

Automatische hiérarchische kenmerkextractie
voor muzikale geluidssignalen

Learning Feature Hierarchies for Musical Audio Signals

Sander Dieleman

Promotoren: prof. dr. ir. J. Dambre, dr. ir. B. Schrauwen
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2015 - 2016

}

UNIVERSITEIT
GENT

ISBN 978-90-8578-874-4
NUR 984
Wettelijk depot: D/2016/10.500/6

Dankwoord

Ik wil graag mijn promotoren, eerst Benjamin Schrauwen en later ook Joni
Dambre, bedanken voor de kans en de financiéle ondersteuning om dit on-
derzoek te kunnen doen, maar vooral ook voor de vrijheid die ze mij gegeven
hebben om hierbij mijn eigen traject uit te tekenen. Na mijn masterproef
bij het Reservoir Lab over nootherkenning voor elektrische gitaren kreeg
ik de kans om me voltijds toe te leggen op de computationele analyse van
muzikale geluidssignalen. Uiteindelijk was het niet evident om te mogen
werken rond een dergelijk onderwerp, waarover in de onderzoeksgroep slechts
beperkte expertise aanwezig was en waarvan de impact en commerciéle rele-
vantie toentertijd nog zwaar onderschat werden. Desondanks mocht ik toch
gewoon mijn goesting doen, zolang het maar doordacht en vooral ambitieus
was.

Tk wil ook mijn collega’s bedanken: Adron, Antonio, David, Eric, Fran-
cis, Ira, Jeroen, Jonas, Juan-Pablo, Ken, Lionel, Michiel, Philemon, Pieter,
Pieter-Jan, Thibault en Tim, en ook Brahim, Elias, Karel en Tom. Het
Reservoir Lab is altijd een hechte groep geweest, getuige de vele activiteiten
die we na de uren samen met onze collega’s van HES organiseerden.

David, die daarvoor ook al mijn masterproef mee begeleid had, heeft mij
in het begin van mijn doctoraat zeer veel meegegeven, en ook zijn technische
ondersteuning heb ik zeer gewaardeerd. Pieter-Jan, altijd goedgezind, stond
steeds klaar als er iets moest nagelezen worden, als er spelletjes gespeeld
werden na de uren en ook gewoon, als iemand hem nodig had. Iets wat hij
nu ook weer bewees, toen ik hem de dag voor de deadline vroeg of hij deel
wou uitmaken van mijn examencommissie. Bedankt daarvoor, en ook voor
de vier jaar die we samen doorbrachten in ons kantoor.

Heel veel dank gaat uit naar Adron, met wie ik veel ideeén heb kun-
nen uitwisselen, en ook voor onze samenwerking op verschillende projecten.
Dankzij die samenwerking werd de interesse van de industrie in ons werk

gewekt, en hebben we beiden een mooie stage kunnen doen. Van Philemon
heb ik heel veel bijgeleerd over deep learning. Bedankt voor de vele discussies
over RBMs en DBNSs, en voor de geduldige, doordachte antwoorden op mijn
soms ondoordachte vragen. Francis, bedankt voor het organiseren van de
robotcompetitie, voor de SAP-hulp, en voor ijs en brownies. Ira, thanks for
satisfying my sweet tooth with exorbitant amounts of chocolate.

Verder wil ik Aédron, Ira, Jeroen, Jonas, Lionel en Pieter ook nog eens be-
danken voor de vlotte samenwerking bij onze deelname aan de National Data
Science Bowl, en Joni om ons samen aan dit probleem te laten werken. Tk
bedank ook Marnix, Ronny B., Michiel R. en Jeroen O. voor hun technische
en logistieke ondersteuning.

Thanks to Erik, Chris, Ahmad, Rohan, Nikhil, Vidhya, Ed, Esh, Charlie
and the rest of the Spotify discovery team for a great internship and an
awesome three months in New York. Thanks also to my new colleagues at
DeepMind, for their support and company during the many late nights filled
with thesis writing.

Graag bedank ik ook mijn vrienden, in het bijzonder Jeffrey, loanna, Joni
DM en de voltallige VGMS voor hun steun. My thanks also go out to my
colleagues and friends from the got-djent.com team, and to my collaborators
on the Lasagne project.

