3,137 research outputs found

    Integration of optical and acoustic sensors for D underwater scene reconstruction.

    Get PDF
    Combination of optical and acoustic sensors to overcome the shortcomings presented by optical systems in underwater 3D acquisition is an emerging field of research. In this work, an opti-acoustic system composed by a single camera and a multibeam sonar is proposed, providing a simulation environment to validate its potential use in 3D reconstruction. Since extrinsic calibration is a prerequisite for this kind of feature-level sensor fusion, an effective approach to address the calibration problem between a multibeam and a camera system is presented.Peer Reviewe

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Augmented Reality Ultrasound Guidance in Anesthesiology

    Get PDF
    Real-time ultrasound has become a mainstay in many image-guided interventions and increasingly popular in several percutaneous procedures in anesthesiology. One of the main constraints of ultrasound-guided needle interventions is identifying and distinguishing the needle tip from needle shaft in the image. Augmented reality (AR) environments have been employed to address challenges surrounding surgical tool visualization, navigation, and positioning in many image-guided interventions. The motivation behind this work was to explore the feasibility and utility of such visualization techniques in anesthesiology to address some of the specific limitations of ultrasound-guided needle interventions. This thesis brings together the goals, guidelines, and best development practices of functional AR ultrasound image guidance (AR-UIG) systems, examines the general structure of such systems suitable for applications in anesthesiology, and provides a series of recommendations for their development. The main components of such systems, including ultrasound calibration and system interface design, as well as applications of AR-UIG systems for quantitative skill assessment, were also examined in this thesis. The effects of ultrasound image reconstruction techniques, as well as phantom material and geometry on ultrasound calibration, were investigated. Ultrasound calibration error was reduced by 10% with synthetic transmit aperture imaging compared with B-mode ultrasound. Phantom properties were shown to have a significant effect on calibration error, which is a variable based on ultrasound beamforming techniques. This finding has the potential to alter how calibration phantoms are designed cognizant of the ultrasound imaging technique. Performance of an AR-UIG guidance system tailored to central line insertions was evaluated in novice and expert user studies. While the system outperformed ultrasound-only guidance with novice users, it did not significantly affect the performance of experienced operators. Although the extensive experience of the users with ultrasound may have affected the results, certain aspects of the AR-UIG system contributed to the lackluster outcomes, which were analyzed via a thorough critique of the design decisions. The application of an AR-UIG system in quantitative skill assessment was investigated, and the first quantitative analysis of needle tip localization error in ultrasound in a simulated central line procedure, performed by experienced operators, is presented. Most participants did not closely follow the needle tip in ultrasound, resulting in 42% unsuccessful needle placements and a 33% complication rate. Compared to successful trials, unsuccessful procedures featured a significantly greater (p=0.04) needle-tip to image-plane distance. Professional experience with ultrasound does not necessarily lead to expert level performance. Along with deliberate practice, quantitative skill assessment may reinforce clinical best practices in ultrasound-guided needle insertions. Based on the development guidelines, an AR-UIG system was developed to address the challenges in ultrasound-guided epidural injections. For improved needle positioning, this system integrated A-mode ultrasound signal obtained from a transducer housed at the tip of the needle. Improved needle navigation was achieved via enhanced visualization of the needle in an AR environment, in which B-mode and A-mode ultrasound data were incorporated. The technical feasibility of the AR-UIG system was evaluated in a preliminary user study. The results suggested that the AR-UIG system has the potential to outperform ultrasound-only guidance

    Real-time 3D Mine Modelling in the ¡VAMOS! Project

    Get PDF
    The project Viable Alternative Mine Operating System (¡VAMOS!) develops a new safe, clean and low visibility mining technique for excavating raw materials from submerged inland mines. During operations, the perception data of the mining vehicle can only be communicated to the operator via a computer interface. In order to assist remote control and facilitate assessing risks a detailed view of the mining process below the water surface is necessary. This paper presents approaches to real-time 3D reconstruction of the mining environment for immersive data visualisation in a virtual reality environment to provide advanced spatial awareness. From the raw survey data a more consistent 3D model is created using postprocessing techniques based on a continuous-time simultaneous localization and mapping (SLAM) solution. Signed distance function (SDF) based mapping is employed to fuse the measurements from multiple views into a single representation and reduce sensor noise. Results of the proposed techniques are demonstrated on a dataset captured in an submerged inland mine

    3D virtualization of an underground semi-submerged cave system

    Get PDF
    Underwater caves represent the most challenging scenario for exploration, mapping and 3D modelling. In such complex environment, unsuitable to humans, highly specialized skills and expensive equipment are normally required. Technological progress and scientific innovation attempt, nowadays, to develop safer and more automatic approaches for the virtualization of these complex and not easily accessible environments, which constitute a unique natural, biological and cultural heritage. This paper presents a pilot study realised for the virtualization of 'Grotta Giusti' (Fig. 1), an underground semi-submerged cave system in central Italy. After an introduction on the virtualization process in the cultural heritage domain and a review of techniques and experiences for the virtualization of underground and submerged environments, the paper will focus on the employed virtualization techniques. In particular, the developed approach to simultaneously survey the semi-submersed areas of the cave relying on a stereo camera system and the virtualization of the virtual cave will be discussed

