28 research outputs found

    Service architecting and dynamic composition in pervasive smart ecosystems for the Internet of things based on sensor network technology

    Get PDF
    Why pervasive awareness and Ambient Intelligence are perceived by a great part of the academia and industry as a massive revolution in the short-term? In our best knowledge, a cornerstone of this thought is based on the fact that the ultimate nature of the smart environment paradigm is not in the technology itself, but on a people-centered approach. Perhaps, is in this apparently simple conception where precisely lies the boldness of this promising vision, which has been consolidated in recent years with the emerging proliferation of mobile, personal, portable, wearable and sensory computing: to reach everyone and everywhere. On the one hand, it touches our daily lives in a close manner, minimizing the required attention from the users, anticipating to their needs with the main intention of redefining our idea of Quality of Experience. On the other hand, this new wave impacts everywhere at both global and personal scales allowing expanded connectivity between devices and smart objects, in a dynamic and ubiquitous manner, as a natural extension of the physical world around us. According to the above, this doctoral dissertation focuses on contributing to the integration of software and networking engineering advances in the field of pervasive smart spaces and environment using sensor networks. This is founded on the convergence of some information technology and computer science paradigms, such as service and agent orientation, semantic technologies and knowledge management in the framework of pervasive computing and the Internet of Things. To this end, the nSOM (nano Service-Oriented Middleware) and nSOL (nano Semantics-Oriented Language) approaches are presented. Firstly, the nSOM proposal defines a service-oriented platform for the implementation, deployment and exposure of agent-based in-network services to the Internet cloud on heterogeneous sensor devices. Secondly, the nSOL solution enables an abstraction for supporting ubiquitous service composition based on semantic knowledge management. The integration of both contributions leads to the formal modelling and practical development of adaptive virtual sensor services for pervasive Ambient Intelligence ecosystems. This work includes also the related performance characterization of the resulting prototype according to several metrics such as code size, volatile memory footprint, CPU overhead, service time delay and battery lifetime. Main foundations and outcomes presented in this essay are contextualized in the following European Research Projects: μSWN (FP6 code: IST-034642), DiYSE (ITEA2 code: 08005) and LifeWear (ITEA2 code: 09026). --------------------¿Por qué la sensibilidad ubicua y la inteligencia ambiental son percibidas por una gran parte de las comunidades académica e industrial como una revolución masiva en el corto plazo? En nuestra opinión, una piedra angular de este pensamiento es el hecho de que la naturaleza última del paradigma de entornos inteligentes no reside en la tecnología en sí misma, sino en una aproximación centrada en las personas. Y es quizá en esta aparente simple concepción donde se halla precisamente el atrevimiento de esta prometedora visión, consolidada en los últimos años con la emergente proliferación de la computación móvil, personal, portable, llevable y sensorial: llegar a todos y a todas partes. Por un lado, esta alcanza nuestras vidas de una manera cercana, minimizando la atención requerida por los usuarios, anticipándose a sus necesidades con el objetivo de redefinir nuestra idea de calidad de experiencia. Por otro lado, esta impacta en todas partes tanto a escala global como personal, con una conectividad expandida entre dispositivos y objetos inteligentes, de un modo ubicuo y dinámico, como una extensión natural del mundo que nos rodea. Conforme a lo anterior, esta tesis doctoral se centra en contribuir en la integración de los avances de ingeniería de redes y software en el ámbito de los espacios y entornos inteligentes ubicuos basados en redes de sensores. Esto se fundamenta en la convergencia de diversos paradigmas de las tecnologías de la información y ciencia de la computación, tales como orientación a servicios y agentes, tecnologías semánticas y de gestión del conocimiento en el contento de la computación ubicua en la Internet de las Cosas. Para este fin, se presentan las aproximaciones nSOM (nano Service-Oriented Middleware) y nSOL (nano Semantics-Oriented Language). En primer lugar, nSOM define una plataforma orientada a servicios para la implementación, despliegue y exposición a la nube de servicios basados en agentes e implementados en red sobre dispositivos heterogéneos de sensores. En segundo lugar, nSOL habilita una abstracción para proporcionar composición ubicua de servicios basada en gestión semántica del conocimiento. La integración de ambas contribuciones conduce a un modelado formal y de implementación práctica de servicios de sensor virtual adaptativos para ecosistemas de inteligencia ambiental. Este trabajo incluye la caracterización del rendimiento del prototipo resultante, basándonos para ello en métricas tales como tamaño de código, tamaño de memoria volátil, sobrecarga de procesamiento, retardo en tiempo de servicio y autonomía de baterías. Los principales fundamentos y resultados discutidos en este ensayo están contextualizados en los siguientes Proyectos de Investigación Europeos: μSWN (FP6 código: IST-034642), DiYSE (ITEA2 código: 08005) y LifeWear (ITEA2 código: 09026).Presidente: Juan Ramón Velasco Pérez; Vocal: Juan Carlos Dueñas; Secretario: Mario Muñoz Organer