Aan het einde van mijn educatieve loopbaan bedank ik ook graag iedereen
die daar in meer of mindere mate toe bijgedragen heeft; in het bijzonder Juf
Claire, die mij vanaf het prille begin zelf liet onderzoeken hoe de wereld in
elkaar zit.

Nogmaals bedankt aan Gert De Cooman, Tijl De Bie, Bart Dhoedt, Mike
Kestemont en Pieter-Jan Kindermans om deel te willen uitmaken van mijn
examencominissie.

Tot slot bedank ik mijn mama, mijn papa, mijn zus Joke, mijn grootoud-
ers en de rest van mijn familie, voor het warme nest waarin ik heb mogen
opgroeien en voor hun onvoorwaardelijke en onuitputtelijke steun in alles
wat ik doe.

Sander Dieleman

prof.

dr.

prof.

prof.

prof.

dr.

dr.

Examencommissie

Joni Dambre, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur

Universiteit Gent

Benjamin Schrauwen, co-promotor
Autodesk

San Francisco, VS

Gert De Cooman, voorzitter
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur

Universiteit Gent

Tijl De Bie
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur

Universiteit Gent

Bart Dhoedt, secretaris
Vakgroep INTEC, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Mike Kestemont
Centrum voor Computerlinguistiek en Psycholinguistiek
Departement Letterkunde

Universiteit Antwerpen

Pieter-Jan Kindermans
Machine Learning Group

Technische Universitat Berlin

Samenvatting

Muziek wordt steeds vaker in digitale vorm geconsumeerd. Het is voor velen
de gewoonte om muziek te kopen in de vorm van digitale geluidsbestanden
in plaats van een fysiek medium, of om muziek te streamen via het internet.
De digitale distributie en consumptie van muziek heeft veel mogelijkheden
voor automatisering gecreéerd. Het doorzoeken van grote muziekcatalogi kan
bijvoorbeeld gestroomlijnd worden door het analyseren van de bijbehorende
metadata en de inhoud van de geluidssignalen, om de muziek op verschillende
manieren te classificeren en organiseren. Dit is zowel voor de luisteraar als
voor de verkoper voordelig: de luisteraar wordt geholpen bij het beheren van
zijn persoonlijke collectie, en de verkoper kan zijn inkomsten verhogen door
het voor potentiéle klanten eenvoudiger te maken om te vinden waar ze naar
op zoek zijn.

Music information retrieval

Het onderzoeksgebied dat music information retrieval (MIR) genoemd wordt,
handelt over de analyse van muziek en bijbehorende metadata met behulp
van computationele methoden, en combineert ideeén uit de musicologie, sig-
naalverwerking en machinaal leren. Onderzoekers die werken rond inhouds-
gebaseerde MIR, zijn in het bijzonder geinteresseerd in het extraheren van
muzikale informatie uit geluidssignalen. Dit is een uitdagende taak: er is
een vrij grote semantische kloof tussen de golfvormen van het geluidssignaal
die een muzieknummer voorstellen enerzijds, en de hoogniveau-aspecten van
de muziek die onze voorkeur beinvloeden anderzijds (zoals bv. genre, instru-
mentatie, ...).

Deze thesis

Muzikale geluidssignalen zijn inherent hiérarchisch gestructureerd, en dit
op verschillende manieren. In het onderzoek dat in deze thesis beschreven
wordt, heb ik methoden voor inhoudsgebaseerde MIR ontwikkeld die deze
hiérarchische structuur uitbuiten. Hiervoor heb ik hoofdzakelijk gebruik ge-
maakt van technieken uit deep learning, een groeiend onderzoeksveld binnen
het machinaal leren. Het idee van deep learning is om modellen te bouwen die
data voorstellen op verschillende abstractieniveaus, en die in staat zijn om
deze voorstellingen op een autonome manier uit de data zelf te extraheren.
Deep learning modellen bestaan doorgaans uit verscheidene verwerkingsla-
gen die een hiérarchie vormen: elke opeenvolgende laag extraheert een steeds
abstractere voorstelling van de invoer, en bouwt hierbij verder op de voor-
stelling die geéxtraheerd werd door de vorige laag. Deze modelstructuur
sluit nauw aan bij de hiérarchische structuur van muziek.

