97 research outputs found

    A service oriented approach for guidelines-based clinical decision support using BPMN

    Get PDF
    Evidence-based medical practice requires that clinical guidelines need to be documented in such a way that they represent a clinical workflow in its most accessible form. In order to optimize clinical processes to improve clinical outcomes, we propose a Service Oriented Architecture (SOA) based approach for implementing clinical guidelines that can be accessed from an Electronic Health Record (EHR) application with a Web Services enabled communication mechanism with the Enterprise Service Bus. We have used Business Process Modelling Notation (BPMN) for modelling and presenting the clinical pathway in the form of a workflow. The aim of this study is to produce spontaneous alerts in the healthcare workflow in the diagnosis of Chronic Obstructive Pulmonary Disease (COPD). The use of BPMN as a tool to automate clinical guidelines has not been previously employed for providing Clinical Decision Support (CDS)

    On Intelligence Augmentation and Visual Analytics to Enhance Clinical Decision Support Systems

    Get PDF
    Human-in-the-loop intelligence augmentation (IA) methods combined with visual analytics (VA) have the potential to provide additional functional capability and cognitively driven interpretability to Decision Support Systems (DSS) for health risk assessment and patient-clinician shared decision making. This paper presents some key ideas underlying the synthesis of IA with VA (IA/VA) and the challenges in the design, implementation, and use of IA/VA-enabled clinical decision support systems (CDSS) in the practice of medicine through data driven analytical models. An illustrative IA/VA solution provides a visualization of the distribution of health risk, and the impact of various parameters on the assessment, at the population and individual levels. It also allows the clinician to ask “what-if” questions using interactive visualizations that change actionable risk factors of the patient and visually assess their impact. This approach holds promise in enhancing decision support systems design, deployment and use outside the medical sphere as well

    An Electronic Clinical Decision Support System for the Management of Low Back Pain in Community Pharmacy: Development and Mixed Methods Feasibility Study

    Get PDF
    Background People with low back pain (LBP) in the community often do not receive evidence-based advice and management. Community pharmacists can play an important role in supporting people with LBP as pharmacists are easily accessible to provide first-line care. However, previous research suggests that pharmacists may not consistently deliver advice that is concordant with guideline recommendations and may demonstrate difficulty determining which patients require prompt medical review. A clinical decision support system (CDSS) may enhance first-line care of LBP, but none exists to support the community pharmacist–client consultation. Objective This study aimed to develop a CDSS to guide first-line care of LBP in the community pharmacy setting and to evaluate the pharmacist-reported usability and acceptance of the prototype system. Methods A cross-platform Web app for the Apple iPad was developed in conjunction with academic and clinical experts using an iterative user-centered design process during interface design, clinical reasoning, program development, and evaluation. The CDSS was evaluated via one-to-one user-testing with 5 community pharmacists (5 case vignettes each). Data were collected via video recording, screen capture, survey instrument (system usability scale), and direct observation. Results Pharmacists’ agreement with CDSS-generated self-care recommendations was 90% (18/20), with medicines recommendations was 100% (25/25), and with referral advice was 88% (22/25; total 70 recommendations). Pharmacists expressed uncertainty when screening for serious pathology in 40% (10/25) of cases. Pharmacists requested more direction from the CDSS in relation to automated prompts for user input and page navigation. Overall system usability was rated as excellent (mean score 92/100, SD 6.5; 90th percentile compared with similar systems), with acceptance rated as good to excellent. Conclusions A novel CDSS (high-fidelity prototype) to enhance pharmacist care of LBP was developed, underpinned by clinical practice guidelines and informed by a multidisciplinary team of experts. User-testing revealed a high level of usability and acceptance of the prototype system, with suggestions to improve interface prompts and information delivery. The small study sample limits the generalizability of the findings but offers important insights to inform the next stage of system development. </jats:sec

