in [52],
neural network algorithms are proposed to predict the CPU usage of cloud
nodes. Predicting these dynamic events could enable the system to adapt be-
fore the event occurs, ensuring better availability and QoS levels.

• Another line of future research consists in the design of learning algorithms
capable of suggesting optimal adaptations to meet non-functional sys-
tem requirements. That is, algorithms that help with the design of the adap-
tation plan in the Plan stage of the MAPE-K loop. For example, a systemmust
guarantee a response latency of less than 100ms, then the learning algorithm
should suggest an adaptation plan (which could comprise several actions) de-
pending on the current state of the system to meet that requirement.

• Finally, another possible contribution of the use of machine learning algo-
rithms to our thesis is the support in the updating of previously defined
rules taking into account the changing conditions of the system architec-
ture. For example, at the design stage, the user defines a rule that involves
offloading a container to the target node edge-1. If the node edge-1 has an
irreparable failure and the rule has not yet been fired, it should be updated
to establish a new target node. This update decision can be supported by a
machine learning algorithm.

Bibliography

[1] F. Ahmadighohandizi and K. Systä. Application development and deploy-
ment for iot devices. In European Conference on Service-Oriented and Cloud
Computing, pages 74–85. Springer, 2016.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. In-
ternet of things: A survey on enabling technologies, protocols, and applica-
tions. IEEE communications surveys & tutorials, 17(4):2347–2376, 2015.

[3] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi. Internet of things (iot)
communication protocols. In 2017 8th International conference on information
technology (ICIT), pages 685–690. IEEE, 2017.

[4] M. Alaa, A. A. Zaidan, B. B. Zaidan, M. Talal, and M. L. M. Kiah. A review of
smart home applications based on internet of things. Journal of Network and
Computer Applications, 97:48–65, 2017.

[5] A. H. Alavi, P. Jiao, W. G. Buttlar, and N. Lajnef. Internet of things-enabled
smart cities: State-of-the-art and future trends. Measurement, 129:589–606,
2018.

[6] I. Alfonso, K. Garcés, H. Castro, and J. Cabot. Self-adaptive architectures in
IoT systems: a systematic literature review. Journal of Internet Services and
Applications, 12(1):1–28, 2021.

[7] I. Alfonso, K. Garcés, H. Castro, and J. Cabot. Modeling self-adaptative IoT
architectures. In 2021 ACM/IEEE Int. Conf. on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C), pages 761–766, 2021.

[8] I. Alfonso, C. Goméz, K. Garcés, and J. Chavarriaga. Lifetime optimization of
wireless sensor networks for gas monitoring in underground coal mining. In
2018 7th International Conference on Computers Communications and Control
(ICCCC), pages 224–230. IEEE, 2018.

151

152 BIBLIOGRAPHY

[9] F. Alkhabbas, I. Murturi, R. Spalazzese, P. Davidsson, and S. Dustdar. A goal-
driven approach for deploying self-adaptive iot systems. In 2020 IEEE Interna-
tional Conference on Software Architecture (ICSA), pages 146–156. IEEE, 2020.

[10] M. Alrowaily and Z. Lu. Secure edge computing in iot systems: Review and
case studies. In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages
440–444. IEEE, 2018.

[11] M. Artac, T. Borovšak, E. Di Nitto, M. Guerriero, D. Perez-Palacin, and D. A.
Tamburri. Infrastructure-as-code for data-intensive architectures: A model-
driven development approach. In 2018 IEEE International Conference on Soft-
ware Architecture (ICSA), pages 156–15609. IEEE, 2018.

[12] K. Ashton et al. That ‘internet of things’ thing. RFID journal, 22(7):97–114,
2009.

[13] M.Asif-Ur-Rahman, F. Afsana, M.Mahmud,M. S. Kaiser, M. R. Ahmed, O. Kai-
wartya, and A. James-Taylor. Toward a heterogeneous mist, fog, and cloud-
based framework for the internet of healthcare things. IEEE Internet of Things
Journal, 6(3):4049–4062, 2018.

[14] U. Aßmann, S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp. A reference
architecture and roadmap for models@ run. time systems. In Models@ run.
time, pages 1–18. Springer, 2014.

[15] A. Barišić, V. Amaral, and M. Goulão. Usability driven dsl development with
use-me. Computer Languages, Systems & Structures, 51:118–157, 2018.

[16] J. A. Barriga, P. J. Clemente, E. Sosa-Sánchez, and Á. E. Prieto. Simulateiot:
Domain specific language to design, code generation and execute iot simula-
tion environments. IEEE Access, 9:92531–92552, 2021.

[17] L. Bass, P. Clements, and R. Kazman. Software architecture in practice.
Addison-Wesley Professional, 2003.

[18] L. Bass, I. Weber, and L. Zhu. DevOps: A software architect’s perspective.
Addison-Wesley Professional, 2015.

[19] J. Beauquier, B. Bérard, and L. Fribourg. A new rewrite method for prov-
ing convergence of self-stabilizing systems. In International Symposium on
Distributed Computing, pages 240–255, Bratislava, 1999. Springer.

BIBLIOGRAPHY 153

[20] I. Bedhief, L. Foschini, P. Bellavista, M. Kassar, and T. Aguili. Toward self-
adaptive software defined fog networking architecture for iiot and industry
4.0. In 2019 IEEE 24th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), pages 1–5. IEEE,
2019.

[21] N. Bencomo, R. B. France, B. H. Cheng, and U. Aßmann. Models@ run. time:
foundations, applications, and roadmaps, volume 8378. Springer, 2014.

[22] N. Bencomo and L. H. G. Paucar. Ram: Causally-connected and requirements-
aware runtime models using bayesian learning. In 2019 ACM/IEEE 22nd In-
ternational Conference on Model Driven Engineering Languages and Systems
(MODELS), pages 216–226. IEEE, 2019.

[23] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, and J. Siegmund. Efficiency
of projectional editing: A controlled experiment. In Proc. of the 24th ACM
SIGSOFT Int. Symposium on Foundations of Software Engineering, pages 763–
774, 2016.

[24] A. Bergmayr, U. Breitenbücher, O. Kopp, M. Wimmer, G. Kappel, and F. Ley-
mann. From architecture modeling to application provisioning for the cloud
by combining uml and tosca. In CLOSER (2), pages 97–108, 2016.

[25] G. Blair, N. Bencomo, and R. B. France. Models@run.time. Computer,
42(10):22–27, 2009.

[26] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering
in practice, 2nd edn. Synthesis Lectures on Software Engineering. Morgan &
Claypool Publishers, USA, 2017.

[27] M. Breitbach, D. Schäfer, J. Edinger, and C. Becker. Context-aware data and
task placement in edge computing environments. In 2019 IEEE International
Conference on Pervasive Computing and Communications (PerCom, pages 1–
10. IEEE, 2019.