Muziekclassificatie met een pre-frained convo-
lutioneel neuraal netwerk

De Million Song Dataset bevat audiogebaseerde kenmerken en metadata
voor één miljoen nummers. We hebben een convolutioneel neuraal netwerk
gebouwd dat getraind werd op deze dataset om artiestherkenning, genre-
herkenning en toonaardherkenning te doen. Het netwerk is ontworpen om
de geluidskenmerken samen te vatten over muzikaal relevante tijdschalen.
Omdat er weinig beschikbare labels zijn is het niet haalbaar om het net-
werk op de volledige dataset te trainen op een gesuperviseerde manier. We
steunen daarom op unsupervised pre-training om alle data nuttig te kunnen
gebruiken. Daarna gebruiken we de parameters die op deze manier geleerd
werden om een convolutioneel neuraal netwerk met dezelfde architectuur te
initialiseren. Dit netwerk wordt dan verder afgesteld op een gelabelde subset
van de data voor elke afzonderlijke taak.

Automatisch leren van audiogebaseerde ken-
merken voor muziek op meerdere tijdschalen

Inhoudsgebaseerde MIR-taken worden meestal opgelost in twee stappen:
eerst worden kenmerken geéxtraheerd uit muzikale geluidssignalen, en die
worden dan gebruikt als invoer voor een regressie- of classificatiemodel. Deze
kenmerken kunnen manueel ontworpen zijn, of geleerd op basis van data.
Deze eerste aanpak was tot voor kort dominant, maar tegenwoordig krijgt
het automatisch leren van zulke kenmerken steeds meer aandacht binnen

de MIR-gemeenschap. Er is ook steeds meer interesse in voorstellingen van
muzikale geluidssignalen op meerdere tijdschalen, die in verschillende mate
relevant zijn voor diverse MIR-taken.

Recent werden een aantal positieve resultaten geboekt op gebied van het
automatisch leren van kenmerken met behulp van zeer eenvoudige en snelle
algoritmen, zoals K-means. Hierdoor geinspireerd, stellen we drie verschil-
lende architecturen voor voor het leren van audiokenmerken op meerdere
tijdsschalen op basis van het spherical K-means algoritme. We evalueren
deze architecturen voor het automatisch taggen van muziek, het leren van
een gelijkaardigheidsmetriek (similarity metric) en voor genreherkenning.
Deze evaluatie gebeurt aan de hand van de Magnatagatune en GTZAN da-
tasets, alsook bepaalde subsets van de Million Song Dataset.

Diepe inhoudsgebaseerde muziekaanbeveling

Automatische muziekaanbeveling wordt een steeds relevanter probleem, aan-
gezien zeer veel muziek tegenwoordig onder digitale vorm verkocht en beluis-
terd wordt. De meeste aanbevelingssystemen werken op basis van collabo-
rative filtering. Deze aanpak lijdt echter onder het zogenaamde cold start-
probleem: hij faalt wanneer geen gebruiksdata beschikbaar is, en is dus niet
geschikt voor het aanbevelen van nieuwe en minder populaire nummers.

We stellen voor om een latent factor model te gebruiken voor aanbeve-
ling, en om de latente factoren te voorspellen uit muzikale geluidssignalen
wanneer ze niet bepaald kunnen worden op basis van gebruiksdata. We ver-
gelijken een traditionele aanpak op basis van een bag-of-words voorstelling
van de geluidssignalen met een diep convolutioneel neuraal netwerk, en eva-
lueren de voorspellingen op kwantitatieve en kwalitatieve wijze op de Million
Song Dataset. Hierdoor tonen we aan dat het gebruik van uit geluidssignalen
voorspelde latente factoren redelijke aanbevelingen oplevert, en dit ondanks
het feit dat er een grote semantische kloof is tussen de eigenschappen van
een nummer die de voorkeur van de luisteraars beinvloeden en het overeen-
komstige geluidssignaal. We tonen ook aan dat recent geintroduceerde deep
learning technieken ook goed toepasbaar zijn in de context van muziekaan-
beveling: diepe convolutionele neurale netwerken presteren heel wat beter
voor deze taak dan de traditionele aanpak.

