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Abstract 
Human-in-the-loop intelligence augmentation (IA) 
methods combined with visual analytics (VA) have the 

potential to provide additional functional capability 

and cognitively driven interpretability to Decision 

Support Systems (DSS) for health risk assessment and 

patient-clinician shared decision making. This paper 

presents some key ideas underlying the synthesis of IA 

with VA (IA/VA) and the challenges in the design, 

implementation, and use of IA/VA-enabled clinical 

decision support systems (CDSS) in the practice of 

medicine through data driven analytical models. An 

illustrative IA/VA solution provides a visualization of 

the distribution of health risk, and the impact of 

various parameters on the assessment, at the 

population and individual levels. It also allows the 

clinician to ask “what-if” questions using interactive 

visualizations that change actionable risk factors of 

the patient and visually assess their impact. This 

approach holds promise in enhancing decision 

support systems design, deployment and use outside 

the medical sphere as well. 

1. Introduction  

Decision support systems (DSS), clinical decision 

support systems (CDSS) included, are designed to 

provide guidance to decision makers as they analyze 

new situations and require assistance in assessing 

situations and in answering “what if” type questions. 

CDSS do so mostly by recording existing knowledge 

and processing techniques, sometimes even applying a 
straightforward rule-based dataset that applies current 

thinking to new data. Those objectives are not new [1], 

dating back to Ledley and Lusted [2]. Sheppard and 

Kouchoukos [3] added automated rules and tests to 

CDSS architecture, resulting in a consensus of the 

need to analyze patient data to create case-specific 

advice [4]. More recently, machine learning has also 

been added [5], a necessity considering the size and 

complexity of healthcare datasets [6]. CDSS currently 

support many medical fields including patient care at 

the bedside, medical imaging, pharmacology, 

pharmacogenomics, and pathology, among others [7].  

CDSS have been shown to improve medical best 

practices [8], increase quality of care and patient safety 
[9], reduce medical errors [10], and support diagnosis 

[11]. Indeed, CDSS that assess renal function, 

pregnancy complications, duplicate order entry, drug 

allergy, and drug recommendation, have a long history 

in reducing rates of medical errors [12], with early 

studies on CDSS claiming decrease of 12.7% decrease 

in total charges and a 0.9 day decrease in length of stay 

[13]. Based on the experiences of some leading, large, 

highly computerized, and internationally recognized 

medical centers, CDSS are under-utilized if used at all 

for diagnosing patients [1].  

Apart from reducing errors, the objective of 
CDSS is to improve clinicians’ decision-making 

processes and provide medical insights at the point of 

care [14], a hard to achieve objective [7]. In part, that 

is because designing a medical treatment path often 

requires real-time, interactive processing of patient 

data by the clinicians involved. That interactive 

processing is necessary to attain more accurate clinical 

predictions of what a course of treatment may entail 

based on the analysis of many other patients’ data 

while considering a multitude of varying parameters. 

Such interactive processes could also decrease the 
incidence of errors. Errors are a major obstacle to the 

voluntary adoption of CDSS by physicians [7]. 

Moreover, and perhaps contributing to that error rate, 

are patients with multi-morbid conditions.  

Interactive CDSS are at a rather extreme point in 

current classifications. Belard & Buchman [1] 

suggested that CDSS can be classified into 

knowledge-driven, rule-based support systems and 

data-driven, probability analysis support systems. 
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Rule-based systems include CDSS that alert about 

medication hazards [14] and drug interactions based 

on existing guidelines (even if these ignore patient-

specific situations) [10]. Closer to probability analysis, 

CDSS are systems such as those that support dementia 
diagnosis by applying reasoning strategies, some even 

based on ambiguous and incomplete information [15, 

16], diagnose prostate cancer [11] and predict whether 

a person is a carrier of toxic gene mutations that cause 

breast cancer [12]. Adding the degree of user 

interaction, Liedgren & Elvhage [17] classified DSS 

on a grid with descriptive or normative on one axis, 

and static or user interactive on the other (Figure 1). 

Interactive CDSS with a data-driven probability 

analysis engine fall into the top of the left quadrant 

being designed to address very complex medical 

conditions without relying on a set of rules only. 

