11 research outputs found

    An Overview on Image Forensics

    Get PDF
    The aim of this survey is to provide a comprehensive overview of the state of the art in the area of image forensics. These techniques have been designed to identify the source of a digital image or to determine whether the content is authentic or modified, without the knowledge of any prior information about the image under analysis (and thus are defined as passive). All these tools work by detecting the presence, the absence, or the incongruence of some traces intrinsically tied to the digital image by the acquisition device and by any other operation after its creation. The paper has been organized by classifying the tools according to the position in the history of the digital image in which the relative footprint is left: acquisition-based methods, coding-based methods, and editing-based schemes

    Multimedia Forensic Analysis via Intrinsic and Extrinsic Fingerprints

    Get PDF
    Digital imaging has experienced tremendous growth in recent decades, and digital images have been used in a growing number of applications. With such increasing popularity of imaging devices and the availability of low-cost image editing software, the integrity of image content can no longer be taken for granted. A number of forensic and provenance questions often arise, including how an image was generated; from where an image was from; what has been done on the image since its creation, by whom, when and how. This thesis presents two different sets of techniques to address the problem via intrinsic and extrinsic fingerprints. The first part of this thesis introduces a new methodology based on intrinsic fingerprints for forensic analysis of digital images. The proposed method is motivated by the observation that many processing operations, both inside and outside acquisition devices, leave distinct intrinsic traces on the final output data. We present methods to identify these intrinsic fingerprints via component forensic analysis, and demonstrate that these traces can serve as useful features for such forensic applications as to build a robust device identifier and to identify potential technology infringement or licensing. Building upon component forensics, we develop a general authentication and provenance framework to reconstruct the processing history of digital images. We model post-device processing as a manipulation filter and estimate its coefficients using a linear time invariant approximation. Absence of in-device fingerprints, presence of new post-device fingerprints, or any inconsistencies in the estimated fingerprints across different regions of the test image all suggest that the image is not a direct device output and has possibly undergone some kind of processing, such as content tampering or steganographic embedding, after device capture. While component forensics is widely applicable in a number of scenarios, it has performance limitations. To understand the fundamental limits of component forensics, we develop a new theoretical framework based on estimation and pattern classification theories, and define formal notions of forensic identifiability and classifiability of components. We show that the proposed framework provides a solid foundation to study information forensics and helps design optimal input patterns to improve parameter estimation accuracy via semi non-intrusive forensics. The final part of the thesis investigates a complementing extrinsic approach via image hashing that can be used for content-based image authentication and other media security applications. We show that the proposed hashing algorithm is robust to common signal processing operations and present a systematic evaluation of the security of image hash against estimation and forgery attacks

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    A survey of the application of soft computing to investment and financial trading

    Get PDF
    corecore