End-to-end leren van muzikale geluidskenmer-
ken

Inhoudsgebaseerde MIR-taken worden traditioneel opgelost met behulp van
manueel ontworpen kenmerken en ondiepe architecturen voor de verwerking

van geluidssignalen. Tegenwoordig is er steeds meer interesse in het gebruik
van geleerde kenmerken en diepe architecturen. Deze andere manier van wer-
ken vermindert de nood aan domeinkennis en vermijdt zelfs de kost van het
manueel ontwerp van goede taakspecifieke kenmerken. Desondanks steunt
deze nieuwe aanpak vaak wel nog op zogenaamde mid-level voorstellingen
van muzikale geluidssignalen, bv. spectrogrammen, in plaats van rauwe,
onbewerkte geluidssignalen.

We onderzochten of het mogelijk is om algoritmen voor het automatisch
leren van kenmerken rechtstreeks toe te passen op rauwe geluidssignalen. We
trainden convolutionele neurale netwerken voor het automatisch taggen van
muziek op basis van beide soorten voorstellingen van de invoer, en vergeleken
de resultaten. Hoewel netwerken op basis van rauwe audiosignalen het niet
beter doen dan netwerken op basis van spectrogrammen, zijn ze wel in staat
om op een autonome manier frequentiedecomposities en fase- en translatie-
invariante voorstellingen van geluidssignalen te leren.

Summary

Music is increasingly consumed in a digital format. Many people have grown
accustomed to buying music in the form of audio files rather than physical
media, or streaming music from the internet. This digital distribution and
consumption of music has created plenty of opportunities for automation.
Browsing and searching large catalogues of music can be facilitated by an-
alyzing the associated metadata as well as the audio content, in order to
classify and organize the music in various ways. This benefits both the lis-
teners, by aiding them in maintaining their personal collections, and the
artists and music vendors, who can boost their revenue by making it easier
for potential customers to find what they are looking for.

Music information retrieval

The field of music information retrieval (MIR) concerns itself with the analy-
sis of music and associated metadata through use of computational methods,
and combines ideas from musicology, signal processing and machine learning.
Researchers in content-based MIR are particularly interested in extracting
music information from audio waveforms. This is a challenging task: there
is quite a large semantic gap between the audio waveform representing a
piece of music, and the various high-level aspects of the music that affect
our preference and consumption patterns (such as genre, instrumentation,

).

This thesis

Music audio is inherently hierarchically structured in many different ways. In
the research described in this thesis, I have developed methods for content-
based MIR which exploit this hierarchical structure of music. For this pur-

pose, I have chiefly made use of techniques from deep learning, an emerging
subfield of machine learning. The idea of deep learning is to build models
that represent data at multiple levels of abstraction, and can discover such
representations autonomously from the data itself. Deep learning models
consist of several layers of processing that form a hierarchy: each subsequent
layer extracts a progressively more abstract representation of the input data
and builds upon the representation from the previous layer. This model
structure is an excellent match for the hierarchical structure of music.

Music classification with a pre-frained convolu-
fional neural network

The Million Song Dataset contains audio features and metadata for one
million songs. We have built a convolutional network that is trained on this
dataset to perform artist recognition, genre recognition and key detection.
The network is tailored to summarize the audio features over musically sig-
nificant timescales. Because labels are scarce, it is infeasible to train the
network on all available data in a supervised fashion. We use unsupervised
pre-training to be able to harness the entire dataset: we train a convolu-
tional deep belief network on all data, and then use the learnt parameters to
initialize a convolutional multilayer perceptron with the same architecture.
The MLP is then finetuned on a labeled subset of the data for each task.

Multiscale feature learning for music audio

Content-based music information retrieval tasks are typically solved with a
two-stage approach: features are extracted from music audio signals, and
are then used as input to a regressor or classifier. These features can be
engineered or learnt from data. Although the former approach was dominant
in the past, feature learning has started to receive more attention from the
MIR community in recent years. There has also been increased interest in
multiscale representations of music audio recently. Such representations are
more versatile because music audio exhibits structure on multiple timescales,
which are relevant for different MIR tasks to varying degrees.

