3 research outputs found

    Performance and Security Enhancements in Practical Millimeter-Wave Communication Systems

    Get PDF
    Millimeter-wave (mm-wave) communication systems achieve extremely high data rates and provide interference-free transmissions. to overcome high attenuations, they employ directional antennas that focus their energy in the intended direction. Transmissions can be steered such that signals only propagate within a specific area-of-interest. Although these advantages are well-known, they are not yet available in practical networks. IEEE 802.11ad, the recent standard for communications in the unlicensed 60 GHz band, exploits a subset of the directional propagation effects only. Despite the large available spectrum, it does not outperform other developments in the prevalent sub-6 GHz bands. This underutilization of directional communications causes unnecessary performance limitations and leaves a false sense of security. For example, standard compliant beam training is very time consuming. It uses suboptimal beam patterns, and is unprotected against malicious behaviors. Furthermore, no suitable research platform exists to validate protocols in realistic environments. To address these challenges, we develop a holistic evaluation framework and enhance the performance and security in practical mm-wave communication systems. Besides signal propagation analyses and environment simulations, our framework enables practical testbed experiments with off-the-shelf devices. We provide full access to a tri-band router’s operating system, modify the beam training operation in the Wi-Fi firmware, and create arbitrary beam patterns with the integrated antenna array. This novel approach allows us to implement custom algorithms such as a compressive sector selection that reduces the beam training overhead by a factor of 2.3. By aligning the receive beam, our adaptive beam switching algorithm mitigates interference from lateral directions and achieves throughput gains of up to 60%. With adaptive beam optimization, we estimate the current channel conditions and generate directional beams that implicitly exploit potential reflections in the environment. These beams increase the received signal strength by about 4.4 dB. While intercepting a directional link is assumed to be challenging, our experimental studies show that reflections on small-scale objects are sufficient to enable eavesdropping from afar. Additionally, we practically demonstrate that injecting forged feedback in the beam training enables Man-in-the Middle attacks. With only 7.3% overhead, our authentication scheme protects against this beam stealing and enforces responses to be only accepted from legitimate devices. By making beam training more efficient, effective, and reliable, our contributions finally enable practical applications of highly directional transmissions

    Practical Lightweight Security: Physical Unclonable Functions and the Internet of Things

    Get PDF
    In this work, we examine whether Physical Unclonable Functions (PUFs) can act as lightweight security mechanisms for practical applications in the context of the Internet of Things (IoT). In order to do so, we first discuss what PUFs are, and note that memory-based PUFs seem to fit the best to the framework of the IoT. Then, we consider a number of relevant memory-based PUF designs and their properties, and evaluate their ability to provide security in nominal and adverse conditions. Finally, we present and assess a number of practical PUF-based security protocols for IoT devices and networks, in order to confirm that memory-based PUFs can indeed constitute adequate security mechanisms for the IoT, in a practical and lightweight fashion. More specifically, we first consider what may constitute a PUF, and we redefine PUFs as inanimate physical objects whose characteristics can be exploited in order to obtain a behaviour similar to a highly distinguishable (i.e., “(quite) unique”) mathematical function. We note that PUFs share many characteristics with biometrics, with the main difference being that PUFs are based on the characteristics of inanimate objects, while biometrics are based on the characteristics of humans and other living creatures. We also note that it cannot really be proven that PUFs are unique per instance, but they should be considered to be so, insofar as (human) biometrics are also considered to be unique per instance. We, then, proceed to discuss the role of PUFs as security mechanisms for the IoT, and we determine that memory-based PUFs are particularly suited for this function. We observe that the IoT nowadays consists of heterogeneous devices connected over diverse networks, which include both high-end and resource-constrained devices. Therefore, it is essential that a security solution for the IoT is not only effective, but also highly scalable, flexible, lightweight, and cost-efficient, in order to be considered as practical. To this end, we note that PUFs have been proposed as security mechanisms for the IoT in the related work, but the practicality of the relevant security mechanisms has not been sufficiently studied. We, therefore, examine a number of memory-based PUFs that are implemented using Commercial Off-The-Shelf (COTS) components, and assess their potential to serve as acceptable security mechanisms in the context of the IoT, not only in terms of effectiveness and cost, but also under both nominal and adverse conditions, such as ambient temperature and supply voltage variations, as well as in the presence of (ionising) radiation. In this way, we can determine whether memory-based PUFs are truly suitable to be used in the various application areas of the IoT, which may even involve particularly adverse environments, e.g., in IoT applications involving space modules and operations. Finally, we also explore the potential of memory-based PUFs to serve as adequate security mechanisms for the IoT in practice, by presenting and analysing a number of cryptographic protocols based on these PUFs. In particular, we study how memory-based PUFs can be used for key generation, as well as device identification, and authentication, their role as security mechanisms for current and next-generation IoT devices and networks, and their potential for applications in the space segment of the IoT and in other adverse environments. Additionally, this work also discusses how memory-based PUFs can be utilised for the implementation of lightweight reconfigurable PUFs that allow for advanced security applications. In this way, we are able to confirm that memory-based PUFs can indeed provide flexible, scalable, and efficient security solutions for the IoT, in a practical, lightweight, and inexpensive manner

    Strategies to Secure a Voice Over Internet Protocol Telephone System

    Get PDF
    Voice over internet protocol (VoIP) provides cost-effective phone service over a broadband internet connection rather than analog telephone services. While VoIP is a fast-growing technology, there are issues with intercepting and misusing transmissions, which are security concerns within telecommunication organizations and for customers. Grounded in the routine activity theory, the purpose of this multiple case study was to explore strategies information technology (IT) security managers used to secure VoIP telephone systems in telecommunication organizations. The participants consisted of nine IT security managers from three telecommunication organizations in New York who possessed the knowledge and expertise to secure a VoIP telephone system. The data were collected using semi structured interviews, note taking, and one document from one organization. Four themes emerged from the thematic analysis: best practices for VoIP security, using a secure VoIP provider, VoIP security recommendations, and awareness of future security concerns. A key recommendation for IT security professionals is to ensure encryption to secure a VoIP telephone system. The implications for positive social change include the potential for IT security managers and telecommunication organizations to reduce data breaches and the theft of their customers’ identities and credit card information
    corecore