[28] D. Bri, M. Fernández-Diego, M. Garcia, F. Ramos, and J. Lloret. How the
weather impacts on the performance of an outdoor wlan. IEEE Communica-
tions Letters, 16(8):1184–1187, 2012.

[29] A. Bucchiarone, A. Cicchetti, F. Ciccozzi, and A. Pierantonio. Domain-specific
Languages in Practice: With JetBrains MPS. Springer, 2021.

[30] R. Buyya and S. N. Srirama. Fog and edge computing: principles and paradigms.
John Wiley & Sons, 2019.

154 BIBLIOGRAPHY

[31] A. Cañete, M. Amor, and L. Fuentes. Supporting iot applications deployment
on edge-based infrastructures using multi-layer feature models. Journal of
Systems and Software, 183:111086, 2022.

[32] E. A. Castillo and A. Ahmadinia. Iot-based multi-view machine vision sys-
tems. In 2019 IEEE International Conference on Big Data (Big Data), pages
5206–5212. IEEE, 2019.

[33] A. Chehri, T. El Ouahmani, and N. Hakem. Mining and iot-based vehicle ad-
hoc network: industry opportunities and innovation. Internet of Things, page
100117, 2019.

[34] L. Chen, P. Zhou, L. Gao, and J. Xu. Adaptive fog configuration for the
industrial internet of things. IEEE Transactions on Industrial Informatics,
14(10):4656–4664, 2018.

[35] W. Chen, C. Liang, Y. Wan, C. Gao, G. Wu, J. Wei, and T. Huang. More:
A model-driven operation service for cloud-based it systems. In 2016 IEEE
International Conference on Services Computing (SCC), pages 633–640. IEEE,
2016.

[36] A. M. K. Cheng. Self-stabilizing real-time rule-based systems. In Proceed-
ings 11th Symposium on Reliable Distributed Systems, pages 172–173, Houston,
1992. IEEE Computer Society.

[37] B. Cheng, A. Papageorgiou, F. Cirillo, and E. Kovacs. Geelytics: Geo-
distributed edge analytics for large scale iot systems based on dynamic topol-
ogy. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pages 565–
570. IEEE, 2015.

[38] B. H. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. A. Müller, P. Pel-
liccione, A. Perini, N. A. Qureshi, B. Rumpe, et al. Using models at runtime
to address assurance for self-adaptive systems. In Models@ run. time, pages
101–136. Springer, 2014.

[39] L. Cianciaruso, F. di Forenza, E. Di Nitto, M. Miglierina, N. Ferry, and A. Sol-
berg. Using models at runtime to support adaptable monitoring of multi-
clouds applications. In 2014 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pages 401–408. IEEE, 2014.

[40] F. Ciccozzi and R. Spalazzese. Mde4iot: supporting the internet of things
with model-driven engineering. In International Symposium on Intelligent
and Distributed Computing, pages 67–76. Springer, 2016.

BIBLIOGRAPHY 155

[41] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, and L. Vel-
tri. A scalable and self-configuring architecture for service discovery in the
internet of things. IEEE Internet of Things Journal, 1(5):508–521, 2014.

[42] J. Colistra. The evolving architecture of smart cities. 2018 IEEE International
Smart Cities Conference, ISC2 2018, 2019. cited By 0.

[43] B. Costa, P. F. Pires, F. C. Delicato, W. Li, and A. Y. Zomaya. Design and
analysis of iot applications: A model-driven approach. In 2016 IEEE 14th Intl
Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Per-
vasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and
Computing and Cyber Science and Technology Congress (DASC/PiCom/Data-
Com/CyberSciTech), pages 392–399. IEEE, 2016.

[44] K. Cui, W. Sun, and W. Sun. Joint computation offloading and resource man-
agement for usvs cluster of fog-cloud computing architecture. In 2019 IEEE
International Conference on Smart Internet of Things (SmartIoT), pages 92–99.
IEEE, 2019.

[45] K. Czarnecki. Overview of generative software development. In Interna-
tional Workshop on Unconventional Programming Paradigms, pages 326–341.
Springer, 2004.

[46] M. S. de Brito, S. Hoque, T. Magedanz, R. Steinke, A. Willner, D. Nehls,
O. Keils, and F. Schreiner. A service orchestration architecture for fog-enabled
infrastructures. In 2017 Second International Conference on Fog and Mobile
Edge Computing (FMEC), pages 127–132. IEEE, 2017.

[47] G.-C. Deng and K. Wang. An application-aware qos routing algorithm for
sdn-based iot networking. In 2018 IEEE Symposium on Computers and Com-
munications (ISCC), pages 00186–00191. IEEE, 2018.

[48] K. Desikan, M. Srinivasan, and C. Murthy. A novel distributed latency-aware
data processing in fog computing-enabled iot networks. In Proceedings of the
ACM Workshop on Distributed Information Processing in Wireless Networks,
page 4. ACM, 2017.

[49] X. E. DevOps. Best practices for devops: Advanced deployment pat-
terns. urlhttps://www.wsta.org/wp-content/uploads/2018/09/Best-Practices-
for-DevOps-Advanced-Deployment-Patterns.pdf, 2018.

[50] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin. A survey of communi-
cation protocols for internet of things and related challenges of fog and cloud
computing integration. ACM Computing Surveys (CSUR), 51(6):1–29, 2019.

156 BIBLIOGRAPHY

[51] Á. Domingo, J. Echeverría, Ó. Pastor, and C. Cetina. Comparing uml-based
and dsl-based modeling from subjective and objective perspectives. In In-
ternational Conference on Advanced Information Systems Engineering, pages
483–498. Springer, 2021.

[52] M. Duggan, K. Mason, J. Duggan, E. Howley, and E. Barrett. Predicting host
cpu utilization in cloud computing using recurrent neural networks. In 2017
12th international conference for internet technology and secured transactions
(ICITST), pages 67–72. IEEE, 2017.

[53] S. Dustdar, C. Avasalcai, and I. Murturi. Edge and fog computing: Vision
and research challenges. In 2019 IEEE Int. Conf. on Service-Oriented System
Engineering (SOSE), pages 96–9609. IEEE, 2019.

[54] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. Devops. Ieee Software,
33(3):94–100, 2016.

[55] L. Erazo-Garzón, P. Cedillo, G. Rossi, and J. Moyano. A domain-specific lan-
guage for modeling iot system architectures that support monitoring. IEEE
Access, 10:61639–61665, 2022.

[56] J. Erbel, F. Korte, and J. Grabowski. Comparison and runtime adaptation of
cloud application topologies based on occi. In CLOSER, pages 517–525, 2018.

[57] D. Ernst, A. Becker, and S. Tai. Rapid canary assessment through proxying
and two-stage load balancing. In 2019 IEEE International Conference on Soft-
ware Architecture Companion (ICSA-C), pages 116–122. IEEE, 2019.