 
Figure 1. DSS classification based on [17] 

1.1. Barriers to CDSS implementation 

Among the major obstacles to successful 

deployment of CDSS are perceptions that the CDSS 

obscures physician autonomy and obligation and that 
the recommendations are insufficiently relevant and 

current [1]. The result is a lukewarm attitude towards 

current CDSS because it is perceived that the analysis 

and the rules behind the CDSS are too simple, and so 

physicians, specifically experts, are reluctant to rely on 

the CDSS because it makes it seem, wrongly, that their 

profession can be automated. Simple CDSS that 

record existing rule-bases just do not provide a 

convincing incentive to potential adopters. However, 

when the decision is very complex and the analysis is 

not perfectly clear to the cardiologists, then using the 

CDSS is too risky. One way of overcoming this 
conundrum is by allowing the design and subsequent 

interaction with the CDSS to be user-centered [18]. 

This also increases its perceived utility [19].  

An alternative approach, examined in this study, 

is to replace the DSS rule-base with a dynamic AI-

based, intelligence augmentation and visual analytics 

that provides additional functional capability and 

cognitively-driven interpretability to DSS-enabled 

risk assessment. This AI-driven, visually augmented 

approach stands in contrast to typical DSS that freeze 

knowledge at the point where its rule-base has been 

created, potentially resulting in the dangerous 
ossification of knowledge in a rapidly changing 

context. What is needed is a dynamic support system 

that is not based on a rule base alone, but rather a 

system that lets the human expert explore options 

based on a real-time analysis of existing relevant data 

without being forced into a rigid pattern of thought that 

had been prevalent when the DSS or CDSS was 

created. Such a system could allow decision makers to 

consider “what if” questions dynamically and allow 

any kind of analysis that existing data had measured. 

A dynamic visual representation of data analysis 

results is called Visual Analytics (VA), and is 
currently perceived as the preferred mode of informing 

users about complex results [20]. VA can be static or 

collaborative, with the latter allowing users to harness 

their expertise to improve the system’s performance. 

Thus, the computer and user work in collaboration, 

with each partner contributing their strengths and 

unique capabilities: the computer in analyzing 

complex, big data and creating visual data 

presentations, and the user in pinpointing the search 

and analysis to points of interest, employing the 

holistic view, which is part of human expertise that a 
computer lacks. This approach is termed Intelligence 

Augmentation (IA) [21]. 

We describe a CDSS prototype that is composed 

of an AI-based back-end analysis engine for predictive 

analytics and results visualization, and a VA-IA based 

front-end component, for the user and computer to 

interact with and collaborate in a human-in-the-loop 

format, for optimal decision making. The AI-based 

engine dynamically and without resorting to a 

predefined rule-base analyzes all the medical tests, 

diagnostics, prognosis, and treatments, including the 

ICD codes of thousands of patients with the same 
overall medical condition as observed over many 

years. (ICD is the International Statistical 

Classification of Diseases and Related Health 

Problems. It was created and is continuously updated 

by the World Health Organization (WHO) as a 

classification system. More about ICD can be found at 

https://www.who.int/classifications/icd/en/).  

In the next two sections, we briefly describe the 

IA and VA concepts. 

1.2. Intelligence augmentation (IA) 

With the prevalence of large amount of data and 

ubiquity of computing power, we recently see more 

tasks being performed by computers, profoundly 
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changing the modern way of life at work and beyond 

[22]. The promise of AI has also given rise to the 

growing debate on whether a thinking machine is 

possible and whether the notion of such a machine 

provides a suitable model of the human mind [23]. 
Specifically, problems in artificial intelligence are 

often framed in terms of matching or surpassing 

human performance [24]. While there is an increased 

concern that smart machines may replace many 

humans in decision making, current evidence is that, 

with greater computational information-processing 

capacity and an analytical approach, machines can 

amplify human cognition when addressing 

complexity, whereas humans offer a more holistic, 

intuitive approach in dealing with uncertainty in 

decision making [25]. This new concept is termed 

Intelligence Augmentation (IA), in contrast to human-
computer interaction (HCI) where man and machine 

are considered separate entities [26]. 

IA focuses on building systems that allow humans 

and machines to work together, as opposed to AI, 

which is focused on building intelligence in machines. 

Intelligence Augmentation provides an efficient 

theoretical framework for understanding what humans 

can accomplish and how artifacts and tools can be 

designed and evaluated to empower human beings and 

to alter tasks [27]. 

