2,437 research outputs found

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange

    HANDLING WORK FROM HOME SECURITY ISSUES IN SALESFORCE

    Get PDF
    Security is a vital component when it is identified with an endeavor record or our genuine materials. To protect our home or valuable things like gold, cash we use bank storage administrations or underground secret storage spaces at home. Similarly, IT enterprises put tremendous measure of capital in expanding security to its business and the archives. Associations use cryptography procedures to get their information utilizing progressed encryption calculations like SHA-256, SHA-512, RSA-1024, RSA-2048 pieces’ key encryption and Elliptic Curve Cryptography (ECC) calculations. These industry standard calculations are difficult to break. For instance, to break RSA-2048-piece encryption key, an old-style PC needs around 300 trillion years. As indicated by the continuous examination, a quantum PC can break it in 10seconds, yet such a quantum PC doesn\u27t yet exist. Despite the fact that these cryptographic calculations guarantee an awesome degree of safety, there will be dependably a space for breaking the security. Programmers will attempt new techniques to break the security. Thus, the association likewise should continue to utilize new strategies to build the level and nature of the security. Now it is time to check how the security aspect is taken care of when the IT employees are at work from home. The 2020 year has made many professionals work from home because of the Covid-19 pandemic. The Covid-19 has transformed almost all organizations to work from home, this has become standard advice, and technology plays an important role during work from home to monitor the employee works and provide security when the work is being carried away from their respective organization. Employees\u27 information security awareness will become one of the most important parts of safeguarding against nefarious information security practices during this work from home. Most of the workers like the expediency of work from home and the flexibility provided for the employees. But in this situation, workers need guarantees that their privacy is secured when using company laptops and phones. Cyber security plays an important role in maintaining a secured environment when working from home. This work focusses on managing the security break attack in the course of work from home. The focus of the study is on dealing with security breaches that occur when salespeople operate from home. The problem of security isn\u27t new. Security issues existed prior to the lockdown or pandemic, but because the staff was working from the office at the time, the system administrator was available to address them. However, how can an employee\u27s laptop and account be secured when working from home? MFH\u27s salesforce has leveraged a variety of innovative technologies to address security concerns during their tenure. Because the IT behemoth Salesforce has made it possible for all employees, including freshly hired ones, to seek WFH on a permanent basis. To address the security breach difficulties faced by employees, the organization used a number of new approaches, including tracking working hours, raising password difficulty, employing VPN (virtual private network), mandating video during meetings, continuously checking right to use control, and MFA (multi-factor authentication). Improvement of existing multi-factor authentication (MFA) is the focused topic discussed in the thesis. To add an additional step of protection to the login process Blockchain technology is proposed and to identify the employee identification a hybrid recognition model is proposed using face and fingerprint recognition. This leads to the employee going through multiple processes to authenticate his or her identity in numerous ways in order to access the business laptop. This procedure entails connecting his or her laptop to his or her mobile phone or email account. Keywords: MFA, WFH, Cyber Security, Encryption, Decryption

    Lightweight cryptography for IoT devices

    Get PDF
    Tese de Mestrado, Engenharia Informática, 2022, Universidade de Lisboa, Faculdade de CiênciasLightweight cryptography is a field that has been growing fast recently due to the demand for secure Internet of Things (IoT) applications. These algorithms provide se curity for computational power, memory, and energy-constrained devices. In this work, we propose a new protocol based on lightweight cryptography algorithms that enables the generation and distribution of keys for symmetric systems to be used in private communi cations on a wireless sensor network (WSN). The proposed protocol is designed to work in multi-hop communication networks, where nodes out of range of the Base Station can be part of the network, offering the same security mechanisms that a node in the commu nication range of the Base Station has. Experimental results and a detailed comparison with other architectures show how fast and energy-efficient the protocol is, while ensuring a high level of authenticity, confidentiality and integrity

    Comparative Study and Design Light Weight Data Security System for Secure Data Transmission in Internet of Things

    Get PDF
    Internet of things is shortened as IoT. Today IoT is a key and abrogating subject of the specialized and social importance. Results of buyers, things and vehicles, industry based and fundamental segments, sensors, and other everyday items are converged with network of internet and the solid information abilities which guarantee to change the sort in which we work and live. The proposed work demonstrates the implementation of symmetric key lightweight algorithm for secured data transmission of images and text using image encryption system as well as reversible data hiding system. In this paper, implemented symmetric key cryptography for various formats of images, as well as real time image acquisition system has been designed in the form of graphical user interface. Reversible data hiding system has also been designed for secure data transmission system

    TD2SecIoT: Temporal, Data-Driven and Dynamic Network Layer Based Security Architecture for Industrial IoT

    Get PDF
    The Internet of Things (IoT) is an emerging technology, which comprises wireless smart sensors and actuators. Nowadays, IoT is implemented in different areas such as Smart Homes, Smart Cities, Smart Industries, Military, eHealth, and several real-world applications by connecting domain-specific sensors. Designing a security model for these applications is challenging for researchers since attacks (for example, zero-day) are increasing tremendously. Several security methods have been developed to ensure the CIA (Confidentiality, Integrity, and Availability) for Industrial IoT (IIoT). Though these methods have shown promising results, there are still some security issues that are open. Thus, the security and authentication of IoT based applications become quite significant. In this paper, we propose TD2SecIoT (Temporal, Data-Driven and Dynamic Network Layer Based Security Architecture for Industrial IoT), which incorporates Elliptic Curve Cryptography (ECC) and Nth-degree Truncated Polynomial Ring Units (NTRU) methods to ensure confidentiality and integrity. The proposed method has been evaluated against different attacks and performance measures (quantitative and qualitative) using the Cooja network simulator with Contiki-OS. The TD2SecIoT has shown a higher security level with reduced computational cost and time

    The Proposed Development of Prototype with Secret Messages Model in Whatsapp Chat

    Get PDF
    Development of prototype at data security through secret messages is needed for disguising the messages sent in smartphone chatting application, WhatsApp (WA) Chat. We propose a model to disguise a plaintext message which is first encrypted by cryptosystem to change the plaintext message to ciphertext. Plaintext or plainimage entering the smartphone system is changed into encrypted text; receiver then can read the message by using similar key with the sender. The weakness of this proposal is the message random system is not planted directly in the chatting application; therefore message removing process from cryptosystem to WA application is still needed. The strength of using this model is the messages sent will not be easily re-encrypted by hacker and can be used at client computing section

    Digital Hash Data Encryption for IoT Financial Transactions using Blockchain Security in the Cloud

    Get PDF
    Blockchain security via the Internet of Things (IoT) will reshape the decision-making function of the data-driven incumbent smart enterprise, providing the vision of the connected world of things. Enterprise IoT development of devices, personnel, and systems in such a way that they may connect and communicate with each other through the Internet. Blockchain is an enterprise financial transaction, and its digital network is distributed transaction ledger. Today, enterprises need the massive global data management and rapid trading volume to keep things going and growing. It creates enterprise business challenges of different types of security, transparency, and complexity of the problem. Enterprise architecture offers several advantages for the thief to obtain a specific user account,   application, and access to the device. This is, will doesn't be to provide the necessities of security. The proposed Digital Hash Data Encryption (DHDE) is used to secure the transaction data-based embedded system people and blockchain. Blockchain and IoT technology integration may bring numerous benefits to mention. Therefore, the proposed DHDE algorithm comprehensively discusses the blockchain technology integration system. The proposed DHDE algorithm encrypts the transaction data for an unauthorized person who cannot access the enterprise transaction data based on embedded system people and blockchain
    • …
    corecore