[58] T. Eterovic, E. Kaljic, D. Donko, A. Salihbegovic, and S. Ribic. An internet
of things visual domain specific modeling language based on uml. In 2015
XXV International Conference on Information, Communication andAutomation
Technologies (ICAT), pages 1–5. IEEE, 2015.

[59] I. G. EV. International energy agency: Paris, 2018.

[60] N. Farnaaz and M. Jabbar. Random forest modeling for network intrusion
detection system. Procedia Computer Science, 89:213–217, 2016.

[61] N. Ferry, F. Chauvel, H. Song, A. Rossini, M. Lushpenko, and A. Solberg.
Cloudmf: Model-driven management of multi-cloud applications. ACM
Transactions on Internet Technology (TOIT), 18(2):1–24, 2018.

BIBLIOGRAPHY 157

[62] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg. Cloudmf: applying
mde to tame the complexity of managing multi-cloud applications. In 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing, pages
269–277. IEEE, 2014.

[63] H. Flores, X. Su, V. Kostakos, A. Y. Ding, P. Nurmi, S. Tarkoma, P. Hui, and
Y. Li. Large-scale offloading in the internet of things. In 2017 IEEE Inter-
national Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), pages 479–484. IEEE, 2017.

[64] F. Fouquet, E. Daubert, N. Plouzeau, O. Barais, J. Bourcier, and J.-M. Jézéquel.
Dissemination of reconfiguration policies on mesh networks. In IFIP Interna-
tional Conference on Distributed Applications and Interoperable Systems, pages
16–30. Springer, 2012.

[65] M. Fowler. UML distilled: a brief guide to the standard object modeling lan-
guage. Addison-Wesley Professional, 2004.

[66] S. Ganapathy, K. Kulothungan, S. Muthurajkumar, M. Vijayalakshmi, P. Yo-
gesh, and A. Kannan. Intelligent feature selection and classification tech-
niques for intrusion detection in networks: a survey. EURASIP Journal on
Wireless Communications and Networking, 2013(1):1–16, 2013.

[67] C. G. García, D.Meana-Llorián, V. García-Díaz, A. C. Jiménez, and J. P. Anzola.
Midgar: Creation of a graphic domain-specific language to generate smart
objects for internet of things scenarios using model-driven engineering. IEEE
Access, 8:141872–141894, 2020.

[68] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46–54, 2004.

[69] D. Garlan, B. Schmerl, and S.-W. Cheng. Software architecture-based self-
adaptation. In Autonomic computing and networking, pages 31–55. Springer,
2009.

[70] O. Gheibi, D.Weyns, and F. Quin. Applying machine learning in self-adaptive
systems: A systematic literature review. ACM Transactions on Autonomous
and Adaptive Systems (TAAS), 15(3):1–37, 2021.

[71] N. K. Giang, R. Lea, M. Blackstock, and V. C. Leung. Fog at the edge: Ex-
periences building an edge computing platform. In 2018 IEEE International
Conference on Edge Computing (EDGE), pages 9–16. IEEE, 2018.

158 BIBLIOGRAPHY

[72] T. Gomes, P. Lopes, J. Alves, P.Mestre, J. Cabral, J. L.Monteiro, andA. Tavares.
A modeling domain-specific language for iot-enabled operating systems. In
IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society,
pages 3945–3950. IEEE, 2017.

[73] A. Gómez, M. Iglesias-Urkia, L. Belategi, X. Mendialdua, and J. Cabot.
Model-driven development of asynchronous message-driven architectures
with asyncapi. Software and Systems Modeling, pages 1–29, 2021.

[74] A. Gómez, M. Iglesias-Urkia, A. Urbieta, and J. Cabot. A model-based ap-
proach for developing event-driven architectures with asyncapi. In Proceed-
ings of the 23rd ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, pages 121–131, 2020.

[75] J. Greenfield and K. Short. Software factories: assembling applications with
patterns, models, frameworks and tools. In Companion of the 18th an-
nual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, pages 16–27, 2003.

[76] S. Gregor and A. R. Hevner. Positioning and presenting design science re-
search for maximum impact. MIS quarterly, pages 337–355, 2013.

[77] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (iot): A
vision, architectural elements, and future directions. Future generation com-
puter systems, 29(7):1645–1660, 2013.

[78] R. Guntha. Iot architectures for noninvasive blood glucose and blood pressure
monitoring. In 2019 9th International Symposium on Embedded Computing and
System Design (ISED), pages 1–5. IEEE, 2019.

[79] Z. Guo, Y. Sun, S.-Y. Pan, and P.-C. Chiang. Integration of green energy
and advanced energy-efficient technologies for municipal wastewater treat-
ment plants. International journal of environmental research and public health,
16(7):1282, 2019.

[80] A. Hagedorn, D. Starobinski, and A. Trachtenberg. Rateless deluge: Over-
the-air programming of wireless sensor networks using random linear codes.
In 2008 International Conference on Information Processing in Sensor Networks
(ipsn 2008), pages 457–466. IEEE, 2008.

[81] T. Holmes. Facilitating migration of cloud infrastructure services: A model-
based approach. In CloudMDE@ MoDELS, pages 7–12, 2015.

BIBLIOGRAPHY 159

[82] G. Huang, G.-B. Huang, S. Song, and K. You. Trends in extreme learning
machines: A review. Neural Networks, 61:32–48, 2015.

[83] M. Hussein, S. Li, and A. Radermacher. Model-driven development of adap-
tive iot systems. In MODELS (Satellite Events), pages 17–23, 2017.

[84] J. Ingeno. Software Architect’s Handbook: Become a successful software ar-
chitect by implementing effective architecture concepts. Packt Publishing Ltd,
2018.

[85] J. Islam, E. Harjula, T. Kumar, P. Karhula, and M. Ylianttila. Docker enabled
virtualized nanoservices for local IoT edge networks. In IEEE Conf. on Stan-
dards for Communications and Networking (CSCN), pages 1–7, 2019.

[86] S. Y. Jang, Y. Lee, B. Shin, and D. Lee. Towards application-aware virtualiza-
tion for edge iot clouds. In Proceedings of the 13th International Conference on
Future Internet Technologies, page 4. ACM, 2018.

[87] N. Jazdi. Cyber physical systems in the context of industry 4.0. In IEEE
Int. Conference on Automation, Quality and Testing, Robotics, pages 1–4. IEEE,
2014.

[88] P. G. Jeya, M. Ravichandran, and C. Ravichandran. Efficient classifier for r2l
and u2r attacks. International Journal of Computer Applications, 45(21):28–32,
2012.

[89] Y. Jiang, Z. Huang, and D. H. Tsang. Challenges and solutions in fog comput-
ing orchestration. IEEE Network, 32(3):122–129, 2017.

[90] M. Jutila. An adaptive edge router enabling internet of things. IEEE Internet
of Things Journal, 3(6):1061–1069, 2016.

[91] S. Keele et al. Guidelines for performing systematic literature reviews in soft-
ware engineering. Technical report, Technical report, Ver. 2.3 EBSE Technical
Report. EBSE, 2007.