The goal of IA, in the context of this study, is to 
use computational systems to help physicians in the 

decision making process by means of an ongoing 

human-machine dialogue [28]. The belief underlying 

this human-machine collaboration is that it potentially 

allows the humans to gain the time to concentrate on 

other parts of the process and thereby expanding their 

perspectives and augmenting their intellect [29]. IA 

has been recently proposed as assisting clinical 
assessment workflow, to sequentially augment 

physician assessment of patients’ symptoms, while 

integrating their socio-demographic determinants and 

heterogeneous biological measures to accurately 
predict treatment outcomes using machine learning 

methods [30]. Yet, cumbersome human-computer 

communication and challenging user interfaces pose 

barriers to wide utilization of these IA platforms in 

highly stressed and time-constrained clinical settings. 

Recent research has suggested interactive 

visualizations leveraging advanced analytics, which 

are yet relatively easy to use and comprehend, as a 

plausible human-computer communication platform 

[31, 32] suitable for environments such as clinical care 

delivery.  

1.3. Visual analytics (VA) 

Visual analytics (VA) combines computational 

analysis and interactive visualization-based user 
interfaces to support analytical reasoning and human 

cognition, incorporating disciplines including 

cognitive science, data mining and machine learning 

[33]. This enables interactive, analytical interpretation 

of very large and complex datasets through the 

integration of human intuition and machine learning 

[20, 34, 35]. VA is especially applicable where the 

data are too large, and the decisions too complex, for 

purely visual methods, and therefore require data 

processing and mining capabilities in exploratory 

setting. This necessitates an interdisciplinary approach 
[29]. VA is particularly useful when dealing with 

multivariable items, aka “dimensions” that are sourced 

from multiple systems, are sparsely populated, and 

might even be of questionable quality. 

Comprehending multi-dimensional information is 

difficult, known as ‘the curse of dimensionality’ [36]. 

Health data is an example of multivariable, multi-

sourced data. Policy and decision makers in healthcare 

have long valued the capacity of healthcare 

information to improve clinical decision making by 

assuming that such data, if available to the right people 

in an appropriate format and at the right time, could 
significantly drive healthcare effectiveness and 

efficiency [37]. It is therefore not surprising that many 

recent studies have examined the application of VA in 

the healthcare domain [38-40].  

2. Methods  

2.1. CDSS requirements analysis 

Requirements for the CDSS design were gathered 

from a thorough literature survey and interactions with 

clinical experts that resulted in the development of an 

early prototype (not displayed due to space 

limitations). This prototype was then demonstrated to 

experts in diabetes mellitus and heart disease [31], 

whose comments were used for the generation of the 

second version of the prototype which is the focus of 

this study. This version was reviewed by three 
cardiologists, who saw a demonstration of the 

prototype using patient data from their own setting and 

commented on the displayed features. 

2.2. Data set for the AI-driven engine 

The research dataset, focused on the 

cardiovascular condition, was obtained from the Sheba 

Medical Center, which is the largest hospital in Israel, 
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located in the center of the country [41]. It is an 

extensively computerized hospital, where an 

integrated EHR system is used in the Emergency 

Department (ED) and all inpatient departments, fully 

replacing paper-based medical records. In recent 
years, Sheba has established a research-focused data 

warehouse that collects data from the various 
information systems installed in the hospital. Patient 

socio-demographic data is obtained from the Israel 

Population Registry system and integrated into the 

EHR. Each patient admitted to the hospital, via the ED 

or otherwise, who is diagnosed with a cardiovascular 

condition as a primary diagnosis, has their data 

uploaded to the data warehouse. All patient 

information is then retrieved from the other systems 

using the individual’s unique national ID available in 

the Israeli Population Registry. This unique identifier 
allows accurate location and integration of patient 

data. We removed variables with more than 20% 

missing values based on clinical judgment and used 

the Predictive Mean Matching imputation method [42] 

with the mice package in R [43] to impute missing 

values in key attributes that could not be eliminated 

from consideration. Diagnoses were coded based on 

the ICD-9 standard. The resulting dataset included 

10,763 patients who visited the Sheba Medical Center 

between 2010 and 2017 and were diagnosed with 

Congestive Heart Failure (CHF) as the primary 
diagnosis. Each patient record included 211 attributes. 

2.3. The feature selection process 

Two senior cardiologists selected 30 features they 

considered most effective to predict 30-day 

readmission or 30-day mortality based on extant 

scientific knowledge and local practices and 

outcomes. Next, we evaluated multiple feature 

selection criteria and identified the Information Gain 

(IG) [44] method to select a set of 30 features, to 
investigate if the method may delineate features not 

commonly selected by cardiologists. Information Gain 

(IG) favors splits with small counts but many unique 

values.  