Inspired by recent results in feature learning using very simple and fast
algorithms such as K-means to great effect, we propose three different archi-
tectures for multiscale audio feature learning using the spherical K-means
algorithm. We evaluate them for automatic tagging, similarity metric learn-
ing and genre recognition on the Magnatagatune and GTZAN datasets, as
well as subsets of the Million Song Dataset.

Deep content-based music recommendation

Automatic music recommendation has become an increasingly relevant prob-
lem in recent years, since a lot of music is now sold and consumed digitally.
Most recommender systems rely on collaborative filtering. However, this
approach suffers from the cold start problem: it fails when no usage data is
available, so it is not effective for recommending new and unpopular songs.

We propose to use a latent factor model for recommendation, and pre-
dict the latent factors from music audio when they cannot be obtained from
usage data. We compare a traditional approach using a bag-of-words rep-
resentation of the audio signals with deep convolutional neural networks,
and evaluate the predictions quantitatively and qualitatively on the Million
Song Dataset. We show that using predicted latent factors produces sen-
sible recommendations, despite the fact that there is a large semantic gap
between the characteristics of a song that affect user preference and the cor-
responding audio signal. We also show that recent advances in deep learning
translate very well to the music recommendation setting, with deep convolu-
tional neural networks significantly outperforming the traditional approach.

End-tfo-end learning for music audio

Content-based music information retrieval tasks have traditionally been solved
using engineered features and shallow processing architectures. In recent
years, there has been increasing interest in using feature learning and deep
architectures instead, thus reducing the required engineering effort and the
need for prior knowledge. However, this new approach typically still relies
on mid-level representations of music audio, e.g. spectrograms, instead of
raw audio signals.

We investigate whether it is possible to apply feature learning directly
to raw audio signals. We train convolutional neural networks using both
approaches and compare their performance on an automatic tagging task.
Although they do not outperform a spectrogram-based approach, the net-
works are able to autonomously discover frequency decompositions from raw
audio, as well as phase- and translation-invariant feature representations.

List of abbreviations

ALS Alternating Least Squares

API Application Programming Interface
AUC Area Under the ROC-curve

BoW Bag-of-words

CD Contrastive Divergence

CDBN Convolutional Deep Belief Network
CD-k k-step Contrastive Divergence

CF Collaborative Filtering

CNN Convolutional Neural Network
Convnet Convolutional Neural Network
CPU Central Processing Unit

cQT Constant-Q Transform

Cv Cross-validation

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DCT Discrete Cosine Transform
DNN Deep Neural Network
FFT Fast Fourier Transform

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GTZAN George Tzanetakis’s genre classification dataset
Gyr Gigayear, 10° years

GZ2 Galaxy Zoo 2

LSST Large Synoptic Survey Telescope
LSTM Long Short-term Memory

mAP Mean Average Precision

MF Matrix Factorization

MFCC Mel Frequency Cepstral Coefficient
MIDI ~ Musical Instrument Digital Interface
MIR Music Information Retrieval

MLP Multilayer Perceptron

MLR Metric Learning to Rank

MSD Million Song Dataset

MSE Mean Squared Error

NCA Neighbourhood Components Analysis
NLL Negative Log Likelihood

NN Neural Network

PCA Principal Components Analysis
PCM Pulse Code Modulation

PMF Probabilistic Matrix Factorization
PMSC Principal Mel-Spectrum Component
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit

RGB Red, Green, Blue

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic
SDSS Sloan Digital Sky Survey

SGD Stochastic Gradient Descent

STFT Short-time Fourier Transform

SVM Support Vector Machine

t-SNE t-distributed Stochastic Neighbour Embedding
VAE Variational Autoencoder

WAVE Wave audio file format

WMF Weighted Matrix Factorization
WPE Weighted Prediction Error

1

Contents

Introduction 1
1.1 Music information retrieval 2
1.1.1 The semantic gap in music 4
1.1.2 Musical audio signal representations 5
1.1.3 Tasksofinterest 6
1.2 Machine learning Lo 10
1.2.1 Supervised learning 0oL 11
1.2.2 Unsupervised learning 13
1.2.3 Other learning paradigms 14
1.2.4 Underfitting and overfitting 15
1.2.5 Model validation, 18
1.2.6 Regularisation 18
1.3 Deep learning and neural networks 19
1.3.1 Neural networks 19
1.3.2 Trainingo Lo 20
1.3.3 Deep neural networks 20
1.3.4 Convolutional neural networks 22
1.3.5 Deep learning for MIR 25
1.4 Research contributions 25
1.5 List of publications 28
Music classification with a pre-trained convolutional neural
network 31
2.1 Imtroduction.o 31
2.2 Dataset 32
2.2.1 The Million Song Dataset 32
2.2.2 Beat-aligned features 33