[92] J. O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[93] D. Kimovski, H. Ijaz, N. Saurabh, and R. Prodan. Adaptive nature-inspired
fog architecture. In 2018 IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC), pages 1–8. IEEE, 2018.

160 BIBLIOGRAPHY

[94] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman. Systematic literature reviews in software engineering–a sys-
tematic literature review. Information and software technology, 51(1):7–15,
2009.

[95] B. Kitchenham and P. Brereton. A systematic review of systematic review
process research in software engineering. Information and software technol-
ogy, 55(12):2049–2075, 2013.

[96] P. Knights and B. Scanlan. A study of mining fatalities and coal price varia-
tion. International Journal of Mining Science and Technology, 29(4):599–602,
2019.

[97] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker. A survey
on engineering approaches for self-adaptive systems. Pervasive and Mobile
Computing, 17:184–206, 2015.

[98] A. Latifah, S. H. Supangkat, and A. Ramelan. Smart building: A literature
review. In Int. Conf. on ICT for Smart Society (ICISS), pages 1–6, 2020.

[99] E. Lee, Y.-D. Seo, and Y.-G. Kim. Self-adaptive framework based on mape loop
for internet of things. sensors, 19(13):2996, 2019.

[100] X. Li, D. Li, J. Wan, C. Liu, and M. Imran. Adaptive transmission optimization
in sdn-based industrial internet of things with edge computing. IEEE Internet
of Things Journal, 5(3):1351–1360, 2018.

[101] Y. Li, Y.-h. Chiu, and T.-Y. Lin. Coal production efficiency and land destruction
in china’s coal mining industry. Resources Policy, 63:101449, 2019.

[102] Y. Liao, E. d. F. R. Loures, and F. Deschamps. Industrial internet of things:
A systematic literature review and insights. IEEE Internet of Things Journal,
5(6):4515–4525, 2018.

[103] B. Lorenzo, J. Garcia-Rois, X. Li, J. Gonzalez-Castano, and Y. Fang. A robust
dynamic edge network architecture for the internet of things. IEEE Network,
32(1):8–15, 2018.

[104] S. Madakam, V. Lake, V. Lake, V. Lake, et al. Internet of things (iot): A litera-
ture review. Journal of Computer and Communications, 3(05):164, 2015.

[105] S. Mahdavi-Hezavehi, P. Avgeriou, and D.Weyns. A classification framework
of uncertainty in architecture-based self-adaptive systemswithmultiple qual-
ity requirements. InManaging Trade-Offs in Adaptable Software Architectures,
pages 45–77. Elsevier, 2017.

BIBLIOGRAPHY 161

[106] S. T. March and G. F. Smith. Design and natural science research on informa-
tion technology. Decision support systems, 15(4):251–266, 1995.

[107] S. Martínez, A. Fouche, S. Gérard, and J. Cabot. Automatic generation of
security compliant (virtual) model views. In International Conference on Con-
ceptual Modeling, pages 109–117. Springer, 2018.

[108] J. Mass, C. Chang, and S. N. Srirama. Context-aware edge process manage-
ment for mobile thing-to-fog environment. In Proceedings of the 12th Euro-
pean Conference on Software Architecture: Companion Proceedings, pages 1–7,
2018.

[109] A. Mavromatis, A. P. Da Silva, K. Kondepu, D. Gkounis, R. Nejabati, and
D. Simeonidou. A software defined device provisioning framework facili-
tating scalability in internet of things. In 2018 IEEE 5G World Forum (5GWF),
pages 446–451. IEEE, 2018.

[110] C. Mechalikh, H. Taktak, and F. Moussa. A scalable and adaptive tasks orches-
tration platform for iot. In 2019 15th International Wireless Communications
& Mobile Computing Conference (IWCMC), pages 1557–1563. IEEE, 2019.

[111] B. Mishra and A. Kertesz. The use of mqtt in m2m and iot systems: A survey.
IEEE Access, 8:201071–201086, 2020.

[112] M. T. Moghaddam, E. Rutten, P. Lalanda, and G. Giraud. Ias: an iot architec-
tural self-adaptation framework. In European Conference on Software Archi-
tecture, pages 333–351. Springer, 2020.

[113] D. Montero and R. Serral-Gracià. Offloading personal security applications to
the network edge: A mobile user case scenario. In 2016 International Wireless
Communications and Mobile Computing Conference (IWCMC), pages 96–101.
IEEE, 2016.

[114] R. Morabito and N. Beijar. A framework based on sdn and containers for
dynamic service chains on iot gateways. In Proceedings of theWorkshop onHot
Topics in Container Networking and Networked Systems, pages 42–47. ACM,
2017.

[115] K. Morris. Infrastructure as code: managing servers in the cloud. " O’Reilly
Media, Inc.", 2016.

[116] H.Muccini andM. Sharaf. Caps: Architecture description of situational aware
cyber physical systems. In 2017 IEEE International Conference on Software
Architecture (ICSA), pages 211–220. IEEE, 2017.

162 BIBLIOGRAPHY

[117] H. Muccini, R. Spalazzese, M. T. Moghaddam, and M. Sharaf. Self-adaptive iot
architectures: An emergency handling case study. In Proceedings of the 12th
European Conference on Software Architecture: Companion Proceedings, pages
1–6, 2018.

[118] R. Muñoz, R. Vilalta, N. Yoshikane, R. Casellas, R. Martínez, T. Tsuritani, and
I. Morita. Integration of iot, transport sdn, and edge/cloud computing for
dynamic distribution of iot analytics and efficient use of network resources.
Journal of Lightwave Technology, 36(7):1420–1428, 2018.

[119] D. Nandan Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S. K. Battula,
S. Garg, D. Puthal, P. James, A. Y. Zomaya, et al. Iotsim-edge: A simulation
framework for modeling the behaviour of iot and edge computing environ-
ments. arXiv e-prints, pages arXiv–1910, 2019.

[120] J. Nielsen and T. K. Landauer. Amathematical model of the finding of usability
problems. In Proc. of the INTERACT’93 and CHI’93 conf. on Human factors in
computing systems, pages 206–213, 1993.

[121] C. Pahl, N. El Ioini, S. Helmer, and B. Lee. An architecture pattern for trusted
orchestration in iot edge clouds. In 2018 Third International Conference on Fog
and Mobile Edge Computing (FMEC), pages 63–70. IEEE, 2018.

[122] C. Pahl and B. Lee. Containers and clusters for edge cloud architectures–a
technology review. In 2015 3rd international conference on future internet of
things and cloud, pages 379–386. IEEE, 2015.

[123] P. Patel, M. I. Ali, and A. Sheth. On using the intelligent edge for iot analytics.
IEEE Intelligent Systems, 32(5):64–69, 2017.

[124] P. Patel and D. Cassou. Enabling high-level application development for the
internet of things. Journal of Systems and Software, 103:62–84, 2015.