The human and machine generated feature sets 

were then merged to a larger feature set consisting of 

45 variables. This was evaluated by two different 

experts (senior cardiologists), to mark those features 

they regarded as most important for mortality and 

readmission (two separate sets), respectively. We 

tested the lists for inter-rater agreement using Cohen’s 

Kappa [45], resulting in moderate to poor agreement 
among the raters (0.688 for mortality and 0.474 for 

readmission, before adjusting for chance agreement). 

Next, we extracted the features disagreed upon and 

returned to the same physicians two weeks after the 

first session, asking them to re-rate only those items, 

without indicating prior choices. This second round 

yielded high agreement (0.893 and 0.938 for 

readmission and mortality, respectively, and 0.777 and 

0.858 after adjusting for chance agreement), resulting 
in a final set of 29 variables for mortality and 28 

variables for readmission. We termed the sets 

“Human-Machine Collaborative” sets. 

3. The new CDSS approach 

A key characteristic of the approach utilized by 

the new CDSS is that it allows the clinician to apply a 

data-driven, exploratory approach. This analysis 
encompasses data discovery by assessing patterns in 

the medical records of the other patients to inform the 

decision maker. This is a bottom-up approach, in 

contrast to the objectives of some CDSS that attempt 

to enforce policy and standardization of decision 

making through a policy driven, top-down process. 

The new CDSS is about empowering the clinicians 

with additional visual tools that can address new topics 

and questions, supported in the backend by AI, 

allowing the clinician to review medical records of 

other patients that inform the visual presentation. 
Moreover, as the visual presentation displays numbers 

based on predictive analytics, the recommendation is 

mostly quantitative and leaves the actionable 

interpretation to the clinician. For example, showing 

the probability that changing the systolic blood 

pressure of the patient by so many units will change 

the likelihood of expected mortality by so many 

percentage points. This type of analysis can, providing 

the dataset it is based upon is large enough, also allow 

answering many complex what-if questions 

concurrently, allowing interaction analyses. For 

example, a physician may ask about the result of both 
reducing systolic blood pressure by 10% but only 

among patients with a certain condition (including one 

or more existing comorbidities). This ad hoc type of 

investigation is unique to current clinical decision 

making due to the availability of highly granular data 

on many patients collected as part of routine medical 

practice and applies without relying on existing rules 

and research. The approach also allows studying 

patient-reported adverse reactions that have not yet 

been identified in the literature, and hence are absent 

from any rule-base a CDSS could possibly apply. This 
ad-hoc and evidence-based analysis also allows an 

investigation of the what-if questions in the context of 

a specific demographic or social determinant, such as 

women only or living in a particular neighborhood 

type. Such an assignment of numeric values to the risk 

associated with the co-occurrence of medical 

conditions, tests, and treatments, could also open the 
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opportunity of adding hypothesis testing and complex 

multilayer path analysis models. This ability to test 

hypotheses is another characteristic that sets this 

CDSS approach in a new direction. Moreover, this 

approach could provide insights also about multi-
morbid conditions that have not yet been incorporated 

into existing CDSS models, but about which there is 

data available from other patients, past and present, 

with an equivalent profile.  Being exploratory also 

means that the proposed CDSS approach could reveal 

data-derived previously unknown patterns, and that 

these patterns may vary across populations.  

Basically, the new approach stands in contrast to 

existing CDSS approaches that are beneficial in 

training based on known medical case-studies and 

guidelines, and in enforcement of rules as well as 

testing for mistakes such as drug interactions. 
However, based on the extant literature, and on our 

preliminary interviews with cardiologists to whom the 

new CDSS has been demonstrated, the approach of 

common CDSS is generally too rigid and holds limited 

benefits to them once the rules are known and training 

is over. In contrast, the new CDSS approach, because 

it is about empowering the decision maker, rather than 

checking or prescribing their actions, was accepted 

enthusiastically. That is important also because one of 

the major holdbacks in the adoption of healthcare IT is 

the reluctance of clinicians to adopt the new IT and its 
organizational solution, partly because it infringes on 

rather than augments their capabilities [46]. There 

needs to be a viable value proposition in new IT if it is 

to be adopted. The intelligence augmentation enabled 

CDSS, the easy-to-use visual presentation, and its AI-

based analysis of the population provides such a value 

proposition. That value proposition is increased by the 

ability to examine specific patient profiles and where 

the patient fits into each such profile, such as by 

varying demographics, social determinants and 

clinical history parameters. Applying such a data-

driven exploratory approach to AI augmented decision 
making, we extended an existing prototype, developed 

by one of the co-authors and collaborators in a prior 

study [31], to include additional requirements for a 

visual CDSS prototype and presented it to 

cardiologists, implemented as an RShiny application 

(https://shiny.rstudio.com/).  