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Managing Device and Platform Heterogeneity through the Web of Things

    Get PDF
    The chaotic growth of the IoT determined a fragmented landscape with a huge number of devices, technologies, and platforms available on the market, and consequential issues of interoperability on many system deployments. The Web of Things (WoT) architecture recently proposed by the W3C consortium constitutes a novel solution to enable interoperability across IoT Platforms and application domains. At the same time, in order to see an effective improvement, a wide adoption of the W3C WoT solutions from the academic and industrial communities is required; this translates into the need of accurate and complete support tools to ease the deployment of W3C WoT applications, as well as reference guidelines about how to enable the WoT on top of existing IoT scenarios and how to deploy WoT scenarios from scratch. In this thesis, we bring three main contributions for filling such gap: (1) we introduce the WoT Store, a novel platform for managing and easing the deployment of Things and applications on the W3C WoT, and additional strategies for bringing old legacy IoT systems into the WoT. The WoT Store allows the dynamic discovery of the resources available in the environment, i.e. the Things, and to interact with each of them through a dashboard by visualizing their properties, executing commands, or observing the notifications produced. (2) We map three different IoT scenarios to WoT scenarios: a generic heterogeneous environmental monitoring scenario, a structural health monitoring scenario and an Industry4.0 scenario. (3) We make proposals to improve both the W3C standard and the node-wot software stack design: in the first case, new vocabularies are needed in order to handle particular protocols employed in industrial scenarios, while in the second case we present some contributions required for the dynamic instantiation and the migration of Web Things and WoT services in a cloud-to-edge continuum environment

    Perpetual Sensing: Experiences with Energy-Harvesting Sensor Systems

    Full text link
    Industry forecasts project the number of connected devices will outpace the global population by orders of magnitude in the next decade or two. These projections are application driven: smart cities, implantable health monitors, responsive buildings, autonomous robots, driverless cars, and instrumented infrastructure are all expected to be drivers for the growth of networked devices. Achieving this immense scale---potentially trillions of smart and connected sensors and computers, popularly called the "Internet of Things"---raises a host of challenges including operating system design, networking protocols, and orchestration methodologies. However, another critical issue may be the most fundamental: If embedded computers outnumber people by a factor of a thousand, how are we going to keep all of these devices powered? In this dissertation, we show that energy-harvesting operation, by which devices scavenge energy from their surroundings to power themselves after they are deployed, is a viable answer to this question. In particular, we examine a range of energy-harvesting sensor node designs for a specific application: smart buildings. In this application setting, the devices must be small and sleek to be unobtrusively and widely deployed, yet shrinking the devices also reduces their energy budgets as energy storage often dominates their volume. Additionally, energy-harvesting introduces new challenges for these devices due to the intermittent access to power that stems from relying on unpredictable ambient energy sources. To address these challenges, we present several techniques for realizing effective sensors despite the size and energy constraints. First is Monjolo, an energy metering system that exploits rather than attempts to mask the variability in energy-harvesting by using the energy harvester itself as the sensor. Building on Monjolo, we show how simple time synchronization and an application specific sensor can enable accurate, building-scale submetering while remaining energy-harvesting. We also show how energy-harvesting can be the foundation for highly deployable power metering, as well as indoor monitoring and event detection. With these sensors as a guide, we present an architecture for energy-harvesting systems that provides layered abstractions and enables modular component reuse. We also couple these sensors with a generic and reusable gateway platform and an application-layer cloud service to form an easy-to-deploy building sensing toolkit, and demonstrate its effectiveness by performing and analyzing several modest-scale deployments.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138686/1/bradjc_1.pd