[125] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design
science research methodology for information systems research. Journal of
management information systems, 24(3):45–77, 2007.

[126] S. Peros, H. Janjua, S. Akkermans, W. Joosen, and D. Hughes. Dynamic qos
support for iot backhaul networks through sdn. In 2018 Third International
Conference on Fog and Mobile Edge Computing (FMEC), pages 187–192. IEEE,
2018.

BIBLIOGRAPHY 163

[127] N. Petrovic and M. Tosic. Smada-fog: Semantic model driven approach to
deployment and adaptivity in fog computing. Simulation Modelling Practice
and Theory, 101:102033, 2020.

[128] D. Pizzolli, G. Cossu, D. Santoro, L. Capra, C. Dupont, D. Charalampos,
F. De Pellegrini, F. Antonelli, and S. Cretti. Cloud4iot: A heterogeneous, dis-
tributed and autonomic cloud platform for the iot. In 2016 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pages
476–479. IEEE, 2016.

[129] S. Prabavathy, K. Sundarakantham, and S. M. Shalinie. Design of cognitive
fog computing for intrusion detection in internet of things. Journal of Com-
munications and Networks, 20(3):291–298, 2018.

[130] F. Pramudianto, M. Eisenhauer, C. A. Kamienski, D. Sadok, and E. J. Souto.
Connecting the internet of things rapidly through a model driven approach.
In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pages 135–140.
IEEE, 2016.

[131] T. Rausch, S. Nastic, and S. Dustdar. Emma: distributed qos-aware mqtt mid-
dleware for edge computing applications. In 2018 IEEE International Confer-
ence on Cloud Engineering (IC2E), pages 191–197. IEEE, 2018.

[132] M. d. M. y. E. Republica de Colombia. Reglamento de seguridad en labores
minera subterráneas, 2015.

[133] A. Rhayem, M. B. A. Mhiri, and F. Gargouri. Semantic web technologies for
the internet of things: Systematic literature review. Internet of Things, page
100206, 2020.

[134] J. Rubin and D. Chisnell. Handbook of usability testing: how to plan, design
and conduct effective tests. John Wiley & Sons, New Jersey, 2008.

[135] E. Rutten, N. Marchand, and D. Simon. Feedback control as mape-k loop in
autonomic computing. In Software Engineering for Self-Adaptive Systems III.
Assurances, pages 349–373. Springer, 2017.

[136] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic. Design of a domain specific
language and ide for internet of things applications. In 2015 38th international
convention on information and communication technology, electronics and mi-
croelectronics (MIPRO), pages 996–1001. IEEE, 2015.

164 BIBLIOGRAPHY

[137] H. Sami and A. Mourad. Towards dynamic on-demand fog computing forma-
tion based on containerization technology. In 2018 International Conference on
Computational Science and Computational Intelligence (CSCI), pages 960–965.
IEEE, 2018.

[138] J. Sandobalin, E. Insfran, and S. Abrahão. Argon: A model-driven infrastruc-
ture provisioning tool. In 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C),
pages 738–742. IEEE, 2019.

[139] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Fog computing: Enabling
the management and orchestration of smart city applications in 5g networks.
Entropy, 20(1):4, 2018.

[140] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Resource provisioning in
fog computing: From theory to practice. Sensors, 19(10):2238, 2019.

[141] B. Sarma, G. Kumar, R. Kumar, and T. Tuithung. Fog computing: An enhanced
performance analysis emulation framework for iot with load balancing smart
gateway architecture. In 2019 International Conference on Communication and
Electronics Systems (ICCES), pages 1–5. IEEE, 2019.

[142] M. Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–
39, 2017.

[143] R. Scolati, I. Fronza, N. El Ioini, A. Samir, and C. Pahl. A containerized big
data streaming architecture for edge cloud computing on clustered single-
board devices. In 9th Int. Conf. on Cloud Computing and Services Science, pages
68–80, 2019.

[144] M. K. M. Shapi, N. A. Ramli, and L. J. Awalin. Energy consumption predic-
tion by using machine learning for smart building: Case study in malaysia.
Developments in the Built Environment, 5:100037, 2021.

[145] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and chal-
lenges. IEEE internet of things journal, 3(5):637–646, 2016.

[146] M. Singh and G. Baranwal. Quality of service (qos) in internet of things. In
2018 3rd International Conference On Internet of Things: Smart Innovation and
Usages (IoT-SIU), pages 1–6, Feb 2018.

[147] S. Singh and N. Singh. Containers & docker: Emerging roles & future of cloud
technology. In 2016 2nd International Conference on Applied and Theoretical

BIBLIOGRAPHY 165

Computing and Communication Technology (iCATccT), pages 804–807. IEEE,
2016.

[148] O. Skarlat, V. Karagiannis, T. Rausch, K. Bachmann, and S. Schulte. A frame-
work for optimization, service placement, and runtime operation in the fog.
In 2018 IEEE/ACM 11th International Conference on Utility and Cloud Comput-
ing (UCC), pages 164–173. IEEE, 2018.

[149] K. Sledziewski, B. Bordbar, and R. Anane. A dsl-based approach to software
development and deployment on cloud. In 2010 24th IEEE International Con-
ference on Advanced Information Networking and Applications, pages 414–421.
IEEE, 2010.

[150] D. Steinberg, F. Budinsky, E. Merks, andM. Paternostro. EMF: eclipse modeling
framework. Pearson Education, 2008.

[151] T. Suganuma, T. Oide, S. Kitagami, K. Sugawara, and N. Shiratori. Multiagent-
based flexible edge computing architecture for iot. IEEE Network, 32(1):16–23,
2018.

[152] V. Theodorou and N. Diamantopoulos. Glt: Edge gateway elt for data-driven
intelligence placement. In 2019 IEEE/ACM Joint 4th International Workshop
on Rapid Continuous Software Engineering and 1st International Workshop on
Data-Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE), pages
24–27. IEEE, 2019.

[153] J. R. Torres Neto, G. P. Rocha Filho, L. Y. Mano, L. A. Villas, and J. Ueyama.
Exploiting offloading in iot-based microfog: experiments with face recogni-
tion and fall detection.Wireless Communications andMobile Computing, 2019,
2019.

[154] C.-L. Tseng and F. J. Lin. Extending scalability of iot/m2m platforms with
fog computing. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT),
pages 825–830. IEEE, 2018.

[155] I. T. Union. Internet of things global standards initiative, 2012.

[156] M. F. van Amstel, M. G. van den Brand, and P. H. Nguyen. Metrics for model
transformations. In Proceedings of the Ninth Belgian-Netherlands Software
Evolution Workshop (BENEVOL 2010), Lille, France (December 2010), 2010.

[157] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An anno-
tated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

166 BIBLIOGRAPHY

[158] K. Velasquez, D. P. Abreu, D. Gonçalves, L. Bittencourt, M. Curado, E. Mon-
teiro, and E. Madeira. Service orchestration in fog environments. In 2017 IEEE
5th International Conference on Future Internet of Things and Cloud (FiCloud),
pages 329–336. IEEE, 2017.