 

4. Results 

4.1. The CDSS functions  

Figures 2 to 7 show the pertinent aspects of this 

CDSS as it was demonstrated to cardiologists on a 

subset of the Sheba CHF data. Creating and managing 

appropriate expectations is a crucial first set in this 

process. To date, many cardiologists among those we 

interviewed were disappointed by other approaches to 

CDSS that had solidified and verified current best-

practices, tested drug interactions, workflows, and 
billing procedures. Those aspects are beyond doubt 

very important in managing standard processes and 

enforcing quality controls, many of which are 

mandated. The current CDSS approach is not intended 

to replace those processes, but, rather, to build on top 

of those processes another layer to augment their 

clinical decision-making capability. The initial screen, 

Figure 2, is intended to set those expectations in place. 
Based on those expectations, the cardiologist is 

then provided with tools to run descriptive analysis on 

the data. This is not the core contribution of the new 

CDSS, but it serves an important purpose of increasing 

the transparency and explainability of the CDSS, as 

well as exploration of the population under 

investigation. Figure 3 is an example of one such 

variable, age. This aspect is not unique or new. It is 

merely showing that the population at hand is indeed 

quite elderly, as expected, although the number of 

relatively younger patients is not negligible. Thus, a 

user can decide to investigate only a sub-population of 

older or younger patients. The data show that CHF 

increases gradually with age, reaching the peak 

number of people diagnosed with it in this sample to 

be between 84 and 87 years of age. The fact that this 

is aligned with common medical knowledge may 

strengthen the cardiologists’ trust in the system. For 

this purpose, this CDSS allows having all prediction 

performance scores available to the decision makers 

(e.g, Precision, Recall, Confusion matrix and 

Accuracy) on any selected population, so that a user 

who is knowledgeable on predictive analytics can 

assess the predictive power of the system.  

The next typical stage in data analysis is to run 

multivariate analyses. The simplest of these is a 

Pearson correlation, showing the linear correlation 

coefficients among pairs of terms in the data, a 

prerequisite for good feature selection. The matrix 

shows the correlations among the variables or factors 

through a heatmap where the darker the blue cell, the 

higher the positive correlation with the target variable; 

the darker the red cell, the higher the negative 

correlation. Heatmaps are a standard tool to visualize 

such correlations and allow a quick eyeballing of the 

data to identify correlations of most interest. As 

evident in Figure 4, most factors are not highly 

correlated, indicating that each factor indeed 

contributes independently to the risk prediction. The 
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correlation coefficients are listed in the table next to 

the correlation graph for easy access and verification. 

 
Figure 2. Home page with a simple menu bar and 

short system description 

 

Figure 3. Data exploration  

 

Figure 4. Correlation matrix and heatmap 

Once the data is reviewed and feature selection 

validated, statistical and machine learning methods are 

used to build the risk assessment models [31]. Figure 

5 displays the results of applying these methods to a 

subset of the Sheba data since the interpretation and 

explainability value of visualization is reduced when 

large amounts of data is compressed into a small 2-d 

display. The figure includes several components to be 

noted, such as the scatter plot in the center of the 

graph, the circumscribing circle with the features, the 

methods associated with the x and y axes, the 

boundary line separating the risk dimension, and 

others.  

The circumscribing circle shows the 

factors/features/variables included in the current 

analysis, each one positioned by the algorithm in the 

quadrant where it is most significant. These risk 

factors, or features, are shown in blue, whereas those 

that the user selected to monitor are shown in pink. 

The larger the circle, the more weight that feature has 

in determining the positive or negative risk level. The 

position of that feature on the x and the y axes is 

derived based on the two analytical methods the CDSS 

applies. The pattern shown in the circumscribing circle 

in Figure 5 is the combination of two dimensionality-

reduction methods: principal component analysis 

(PCA) and Fisher’s Linear Discriminant Analysis 

(LDA) [31].  