2.3 Background oo 33

Contents

2.3.1 Restricted Boltzmann machines 33
2.3.2 Deep belief networks 34
2.3.3 Convolutional deep belief networks 35
2.3.4 Supervised finetuningo 36
2.4 Tasks 36
2.5 Approach 37
2.5.1 Network layout 37
2.5.2 Unsupervised pre-training 39
2.6 Experiments. o 40
2.7 Results. 40
2.8 Conclusion 42
Unsupervised multiscale feature learning 45
3.1 Introduction. 45
3.2 Features for content-based MIR, 46
3.3 Feature learning oL 47
3.3.1 Learning representations 47
3.3.2 Feature learning in MIR 47
3.4 Multiscale representations 50
3.4.1 Multiscale time-frequency representations of music audio 51
3.5 Proposed approach 52
3.5.1 Time-frequency representation 54
3.5.2 PCA whitening 54
3.5.3 Spherical K-means 54
3.5.4 Pooling 55
3.5.5 Frequency invariance 57
3.5.6 Feature hierarchies 57
3.6 Experiments. L oL 58
3.6.1 Datasets oo 58
3.6.2 Tag prediction, 59
3.6.3 Similarity metric learning 59
3.6.4 Genre recognition Lo 60
3.7 Results. 60
3.7.1 Architectureso 60
3.7.2 Relevant timescales L. 61
3.7.3 Frequency invariance L. 67
3.7.4 Feature hierarchies 68
3.8 Conclusion 68
Deep content-based music recommendation 71
4.1 Introduction. 71

4.2 Music recommendation 72

Contents

4.2.1 Content-based music recommendation 73
4.2.2 Collaborative filtering 73
4.2.3 Thesemanticgap. 73
4.3 Thedataset 74
4.4 Weighted matrix factorization 75
4.5 Predicting latent factors from music audio 76
4.5.1 Bag-of-words representation 7
4.5.2 Convolutional neural networks 77
4.5.3 Objective functions 78
4.6 Experiments. oo 79
4.6.1 Versatility of the latent factor representation 79
4.6.2 Latent factor prediction: quantitative evaluation . . . 79
4.6.3 Latent factor prediction: qualitative evaluation 81
4.7 Related work 82
4.8 Conclusion 85
5 End-to-end learning 87
5.1 Introduction. 87
5.2 Mid-level representations 88
5.3 End-to-end learning L oL 88
5.4 Experiments and results 89
5.4.1 Experimental setup. 89
5.4.2 Spectrograms versus raw audio 91
5.4.3 Dynamic range compression 93
5.4.4 Invariance 93
5.5 Conclusion e 94
6 Conclusion and perspectives 97
6.1 Summary 97
6.2 Perspectiveso 100
6.2.1 Pre-trained convolutional neural networks for music
clagsification 100
6.2.2 Multiscale representations L. 101
6.2.3 Content-based music recommendation 102
6.2.4 End-to-end feature learning 103
6.2.5 Long-term perspectives 103
A Galaxy morphology classification 107
A1l Imtroduction 107
A2 Galaxy Zoo 109
A.3 The Galaxy Challenge 110

A4 Related work 114

Contents

A.5 Exploiting rotational symmetry 116
A6 Approach 117
A.6.1 Experimental setup. 117
A.6.2 Avoiding overfitting 120
A.6.3 Preprocessing 120
A.6.4 Data augmentation 121
A.6.5 Viewpoint extraction 122
A.6.6 Network architecture 124
A6.7 Training oo 127
A.6.8 Model averaging 128
A.6.9 Implementation 128
A7 Results. 129
A8 Analysis 134
A.9 Conclusion and future work 137

Bibliography 141

Infroduction

Music is increasingly consumed in a digital format. Many people have grown
accustomed to buying music in the form of audio files rather than physical
media, or streaming music from the internet. This digital distribution and
consumption of music has created plenty of opportunities for automation.
Browsing and searching large catalogues of music can be facilitated by an-
alyzing the associated metadata as well as the audio content, in order to
classify and organize the music in various ways. This benefits both the lis-
teners, by aiding them in maintaining their personal collections, and the
artists and music vendors, who can boost their revenue by making it easier
for potential customers to find what they are looking for.