[159] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, and S. M. Weiss. Predictive
algorithms in the management of computer systems. IBM Systems Journal,
41(3):461–474, 2002.

[160] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan. Osmotic computing:
A new paradigm for edge/cloud integration. IEEE Cloud Computing, 3(6):76–
83, 2016.

[161] M. Voelter. Embedded software development with projectional language
workbenches. In International Conference on Model Driven Engineering Lan-
guages and Systems, pages 32–46. Springer, 2010.

[162] M. Völter. Language and ide modularization, extension and composition with
mps. Pre-proceedings of Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE), pages 395–431, 2011.

[163] J. Wang, J. Pan, and F. Esposito. Elastic urban video surveillance system using
edge computing. In Proceedings of the Workshop on Smart Internet of Things,
page 7. ACM, 2017.

[164] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos. Fog orches-
tration for internet of things services. IEEE Internet Computing, 21(2):16–24,
2017.

[165] D. Weyns, M. U. Iftikhar, D. Hughes, and N. Matthys. Applying architecture-
based adaptation to automate the management of internet-of-things. In Eu-
ropean Conf. on Software Architecture, pages 49–67, 2018.

[166] WINSYSTEMS. Cloud, fog and edge computing – what’s the differ-
ence? urlhttps://www.winsystems.com/cloud-fog-and-edge-computing-
whats-the-difference/, 2017.

[167] T.Wong, M.Wagner, andC. Treude. Self-adaptive systems: A systematic liter-
ature review across categories and domains. arXiv preprint arXiv:2101.00125,
2021.

[168] B. Wood and A. Azim. Triton: a domain specific language for cyber-physical
systems. In 2021 22nd IEEE International Conference on Industrial Technology
(ICIT), volume 1, pages 810–816. IEEE, 2021.

BIBLIOGRAPHY 167

[169] World Wide Web Consortium (W3C). Semantic sensor network ontology.
URL: https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/, 10 2017.

[170] D. Wu, M. M. Omwenga, Y. Liang, L. Yang, D. Huston, and T. Xia. A fog
computing framework for cognitive portable ground penetrating radars. In
ICC 2019-2019 IEEE International Conference on Communications (ICC), pages
1–6. IEEE, 2019.

[171] B. Wukkadada, K. Wankhede, R. Nambiar, and A. Nair. Comparison with
http and mqtt in internet of things (iot). In 2018 International Conference on
Inventive Research in Computing Applications (ICIRCA), pages 249–253. IEEE,
2018.

[172] B. Yang, A. Sailer, S. Jain, A. E. Tomala-Reyes, M. Singh, and A. Ramnath. Ser-
vice discovery based blue-green deployment technique in cloud native envi-
ronments. In 2018 IEEE International Conference on Services Computing (SCC),
pages 185–192. IEEE, 2018.

[173] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi. Internet of
things: Survey and open issues of mqtt protocol. In 2017 international confer-
ence on engineering & MIS (ICEMIS), pages 1–6. Ieee, 2017.

[174] E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig. Foggy: a framework for
continuous automated iot application deployment in fog computing. In 2017
IEEE International Conference on AI & Mobile Services (AIMS), pages 38–45.
IEEE, 2017.

[175] R. Young, S. Fallon, and P. Jacob. Dynamic collaboration of centralized &
edge processing for coordinated data management in an iot paradigm. In
2018 IEEE 32nd International Conference on Advanced Information Networking
and Applications (AINA), pages 694–701. IEEE, 2018.

[176] R. Young, S. Fallon, and P. Jacob. A governance architecture for self-adaption
& control in iot applications. In 2018 5th International Conference on Control,
Decision and Information Technologies (CoDIT), pages 241–246. IEEE, 2018.

[177] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X.Wang, H. C. Cankaya, Q. Zhang,
W. Xie, and J. P. Jue. Fogplan: a lightweight qos-aware dynamic fog ser-
vice provisioning framework. IEEE Internet of Things Journal, 6(3):5080–5096,
2019.

Appendix A

Large Modeling Example

In this appendix, using our DSL we model the IoT system for environment control
in underground coal mines tested in the experiments of Section 7.3. Figure 7.18
shows the scenario to be modeled: an IoT system deployed in three underground
coal mines. The description of this system as the device, edge/fog, cloud, and appli-
cation layers is presented in Section 7.3).

A.1 Modeling Mine Structure and Control Points

Figure A.1 shows the modeling of a portion of theMine 1 andMine 2 structures. To
monitor the environment inside themine, there are control points at eachwork face.
Each control point has ten sensors to monitor several physical variables: methane
(CH4), carbon dioxide sensor (CO2), carbon monoxide sensor (CO), hydrogen sul-
fide (H2S), sulfurous anhydride (SO2), nitric oxide (NO), nitrogen dioxide (NO2),
temperature, and air velocity.

These physical variables and their thresholds were extracted from the Colom-
bian mining regulations [132]. According to this mining regulation, there are two
types of thresholds for gas measurements: the permissible limit for an 8-hour aver-
aging time known as TWA, and the permissible limit value for a short exposure time
(max. 15 minutes) known as STEL. Figure A.2 shows the modeling of the control
point located at the m1-WFace-1 working face in theMine 1. The thresholds for the
gas sensors correspond to the STEL limit values.

169

170 APPENDIX A. LARGE MODELING EXAMPLE

Fi
gu

re
A
.1:

M
od

el
of

th
e
M
in
e
1
an
d
M
in
e
2
st
ru
ct
ur
es

A.1. MODELING MINE STRUCTURE AND CONTROL POINTS 171

Fi
gu

re
A
.2:

M
od

el
of

th
e
Ch

ec
k
Po

in
ti
n
m
1-
W
Fa
ce
-1

w
or
k
fro

nt

172 APPENDIX A. LARGE MODELING EXAMPLE

A.2 Modeling Applications and Nodes

Figure A.3 shows themodel of the list of applications that are deployed in the system
nodes. The twa-app application checks that the TWA thresholds are not exceeded by
the gas sensors, the stel-app application checks the STEL thresholds, and the temp-
app application checks the temperature status taking into account the wind speed.
These three applications are deployed on edge nodes. local-app (local application to
access real time data sensors) and local-db (local database to store sensor data) are
deployed in fog nodes. Finally, the applications web-app (web application to query
historical data) and cloud-db (database to store aggregated information) are hosted
on cloud nodes.

Figure A.4 shows the modeling of some nodes ofMine 1: three edge nodes host-
ing the broker and, the stel-app, the twa-app, and the temp-app applications, and
a fog node hosting the local-db and local-app applications. Some of the deployed
containers require ConfigMap objects for configuration. For example, the MQTT
broker settings.