 

 

Figure 5. Population view, filter slider on the right 

hand side, patient details displayed while 

hovering over an individual patient 

A PCA calculates an orthogonal transformation of 

the original data matrix into principal components so 

that features in the original data that are highly 

correlated with each other will be highly associated 

(and hence correlated) with the same principal 

component. Each principal component is the sum of 

all the features with a weight associated with each 

feature for each principal component. These weights 

are estimated to maximize the level of explained 

variance. Each principal component is accordingly a 

latent variable, or high-level abstraction, that 

represents the features that combine to create it. 

Features may have high weights on more than one 

principal component, suggesting that the same feature 

may contribute highly, with a larger weight, to more 

than one latent variable. As a result, a PCA combines 

the original data points by how close the features 
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expressed in those data points are to each other on a 

set of data derived principal components, so that 

features that have a high weight for the same principal 

component are treated as if they represent the same 

latent construct. The PCA algorithm constructs as 

many principal components as there are features but 

retains only as many as instructed, allowing data 

reduction. Data reduction means that only a few 

abstract latent variables are retained out of the many 

features that combine to create them. As a result, rather 

than having many features, it is their shared 

abstractions, principal components, that are retained. 

In this analysis, we took only the first principal 

component. This principal component has the most 

variance associated with it. The position of the feature 

on this first principal component is shown graphically 

as its position on the x axis.  

An LDA runs a different process to group the 

features. LDA is a machine learning algorithm that 

identifies the best linear combination of independent 

variables (predictors, in this case these are the 

features) that predicts the classification value of one 

dependent variable (in this case, the health risk level). 

While a PCA optimizes the estimation of as many 

principal components as instructed without regard to 

the classification of the values in each component, an 

LDA is optimized to classify one dependent variable 

into one or many classes. The LDA values of each 

feature are shown on the y axis. These are the risk 

levels. The combination of a PCA and LDA allows the 

contrasting of two methods: a PCA that seeks to group 

features by how correlated they are to each other, and 

an LDA that groups them based on how well they 

predict an explicit criterion (in this case, risk of death 

or readmission). This method is based on existing 

functionality [31]. 

The red and green dots in the population view 

(Figure 5) show the scatter plot of risk distribution of 

actual patients within that data induced pattern of 

PCA-based x axis and LDA-based y axis values. Red 

circles are patients with higher risk, green with lower 

risk. The further the patient is from the x axis, the 

higher or the lower that risk is. Hovering the cursor 

over a specific patient circle will open a popup box 

with some details about that patient. That popup box 

shows the patient ID in the dataset, PCA and LDA 

values, a derived textual classification of risk level 

based on the LDA, and a measure of statistical 

influence. This population view presents the overall 

profile of what determines a feature of interest, in this 

case that is risk level, as a function of other features of 

interest, and the position of each data point, in this case 

that is each patient, in that classification scheme. The 

slide on the right-hand side of the screen allows the 

user to filter out the population into a sub-group, based 

on risk level. Thus, the cardiologist can, for example, 

filter out low risk patients, and display only the 20% 

highest-risk patients, for deeper examination. This 

feature is part of the interactive user interface.  

Clicking on a patient circle in Figure 5 opens a 

new screen with details about that specific patient. The 

selected patient’s features are shown as a black dot in 

the left pane, and its details in the right pane. The user 

can then select specific features to monitor for this 

patient, which are displayed in the right-hand side of 

the screen in either graphical or table display. The 

graphical visualization shows the values of the 

features for this specific patient, and how they relate 

to the normal range. Thus, in Figure 6, for patient 

number 96 who is at high risk for mortality within 30 

days, the sodium level in the blood is very high, 

whereas the ejection fraction (ECHO EF) is very low, 

as are the systolic and diastolic blood pressure (SBP 

and DBP, respectively). 

 

Figure 6. Patient view 

The two previous screens allowed an analytics-

guided understanding of the population and a specific 

patient’s risk profile as selected by the user. The next 

stage in the analysis is to show if and how an evidence-

based intervention can reduce the patient’s risk level. 