    Human-in-the-Loop Cyber-Physical-Systems based on Smartphones

    Get PDF
    Tese de doutoramento em Ciências e Tecnologias da Informação, apresentada ao Departamento de Engenharia Informática da Faculdade de Ciências e Tecnologia da Universidade de CoimbraTechnological devices increasingly become smaller, more mobile, powerful and efficient. However, each time we have to hurdle through unintuitive menus, errors and incompatibilities we become stressed by our technology. As first put forward by the renowned computer scientist Mark Weiser, the ultimate form of computers may be an extension of our subconscious. The ideal computer would be capable of truly understanding people's unconscious actions and desires. Instead of humans adapting to technology and learning how to use it, it would be technology that would adapt to the disposition and uniqueness of each human being. This thesis focuses on the realm of Human-in-the-loop Cyber-Physical Systems (HiTLCPSs). HiTLCPSs infer the users’ intents, psychological states, emotions and actions, using this information to determine the system's behavior. This involves using a large variety of sensors and mobile devices to monitor and evaluate human nature. Therefore, this technology has strong ties with wireless sensor networks, robotics, machine-learning and the Internet of Things. In particular, our work focuses on the usage of smartphones within these systems. It begins by describing a framework to understand the principles and theory of HiTLCPSs. It provides some insights into current research being done on this topic, its challenges, and requirements. Another of the thesis' objectives is to present our innovative taxonomy of human roles, where we attempt to understand how a human may interact with HiTLCPSs and how to best explore this resource. This thesis also describes concrete examples of the practical usage of HiTL paradigms. As such, we included a comprehensive description of our research work and associated prototypes, where the major theoretical concepts behind HiTLCPS were applied and evaluated to specific scenarios. Finally, we discuss our personal view on the future and evolution of these systems.A tecnologia tem vindo a tornar-se cada vez mais pequena, móvel, poderosa e eficiente. No entanto, lidar com menus pouco intuitivos, erros, e incompatibilidades, causa frustração aos seus utilizadores. Segundo o reconhecido cientista Mark Weiser, os computadores do futuro poderão vir a existir como se fossem uma extensão do nosso subconsciente. O computador ideal seria capaz de entender, em toda a sua plenitude, as ações e os desejos inconscientes dos seres humanos. Em vez de serem os humanos a adaptarem-se à tecnologia e a aprender a usá-la, seria a tecnologia a aprender a adaptar-se à disposição e individualidade de cada ser humano. Esta tese foca-se na área dos Human-in-the-loop Cyber-Physical Systems (HiTLCPSs). Os HiTLCPSs inferem as intenções, estados psicológicos, emoções e ações dos seus utilizadores, usando esta informação para determinar o comportamento do sistema ciber-físico. Isto envolve a utilização de uma grande variedade de sensores e dispositivos móveis que monitorizam e avaliam a natureza humana. Assim sendo, esta tecnologia tem fortes ligações com redes de sensores sem fios, robótica, algoritmos de aprendizagem de máquina e a Internet das Coisas. Em particular, o nosso trabalho focou-se na utilização de smartphones dentro destes sistemas. Começamos por descrever uma estrutura para compreender os princípios e teoria associados aos HiTLCPSs. Esta análise permitiu-nos adquirir alguma clareza sobre a investigação a ser feita sobre este tópico, e sobre os seus desafios e requisitos. Outro dos objetivos desta tese é o de apresentar a nossa inovadora taxonomia sobre os papeis do ser humano nos HiTLCPSs, onde tentamos perceber as possíveis interações do ser humano com estes sistemas e as melhores formas de explorar este recurso. Esta tese também descreve exemplos concretos da utilização prática dos paradigmas HiTL. Desta forma, incluímos uma descrição do nosso trabalho experimental e dos protótipos que lhe estão associados, onde os conceitos teóricos dos HiTLCPSs foram aplicados e avaliados em diversos casos de estudo. Por fim, apresentamos a nossa perspetiva pessoal sobre o futuro e evolução destes sistemas.Fundação Luso-Americana para o DesenvolvimentoFP7-ICT-2007-2 GINSENG projectiCIS project (CENTRO-07-ST24-FEDER-002003)SOCIALITE project (PTDC/EEI-SCR/2072/2014

    A heterogeneous network management approach to wireless sensor networks in personal healthcare environments

    Full text link
    University of Technology, Sydney. Faculty of Science.Many countries are facing problems caused by a rapid surge in numbers of people over sixty-five. This aging population cohort will place a strain on the existing health systems because the elderly are prone to falls, chronic illnesses, dementia and general frailty. At the same time governments are struggling to attract more people into the health systems and there are already shortages of qualified nurses and care givers. This thesis represents a multi disciplinary approach to trying to solve some of the above issues. In the first instance the researcher has established the validity of the health crisis and then examined ways in which Information Technology could help to alleviate some of the issues. The nascent technology called Wireless Sensor Networks was examined as a way of providing remote health monitoring for the elderly, the infirm and the ill. The researcher postulated that Network Management models and tools that are used to monitor huge networks of computers could be adapted to monitor the health of persons in their own homes, in aged care facilities and hospitals. Wireless Sensor Network (WNS) Personal Healthcare can monitor such vital signs as a patient’s temperature, heart rate and blood oxygen level. WSNs (often referred to as Motes) use wireless transceivers that can do remote sensing. The researcher aimed to assist all stakeholders in the personal healthcare arena to use WSNs to improve monitoring. The researcher provided a solution architecture and framework for healthcare sensor monitoring systems, based on network management techniques. This architecture generalises to heterogeneous and autonomous data acquisition systems. Future directions from this research point towards new areas of knowledge from the development or creation of new technologies to support the exponential growth of ubiquitous, just-in-time WSN health informational services and applications such as the preventive and proactive personal care health management and services around it. The affordable and ubiquitous distributed access to remote personal health care technologies in the future could have an important impact in the society, by allowing the individuals to take immediate preventive actions over their overall health condition. These systems could potentially prevent death as well as improve national health budgets by limiting costly medical interventions that could have been avoided by individual, easy-action early prevention
    corecore