36 research outputs found

    Uncertainty and Capsule Networks for Computer Vision

    Get PDF
    Deep learning is a particular kind of machine learning which is powerful and flexible as a consequence of its ability to represent the world as a nested hierarchy of concepts (LeCun et al. 2015, Goodfellow et al. 2016). Due to the ever increasing power of parallel computing graphics processing units, larger labelled datasets and improved training techniques, great leaps in the performance of various machine learning tasks have been achieved using deep learning (LeCun et al. 2015). At the time of this writing, deep learning is the dominant machine learning approach for much ongoing work in fields such as: Computer Vision (Krizhevsky et al. 2012, He et al. 2016), Reinforcement Learning (Mnih et al. 2015, Silver et al. 2016), Medical Imaging (Ronneberger et al. 2015), and Natural Language Processing (Vaswani et al. 2017, Devlin et al. 2019). However, with the uptake of deep learning models into safety-critical domains, transparency of model predictions is becoming increasingly important for: safety, decision-making, fairness and legislative reasons. Moreover, designing deep learning models that strike a good balance between human interpretability and performance has proven to be a challenging task (Caruana et al. 2015, Montavon, Lapuschkin, Binder, Samek & Müller 2017, Kendall & Gal 2017, Rudin 2019, Samek et al. 2019). With that said, in this thesis we advocate for an alternative view of interpretability based on estimating the uncertainty in a model’s predictions, which serves as a proxy for model transparency. In our investigations, we formalise the desiderata of model transparency as: trust, information and generalisation, and take steps towards the development of deep learning models which have the potential to satisfy them. Concretely, we leverage the language of uncertainty to improve the performance and transparency of deep learning models in computer vision tasks, providing probabilistic techniques to enhance more interpretable models by design such as capsule networks

    Image-based Decision Support Systems: Technical Concepts, Design Knowledge, and Applications for Sustainability

    Get PDF
    Unstructured data accounts for 80-90% of all data generated, with image data contributing its largest portion. In recent years, the field of computer vision, fueled by deep learning techniques, has made significant advances in exploiting this data to generate value. However, often computer vision models are not sufficient for value creation. In these cases, image-based decision support systems (IB-DSSs), i.e., decision support systems that rely on images and computer vision, can be used to create value by combining human and artificial intelligence. Despite its potential, there is only little work on IB-DSSs so far. In this thesis, we develop technical foundations and design knowledge for IBDSSs and demonstrate the possible positive effect of IB-DSSs on environmental sustainability. The theoretical contributions of this work are based on and evaluated in a series of artifacts in practical use cases: First, we use technical experiments to demonstrate the feasibility of innovative approaches to exploit images for IBDSSs. We show the feasibility of deep-learning-based computer vision and identify future research opportunities based on one of our practical use cases. Building on this, we develop and evaluate a novel approach for combining human and artificial intelligence for value creation from image data. Second, we develop design knowledge that can serve as a blueprint for future IB-DSSs. We perform two design science research studies to formulate generalizable principles for purposeful design — one for IB-DSSs and one for the subclass of image-mining-based decision support systems (IM-DSSs). While IB-DSSs can provide decision support based on single images, IM-DSSs are suitable when large amounts of image data are available and required for decision-making. Third, we demonstrate the viability of applying IBDSSs to enhance environmental sustainability by performing life cycle assessments for two practical use cases — one in which the IB-DSS enables a prolonged product lifetime and one in which the IB-DSS facilitates an improvement of manufacturing processes. We hope this thesis will contribute to expand the use and effectiveness of imagebased decision support systems in practice and will provide directions for future research

    Deep Neural Networks and Data for Automated Driving

    Get PDF
    This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and, last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Machine Learning in Tribology

    Get PDF
    Tribology has been and continues to be one of the most relevant fields, being present in almost all aspects of our lives. The understanding of tribology provides us with solutions for future technical challenges. At the root of all advances made so far are multitudes of precise experiments and an increasing number of advanced computer simulations across different scales and multiple physical disciplines. Based upon this sound and data-rich foundation, advanced data handling, analysis and learning methods can be developed and employed to expand existing knowledge. Therefore, modern machine learning (ML) or artificial intelligence (AI) methods provide opportunities to explore the complex processes in tribological systems and to classify or quantify their behavior in an efficient or even real-time way. Thus, their potential also goes beyond purely academic aspects into actual industrial applications. To help pave the way, this article collection aimed to present the latest research on ML or AI approaches for solving tribology-related issues generating true added value beyond just buzzwords. In this sense, this Special Issue can support researchers in identifying initial selections and best practice solutions for ML in tribology

    Proceedings of the 8th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2023)

    Get PDF
    This volume gathers the papers presented at the Detection and Classification of Acoustic Scenes and Events 2023 Workshop (DCASE2023), Tampere, Finland, during 21–22 September 2023

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods
    corecore