Figure 7 demonstrates this approach graphically. The 

user can change the values of actionable features to 

those achieved after medical and/or behavioral 

intervention. For example, appropriate diet and 

medication can reduce the sodium level and improve 

SBP and DBP. When the desired values are reached, 

the patient’s likelihood to die will decrease as shown 
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by the “new” red bubble in Figure 7. (The “old” red 

bubble is retained for reference.) This can inform the 

clinician about the effectiveness of a specific 

intervention and serve as an educational and 

motivating tool for clinician-patient shared 

understanding and decision making. 

 

Figure 7. Intervention view: old and new risk 
levels displayed reflecting the potential of a 

successful intervention 
 

The core of the additional analyses enabled by the 

proposed CDSS approach is shown in Figures 5 to 7. 

The first part of that AI augmentation approach is to 

visually show the whole patient cohort as a scatter plot, 

where each dot indicates a patient. The dot is placed 

high or low along the vertical axis – the higher the dot, 

the higher the patient likelihood to die within 30 days 

post discharge (in this example) relative to the cohort. 

Patients placed below the horizontal axis are low-risk 

ones, colored green, while those placed above the 

horizontal axis are high-risk, colored red. Patients are 

spread along the horizontal axis based on factors 

affecting their risk level. Thus, patients with a similar 

risk level, who are placed far from each other, 

significantly differ by their risk factors. The 

dimensionality reduction method implemented in this 

approach performs well in comparison to other widely 

used machine learning methods and evaluated on a 

subset of the Sheba data [47].   

4.2. Cardiologists comments and survey  

A senior cardiologist was involved in the CDSS 

design by providing insights about important functions 

and visual presentations, and then evaluated the CDSS 

 
1 https://www.usability.gov/how-to-and-tools/methods/system-

usability-scale.html 

usability using the SUS1. Two additional cardiologists 

(C2 and C3) completed the SUS after attending a 

demonstration of the prototype. SUS is a common tool 

used to assess the perceived usability of a 

computerized system. C1 generally expressed a 

positive assessment of the CDSS and the likelihood of 

his adopting such a system. His main comments 

included recommendations to focus on actionable 

factors affecting patients’ risk, allow the user to add 

factors, automatically provide the normal range of 

factors, and indicate a patient’s risk level as a box plot 

with confidence intervals. He likewise suggested that 

the intervention view can be useful for patient 

education. Cardiologist C2 mainly suggested slight 

modifications to enhance the system’s usefulness and 

ease of use, yet generally approved of the AI-VA-IA 

approach. 

C3 thought positively of the general idea of such 

a CDSS, indicating that this system could assist her in 

gleaning important patient information much faster, 

but needed additional time for further investigation. 

She also suggested that for optimal assimilation into 

the routine clinical process, the system should be 

integrated into the patient’s health record and accessed 

upon the click of a button. The cardiologist would then 

be able to enlarge it to a full-screen display, and 

analyze the patient’s relative risk, as well as simulate 

the intervention results in terms of reduced risk.  

Although more evaluators are warranted, the SUS 

analysis primarily indicated that the respondents 

agreed about their intention to use the system, which 

is the strongest predictor of actual use in all IT 

adoption theories [48]. They also perceived the system 

as easy to use and were quite positive about its 

usefulness. Based on the extant theory, the 

respondents’ likelihood to choose to use the system is 

promising and merits a large-scale evaluation study.  

5. Conclusions 

This study demonstrates a novel concept of an AI-

based VA-IA CDSS. Whereas AI-based CDSS, as 

well as systems with visual data presentation, albeit 

rather static, are not new [49], systems designed for AI 

analytics that are also composed of VA-IA 

components are quite rare [46]. Hence, the main 

contribution of this study is in presenting an actual 

implementation of design principles conjectured to 
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drive CDSS adoption, by placing the expert in the 

decision-making loop alongside the computer, 

facilitating an intelligence augmenting environment 

[50, 51]. Thus, this CDSS conceptualization addresses 

recent calls to harness AI, VA and human-computer 

collaboration for IA, leading to more effective and 

efficient healthcare processes and point of care 

decision making [33, 47]. Such systems are advocated 

to eventually leverage the huge amount of patient-

level healthcare data for precision care and more 

informed clinical decision making [52]. Moreover, it 

is believed that the collaborative nature of such 

systems is likely to alleviate barriers to CDSS 

adoption due to concerns about loss of autonomy and 

devaluation of expertise [53]. These hypotheses need 

to be evaluated by more experts, preferably via 

randomized experiments in varied clinical settings 

such as inpatient, ambulatory and emergency care, and 

with different groups of clinical specialties. 
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