    ACO based Clinical Decision Support System for Better Medical Care

    Get PDF
    In the realm of healthcare, the utilization of clinical decision support systems (CDSSs) has become increasingly prevalent as a means of providing medical professionals with a computer-based tool that grants them access to pertinent data and expertise, thereby aiding in their ability to make informed clinical decisions. The potential applications of a CDSS are numerous, ranging from disease diagnosis and the creation of treatment programs, to patient progress monitoring. A crucial component of a CDSS is its knowledge base, which comprises the data utilized by the system to generate recommendations and provide feedback to healthcare providers. In an effort to enhance the knowledge base of a CDSS for a particular clinical condition, metaheuristic methods such as Ant Colony Optimization (ACO) can be employed to select the most suitable and applicable data. ACO facilitates the identification of the portion of a CDSS's knowledge base that is most likely to result in the optimal clinical decision, from among the vast array of data that it may contain. This study aims to explore the potential benefits of utilizing ACO methods in CDSSs for the betterment of patient care. The paper outlines the design and implementation of an ACO-based CDSS, which can offer tailored treatment plans for patients based on their medical histories and current condition

    Personalised mobile services supporting the implementation of clinical guidelines

    Get PDF
    Telemonitoring is emerging as a compelling application of Body Area Networks (BANs). We describe two health BAN systems developed respectively by a European team and an Australian team and discuss some issues encountered relating to formalization of clinical knowledge to support real-time analysis and interpretation of BAN data. Our example application is an evidence-based telemonitoring and teletreatment application for home-based rehabilitation. The application is intended to support implementation of a clinical guideline for cardiac rehabilitation following myocardial infarction. In addition to this the proposal is to establish the patient’s individual baseline risk profile and, by real-time analysis of BAN data, continually re-assess the current risk level in order to give timely personalised feedback. Static and dynamic risk factors are derived from literature. Many sources express evidence probabilistically, suggesting a requirement for reasoning with uncertainty; elsewhere evidence requires qualitative reasoning: both familiar modes of reasoning in KBSs. However even at this knowledge acquisition stage some issues arise concerning how best to apply the clinical evidence. Furthermore, in cases where insufficient clinical evidence is currently available, telemonitoring can yield large collections of clinical data with the potential for data mining in order to furnish more statistically powerful and accurate clinical evidence

    Factors that Influence the Adoption of Human-AI Collaboration in Clinical Decision-Making

    Get PDF
    Recent developments in Artificial Intelligence (AI) have fueled the emergence of human-AI collaboration, a setting where AI is a coequal partner. Especially in clinical decision-making, it has the potential to improve treatment quality by assisting overworked medical professionals. Even though research has started to investigate the utilization of AI for clinical decision-making, its potential benefits do not imply its adoption by medical professionals. While several studies have started to analyze adoption criteria from a technical perspective, research providing a human-centered perspective with a focus on AI\u27s potential for becoming a coequal team member in the decision-making process remains limited. Therefore, in this work, we identify factors for the adoption of human-AI collaboration by conducting a series of semi-structured interviews with experts in the healthcare domain. We identify six relevant adoption factors and highlight existing tensions between them and effective human-AI collaboration

    FACTORS THAT INFLUENCE THE ADOPTION OF HUMAN-AI COLLABORATION IN CLINICAL DECISION-MAKING

    Get PDF
    Recent developments in Artificial Intelligence (AI) have fueled the emergence of human-AI collaboration, a setting where AI is a coequal partner. Especially in clinical decision-making, it has the potential to improve treatment quality by assisting overworked medical professionals. Even though research has started to investigate the utilization of AI for clinical decision-making, its potential benefits do not imply its adoption by medical professionals. While several studies have started to analyze adoption criteria from a technical perspective, research providing a human-centered perspective with a focus on AI’s potential for becoming a coequal team member in the decision-making process remains limited. Therefore, in this work, we identify factors for the adoption of human-AI collaboration by conducting a series of semi-structured interviews with experts in the healthcare domain. We identify six relevant adoption factors and highlight existing tensions between them and effective human-AI collaboration

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers
    • 

    corecore