    Hardware design optimization for human motion tracking systems

    Get PDF
    A key component of any interactive computer graphics application is the system for tracking user or input device motion. An accurate estimate of the position and/or orientation of the virtual world tracking targets is critical to effectively creating a convincing virtual experience. Tracking is one of the pillars upon which a virtual reality environment is built and it imposes a fundamental limit on how real the reality of Virtual Reality can be. Whether working on a new or modified tracking system, designers typically begin the design process with requirements for the working volume, the expected user motion, and the infrastructure. Considering these requirements they develop a candidate design that includes one or more tracking mediums (optical, acoustic, etc.), associated source/sensor devices (hardware), and an algorithm (software) for combining the information from the devices. They then simulate the candidate system to estimate the performance for some specific motion paths. Thus the predictions of such traditional simulations typically include the combined effect of hardware and algorithm choices, but only for the chosen motion paths. Before tracker algorithm selection, and irrespective of the motion paths, it is the choice and configuration of the source/sensor devices that are critical to performance. The global limitations imposed by these hardware design choices set a limit on the quantity and quality of the available information (signal) for a given system configuration, and they do so in complex and sometimes unexpected ways. This complexity often makes it difficult for designers to predict or develop intuition about the expected performance impact of adding, removing, or moving source/sensor devices, changing the device parameters, etc. This research introduces a stochastic framework for evaluating and comparing the expected performance of sensing systems for interactive computer graphics. Incorporating models of the sensor devices and expected user motion dynamics, this framework enables complimentary system- and measurement-level hardware information optimization, independent of algorithm and motion paths. The approach for system-level optimization is to estimate the asymptotic position and/or orientation uncertainty at many points throughout a desired working volume or surface, and to visualize the results graphically. This global performance estimation can provide both a quantitative assessment of the expected performance and intuition about how to improve the type and arrangement of sources and sensors, in the context of the desired working volume and expected scene dynamics. Using the same model components required for these system-level optimization, the optimal sensor sampling time can be determined with respect to the expected scene dynamics for measurement-level optimization. Also presented is an experimental evaluation to support the verification of asymptotic analysis of tracking system hardware design along with theoretical analysis aimed at supporting the validity of both the system- and measurement-level optimization methods. In addition, a case study in which both the system- and measurement-level optimization methods to a working tracking system is presented. Finally, Artemis, a software tool for amplifying human intuition and experience in tracking hardware design is introduced. Artemis implements the system-level optimization framework with a visualization component for insight into hardware design choices. Like fluid flow dynamics, Artemis examines and visualizes the information flow of the source and sensor devices in a tracking system, affording interaction with the modeled devices and the resulting performance uncertainty estimate

    Establishing a Framework for the development of Multimodal Virtual Reality Interfaces with Applicability in Education and Clinical Practice

    Get PDF
    The development of Virtual Reality (VR) and Augmented Reality (AR) content with multiple sources of both input and output has led to countless contributions in a great many number of fields, among which medicine and education. Nevertheless, the actual process of integrating the existing VR/AR media and subsequently setting it to purpose is yet a highly scattered and esoteric undertaking. Moreover, seldom do the architectures that derive from such ventures comprise haptic feedback in their implementation, which in turn deprives users from relying on one of the paramount aspects of human interaction, their sense of touch. Determined to circumvent these issues, the present dissertation proposes a centralized albeit modularized framework that thus enables the conception of multimodal VR/AR applications in a novel and straightforward manner. In order to accomplish this, the aforesaid framework makes use of a stereoscopic VR Head Mounted Display (HMD) from Oculus Rift©, a hand tracking controller from Leap Motion©, a custom-made VR mount that allows for the assemblage of the two preceding peripherals and a wearable device of our own design. The latter is a glove that encompasses two core modules in its innings, one that is able to convey haptic feedback to its wearer and another that deals with the non-intrusive acquisition, processing and registering of his/her Electrocardiogram (ECG), Electromyogram (EMG) and Electrodermal Activity (EDA). The software elements of the aforementioned features were all interfaced through Unity3D©, a powerful game engine whose popularity in academic and scientific endeavors is evermore increasing. Upon completion of our system, it was time to substantiate our initial claim with thoroughly developed experiences that would attest to its worth. With this premise in mind, we devised a comprehensive repository of interfaces, amid which three merit special consideration: Brain Connectivity Leap (BCL), Ode to Passive Haptic Learning (PHL) and a Surgical Simulator

    A Survey on Augmented Reality Challenges and Tracking

    Get PDF
    This survey paper presents a classification of different challenges and tracking techniques in the field of augmented reality. The challenges in augmented reality are categorized into performance challenges, alignment challenges, interaction challenges, mobility/portability challenges and visualization challenges. Augmented reality tracking techniques are mainly divided into sensor-based tracking, visionbased tracking and hybrid tracking. The sensor-based tracking is further divided into optical tracking, magnetic tracking, acoustic tracking, inertial tracking or any combination of these to form hybrid sensors tracking. Similarly, the vision-based tracking is divided into marker-based tracking and markerless tracking. Each tracking technique has its advantages and limitations. Hybrid tracking provides a robust and accurate tracking but it involves financial and tehnical difficulties
    corecore