5 research outputs found

    Audio-only bird classification using unsupervised feature learning

    Get PDF
    We describe our method for automatic bird species classification, which uses raw audio without segmentation and without using any auxiliary metadata. It successfully classifies among 501 bird categories, and was by far the highest scoring audio-only bird recognition algorithm submitted to BirdCLEF 2014. Our method uses unsupervised feature learning, a technique which learns regularities in spectro-temporal content without reference to the training labels, which helps a classifier to generalise to further content of the same type. Our strongest submission uses two layers of feature learning to capture regularities at two different time scales

    Deep CNN Framework for Audio Event Recognition using Weakly Labeled Web Data

    Full text link
    The development of audio event recognition models requires labeled training data, which are generally hard to obtain. One promising source of recordings of audio events is the large amount of multimedia data on the web. In particular, if the audio content analysis must itself be performed on web audio, it is important to train the recognizers themselves from such data. Training from these web data, however, poses several challenges, the most important being the availability of labels : labels, if any, that may be obtained for the data are generally {\em weak}, and not of the kind conventionally required for training detectors or classifiers. We propose that learning algorithms that can exploit weak labels offer an effective method to learn from web data. We then propose a robust and efficient deep convolutional neural network (CNN) based framework to learn audio event recognizers from weakly labeled data. The proposed method can train from and analyze recordings of variable length in an efficient manner and outperforms a network trained with {\em strongly labeled} web data by a considerable margin

    Visualization and categorization of ecological acoustic events based on discriminant features

    Get PDF
    Although sound classification in soundscape studies are generally performed by experts, the large growth of acoustic data presents a major challenge for performing such task. At the same time, the identification of more discriminating features becomes crucial when analyzing soundscapes, and this occurs because natural and anthropogenic sounds are very complex, particularly in Neotropical regions, where the biodiversity level is very high. In this scenario, the need for research addressing the discriminatory capability of acoustic features is of utmost importance to work towards automating these processes. In this study we present a method to identify the most discriminant features for categorizing sound events in soundscapes. Such identification is key to classification of sound events. Our experimental findings validate our method, showing high discriminatory capability of certain extracted features from sound data, reaching an accuracy of 89.91% for classification of frogs, birds and insects simultaneously. An extension of these experiments to simulate binary classification reached accuracy of 82.64%,100.0% and 99.40% for the classification between combinations of frogs-birds, frogs-insects and birds-insects, respectively

    Audio-only bird classification using unsupervised feature learning

    No full text
    We describe our method for automatic bird species classification, which uses raw audio without segmentation and without using any auxiliary metadata. It successfully classifies among 501 bird categories, and was by far the highest scoring audio-only bird recognition algorithm submitted to BirdCLEF 2014. Our method uses unsupervised feature learning, a technique which learns regularities in spectro-temporal content without reference to the training labels, which helps a classifier to generalise to further content of the same type. Our strongest submission uses two layers of feature learning to capture regularities at two different time scales

    Learning feature hierarchies for musical audio signals

    Get PDF
    corecore