33,584 research outputs found

    Exploiting spatial sparsity for multi-wavelength imaging in optical interferometry

    Full text link
    Optical interferometers provide multiple wavelength measurements. In order to fully exploit the spectral and spatial resolution of these instruments, new algorithms for image reconstruction have to be developed. Early attempts to deal with multi-chromatic interferometric data have consisted in recovering a gray image of the object or independent monochromatic images in some spectral bandwidths. The main challenge is now to recover the full 3-D (spatio-spectral) brightness distribution of the astronomical target given all the available data. We describe a new approach to implement multi-wavelength image reconstruction in the case where the observed scene is a collection of point-like sources. We show the gain in image quality (both spatially and spectrally) achieved by globally taking into account all the data instead of dealing with independent spectral slices. This is achieved thanks to a regularization which favors spatial sparsity and spectral grouping of the sources. Since the objective function is not differentiable, we had to develop a specialized optimization algorithm which also accounts for non-negativity of the brightness distribution.Comment: This version has been accepted for publication in J. Opt. Soc. Am.

    Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection

    Full text link
    This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in fast generic object detection. Each observation is produced on single frames, so that we do not need a data association process along video frames. This is because we associate the height priors with the image region sizes at image places where map features projections fall within the object detection regions. We present very promising results of this approach obtained on several experiments with different object classes.Comment: Int. Workshop on Visual Odometry, CVPR, (July 2017

    Restoration of Poissonian Images Using Alternating Direction Optimization

    Full text link
    Much research has been devoted to the problem of restoring Poissonian images, namely for medical and astronomical applications. However, the restoration of these images using state-of-the-art regularizers (such as those based on multiscale representations or total variation) is still an active research area, since the associated optimization problems are quite challenging. In this paper, we propose an approach to deconvolving Poissonian images, which is based on an alternating direction optimization method. The standard regularization (or maximum a posteriori) restoration criterion, which combines the Poisson log-likelihood with a (non-smooth) convex regularizer (log-prior), leads to hard optimization problems: the log-likelihood is non-quadratic and non-separable, the regularizer is non-smooth, and there is a non-negativity constraint. Using standard convex analysis tools, we present sufficient conditions for existence and uniqueness of solutions of these optimization problems, for several types of regularizers: total-variation, frame-based analysis, and frame-based synthesis. We attack these problems with an instance of the alternating direction method of multipliers (ADMM), which belongs to the family of augmented Lagrangian algorithms. We study sufficient conditions for convergence and show that these are satisfied, either under total-variation or frame-based (analysis and synthesis) regularization. The resulting algorithms are shown to outperform alternative state-of-the-art methods, both in terms of speed and restoration accuracy.Comment: 12 pages, 12 figures, 2 tables. Submitted to the IEEE Transactions on Image Processin
    • …
    corecore