A.2. MODELING APPLICATIONS AND NODES 173

Figure A.3: Application modeling

174 APPENDIX A. LARGE MODELING EXAMPLE

Figure A.4: Nodes modeling

Appendix B

Installation and Configuration
Guide

This appendix is a guide to the installation and configuration necessary to use our
approach. Section B.1 presents the instructions for installing and configuring MPS
to use our DSL. Section B.2 presents guidelines for using the DSL, and Section B.3
contains instructions for implementing our framework.

B.1 Installation and Configuration of MPS for the DSL

1. Download and install MPS version 2021.2.21

2. Download or clone the project from GitHub repository2

3. Open MPS, and then open the DSL project by choosing the folder

4. Some plugins must be installed. Select File -> Settings -> Plugins and install
the following plugins:
Note: Some of these plugins require additional plugins that MPS will suggest
you install (if this happens, select install). For example, the com.dslfoundry.plaintext
plugin will require the Mouse Selection Support plugin.

1https://www.jetbrains.com/mps/download
2https://github.com/SOM-Research/selfadaptive-IoT-DSL

175

https://www.jetbrains.com/mps/download
https://github.com/SOM-Research/selfadaptive-IoT-DSL

176 APPENDIX B. INSTALLATION AND CONFIGURATION GUIDE

a) com.mbeddr.mpsutil.treenotation

Figure B.1: treenotation plugin installation in MPS

B.1. INSTALLATION AND CONFIGURATION OF MPS FOR THE DSL 177

b) com.dslfoundry.plaintextgen

Figure B.2: plaintextgen plugin installation in MPS

178 APPENDIX B. INSTALLATION AND CONFIGURATION GUIDE

c) MPS Table Editor Component

Figure B.3: Table Editor plugin installation in MPS

5. Restart MPS and you will now be able to use the DSL to model IoT systems.
In the left pane (Logical View) you find an example of a modeled IoT system
(Hotel Beach first floor). You can open this example model by double clicking
and explore the concepts modeled for an IoT system.

B.2 DSL use and code generation

B.2.1 Changing the Notation

The DSL has three notations (textual, tabular, and tree) to model the IoT system
concepts. The notations for each concept are shown in Table B.1.

B.2. DSL USE AND CODE GENERATION 179

Table B.1: DSL notation

Textual Tabular Tree
Applications Nodes Regions
Nodes Containers
Containers IoT Devices
IoT Devices
Clusters
Adaptation rules

Three concepts (Nodes, Containers, and IoT Devices) can be modeled using two
different notations (tabular and textual). The user is free to choose the notation. To
change notation, follow the instructions below.

1. Right-click anywhere in the model workspace and select Push Editor Hints.

Figure B.4: Notation change

180 APPENDIX B. INSTALLATION AND CONFIGURATION GUIDE

2. Select Use custom hints and then check Use tabular notation.

Figure B.5: Push Editor Hints

Now, you can see the model in tabular notation for Nodes, Containers, and IoT
devices.

B.2.2 Creating New Model

To start modeling a new IoT system, you must create a new solution and model
within the project. To do this, follow the instructions below.

B.2. DSL USE AND CODE GENERATION 181

1. Create new solution by right clicking on selfadaptive-IoT-DSL -> New -> Solu-
tion

Figure B.6: Create new Solution

2. Then, create a new model by right clicking on NewSolution -> New -> Model

Figure B.7: Create new Model

182 APPENDIX B. INSTALLATION AND CONFIGURATION GUIDE

3. When you are creating amodel, you have add IoT_runtime toUsed Languages.

Figure B.8: Used languages by the new model

4. Now, you can create a new IoT System model.

Figure B.9: Create IoT System model

B.2. DSL USE AND CODE GENERATION 183

5. Finally, you get a template for modeling the IoT system.

Figure B.10: Model template

B.2.3 Modeling an IoT system

Some concepts of the IoT systemmodel must be created in different models. Specifi-
cally, the types of sensors and actuators, and themetrics thatmake up the adaptation
rules are concepts that must be instantiated from other models. You could define
these models from scratch, but a quick alternative is to reuse our sandbox models,
which already contain predefined sensors, actuators, and metrics. To reuse these
two models, copy them (right click and copy) from the sandbox and paste them
(right click and paste) into your Solution (see Figure B.11).

184 APPENDIX B. INSTALLATION AND CONFIGURATION GUIDE

Figure B.11: Application template

To model any aspect of the IoT system, just press the Enter key in the corre-
sponding section and you will get a template with the attributes to be specified. For
example, to model an application, press enter in the Applications section and you
will get the model portion as shown in Figure B.12.

B.2. DSL USE AND CODE GENERATION 185

Figure B.12: Application template

Some fields can be supportedwith theMPS autocomplete function. For example,
when creating a new node, it is necessary to select the node type. To do this, press
the Enter key in theNodes section, and then the auto-complete function (by pressing
Ctrl+space on windows or Cmd+space on MacOS). This will allow you to select one
of the three types of nodes a shown in Figure B.13.

Figure B.13: MPS auto-complete function (Node type)

You can use the auto-complete function on any of the fields or attributes of a
concept. In the example of Figure B.14, we have defined two subregions. Then,
when modeling the region of an Edge node, the autocomplete function can be used
to quickly select one of the subregions defined earlier.

186 APPENDIX B. INSTALLATION AND CONFIGURATION GUIDE

Figure B.14: MPS auto-complete function (Region)

B.2.4 Generating the Code

When the self-adapting IoT system model is finalized, you can verify the validity
of the model and use the code generator to obtain the YAML manifests for deploy-
ment and execution of the runtime framework. Right click on the model and select
Rebuild Model (see Figure B.15).

B.2. DSL USE AND CODE GENERATION 187

Figure B.15: Sandbox model compilation

If the model has no errors and the compilation is successful, then the generated
code can be found in the directory «Project_directory»/solutions/«name_solution».

For example, the list of files generatedwhen compiling the sandboxmodel (Beach
Hotel) is shown in Figure B.16.

Figure B.16: Generated files

188 APPENDIX B. INSTALLATION AND CONFIGURATION GUIDE

B.3 Framework deployment

The generated code and YAML manifests are used to deploy and configure the
framework. The IoT applications, tools, database, adaptation engine, and other com-
ponents are deployed in pods using an orchestrator such as Kubernetes or K3S.

The requirements to deploy and run our framework are listed below.

• Kubernetes (v1.23.8 or later) or K3S (v1.23.8+k3s1 or later) orchestrator to
manage the node cluster. We suggest K3S, a lightweight Kubernetes distribu-
tion built for IoT and edge computing.

• kubectl (v1.23.8 or later).

Once you have configured the cluster, you must run the start.sh script found
inside the files built by the code generator. This script will automatically deploy all
the tools in pods using kubectl. To run the script execute the following commands.

1. For Linux:

a) Set the script executable permission by running chmod command.

1 sudo chmod 777 start.sh

b) Execute the shell script.

1 ./start.sh

2. For Windows 10/11:

a) Install WSL or Windows Subsystem for Linux.
b) Execute the shell script.

1 bash start.sh

The time it takes to deploy the framework depends on the number of applica-
tions modeled (it could be minutes). To verify the deployment, you can execute the
following commands from the master node.

• To check the status of monitoring and adaptation tools such as kube-state-
metrics, prometheus, alert-manager, adaptation engine, etc.

B.3. FRAMEWORK DEPLOYMENT 189

1 kubectl get pods -n monitoring

• To check the status of IoT applications modeled in the input model.

1 kubectl get pods

Note: if the IoT system model does not have adaptation rules involving sen-
sors, then the mqtt-exporter will not be deployed. This will not interfere with the
execution and operation of the framework.

Finally, you will be able to access the Prometheus and Grafana user interface
to configure dashboards and view system status and adaptation rules in real time.
From the browser, enter the following url.

• Prometheus: http://«ip-master-node»:30000

• Alert Manager: http://«ip-master-node»:31000

• Grafana: http://«ip-master-node»:32000

Appendix C

Modeling an IoT System for the
Self-adaptation Evaluation

In this appendix we present the modeling of the experiment scenario (IoT system)
to perform the self-adaptation validations of our approach discussed in Chapter 7.2.

C.1 General Test Scenario

To test the three architectural adaptations, we have designed the test scenario shown
in Figure C.1. The modeling of the applications, the edge-2 node, sensors, and the
MQTT broker (using our DSL) are presented in Figures C.2, C.3, C.4, and C.5 respec-
tively. The modeling of the edge-1, fog-1 nodes, and the adaptation rules change
according to the type of adaptation tested.

191

192
APPENDIX C. MODELING AN IOT SYSTEM FOR THE SELF-ADAPTATION

EVALUATION

Figure C.1: General test scenario for adaptations

Figure C.2: Applications modeling (validation scenario)

C.2. SCALE ADAPTATION 193

Figure C.3: edge-2 node modeling (validation scenario)

Figure C.4: Sensors modeling (validation scenario)

Figure C.5: MQTT broker modeling (validation scenario)

C.2 Scale Adaptation

Figure C.6 shows the test scenario for testing the Scaling adaptation. In addition to
the general test scenario, it was necessary to model the nodes edge-1, fog-1, and the
adaptation rule to test the self-adaptation of the system. For this, Figures C.7 and
C.8 show the modeling of the nodes (including the C2 container), and the specified
adaptation rule.

194
APPENDIX C. MODELING AN IOT SYSTEM FOR THE SELF-ADAPTATION

EVALUATION

Figure C.6: Scaling scenario

Figure C.7: Scaling scenario nodes modeling

C.3. OFFLOAD ADAPTATION 195

Figure C.8: Scaling rule modeling

C.3 Offload Adaptation

Figure C.9 shows the test scenario for testing the Offloading adaptation. In addition
to the general test scenario, it was necessary to model the nodes edge-1, fog-1, and
the adaptation rule to test the self-adaptation of the system. For this, Figures C.10
and C.11 show the modeling of the nodes (including the C2 and C4 containers), and
the specified adaptation rule.

Figure C.9: Offloading scenario

196
APPENDIX C. MODELING AN IOT SYSTEM FOR THE SELF-ADAPTATION

EVALUATION

Figure C.10: Offloading scenario nodes modeling

Figure C.11: Offloading rule modeling

C.4 Redeployment Adaptation

Figure C.12 shows the test scenario for testing the Redeployment adaptation. The
scenario for testing this adaptation is the same as for testing Scaling. The difference
is the adaptation rule specified, and the stimulus to generate the failure. The stimu-
lus for this scenario is to intentionally generate a failure and the adaptation rule is
shown in Figure C.13.

C.4. REDEPLOYMENT ADAPTATION 197

Figure C.12: Offloading scenario

Figure C.13: Redeployment rule modeling

	Abstract
	Resumen
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Contributions
	Organization of the Document

	State of the Art
	Preliminary Concepts
	Internet of Things
	Self-adaptive Systems
	Model-Driven Engineering

	Analysis of IoT System Adaptation
	Method
	List of dynamic events
	Detecting dynamic events
	List of adaptation strategies
	Open Challenges
	Our direction

	Conclusion

	Overview
	Framework Overview
	Design time stage
	Runtime stage

	Running Example: Smart Building Scenario
	Multilayered Architecture
	System Adaptation

	Research Methodology
	Conclusion

	Modeling Self-adaptive IoT Architectures
	Modeling of the IoT Architecture
	Abstract syntax
	Concrete syntax
	Well-Formedness Rules
	Example scenario

	Modeling of Rules
	Abstract syntax
	Concrete syntax
	Well-Formedness Rules
	Example Scenario

	Building a Modeling Environment for the DSL
	Structure Aspect
	Editor Aspect
	Constraints and Type-System Aspects
	Behaviour Aspect

	Code Generator
	Mapping Configuration
	Templates

	Installation and Configuration
	Conclusion

	Adapting IoT systems at runtime
	Runtime Framework
	Monitor
	Analyze
	Plan
	Execute

	Example scenario
	Installation and Configuration
	Conclusion

	Extending DSL for specific cases
	Modeling IoT systems for the Underground Mining Industry
	Extending the metamodel

	Modeling IoT Systems for Wastewater Treatment Plants (WWTPs)
	Extending the metamodel

	Conclusion

	Experimental Evaluation
	DSL Empirical Evaluation
	Experimental Study 1: DSL Validation - Architectural Concepts
	Experimental Study 2: DSL Validation - Mining Concepts
	Threats to Validity

	Evaluation of System Self-Adaptations
	Experiment Design and Setup
	Protocol
	Results
	Threats to Validity

	Evaluation of Framework Scalability
	Design and Setup
	Experiment Protocol
	Results and Analysis
	Threats to Validity

	Conclusion

	Related Work
	Languages and metamodels for modeling IoT systems
	DSLs for IoT Architectures
	DSLs for IoT Self-Adaptation
	Discussion

	Frameworks for IoT system self-adaptations
	General Approaches or Frameworks
	Modeling-based solutions

	Conclusions and Further Research
	Summary of Contributions
	Publications and Software Artifacts
	Publications
	Software Artifacts

	Further Research
	Approach improvements
	Software Deployment Strategies
	Security Strategies
	Machine Learning Algorithms to Support Adaptation

	Bibliography
	Large Modeling Example
	Modeling Mine Structure and Control Points
	Modeling Applications and Nodes

	Installation and Configuration Guide
	Installation and Configuration of MPS for the DSL
	DSL use and code generation
	Changing the Notation
	Creating New Model
	Modeling an IoT system
	Generating the Code

	Framework deployment

	Modeling an IoT System for the Self-adaptation Evaluation
	General Test Scenario
	Scale Adaptation
	Offload Adaptation
	Redeployment Adaptation