The field of music information retrieval (MIR) concerns itself with the
analysis of music and associated metadata through use of computational
methods, and combines ideas from musicology, signal processing and ma-
chine learning. Researchers in content-based MIR are particularly interested
in extracting music information from audio waveforms. This is a challenging
task: there is quite a large semantic gap between the audio waveform repre-
senting a piece of music, and the various high-level aspects of the music that
affect our preference and consumption patterns. These aspects are precisely
the ones that are of interest when people search music catalogues, so being
able to extract them automatically is valuable.

Music audio is inherently hierarchically structured in many different
ways. Most contemporary music exhibits harmonic structure based on chord
progressions, which are temporal sequences of chords. Chords are composed
of pitches, which in turn consist of various frequencies: fundamental fre-
quencies and their multiples. Music also features a hierarchical temporal
structure in the form of rhythm. On a coarser timescale, we can group note
sequences into motifs, themes and phrases. Classical music often adhered
quite rigorously to musical forms (e.g. the sonata form), which describe

2 1 Introduction

the large-scale temporal structure of a piece in detail. Contemporary music
often exhibits a verse-chorus-verse structure.

In the research described in this thesis, I have developed methods for
content-based MIR, which exploit this hierarchical structure of music. For
this purpose, I have chiefly made use of techniques from deep learning, an
emerging subfield of machine learning. The idea of deep learning is to build
models that represent data at multiple levels of abstraction, and can discover
such representations autonomously from the data itself [8]. Deep learning
models consist of several layers of processing that form a hierarchy: each
subsequent layer extracts a progressively more abstract representation of
the input data and builds upon the representation from the previous layer.
This model structure is an excellent match for the hierarchical structure of
music.

This chapter is intended to provide those who are unfamiliar with the
subject matter with an overview of music information retrieval, machine
learning and deep learning, and to describe the context in which this research
took place. It concludes with an outline of the thesis and an overview of
research contributions, as well as a list of publications.

1.1 Music information retrieval

Music information retrieval is a very broad field at the crossroads of vari-
ous domains. It brings together researchers from very different backgrounds
including musicology, signal processing and machine learning, all of whom in-
vestigate how higher-level representations and information can be extracted
from music. Their motivations are very diverse. For example, musicolo-
gists may use MIR techniques to extract musically interesting properties
from large collections, or they may use them to support experiments with
musicians or listeners. Developers might want to build tools for musicians
or for music education, such as automatic transcription or score-following
software. Yet others are interested in automatically annotating or recom-
mending music, in order to help listeners and musicians find each other. The
work described in this thesis falls squarely within this last category.
MIR tasks can be categorized along several axes:

e data sources and types: one can extract musical information from
raw audio signals, symbolic representations of music (such as MIDI files
or images of sheet music), associated metadata (composer, artist, date
of publication, or manually annotated information about the audio
content such as genre labels and tags), lyrics, or textual data mined
from the web (blog posts, reviews, mentions on social media). Content-

1.1 Music information retrieval 3

based MIR refers to those tasks where the data source is the music itself,
either in the form of raw audio or a symbolic representation.

e specificity: some MIR tasks involve identifying a very specific and/or
uncommon feature of a piece of music out of a large number of possi-
bilities, such as the name of a song or the performing artist. Examples
of such tasks are artist identification and cover song detection. Exam-
ples of less specific tasks (involving much broader categories and more
common features) are genre classification and instrument classification.

e abstraction level: tasks which extract information that is semanti-
cally close to the format of the input data are said to be low-level.
Examples of such tasks are music transcription (i.e. creating a score
or MIDI representation from an audio file) and score following (auto-
matically showing an artist the right page of the score and their po-
sition within it while they are playing). In high-level tasks, like genre
classification and recommendation, the information to be extracted is
relatively far removed from the input representation in terms of ab-
straction level. The abstraction level corresponds to the size of the
semantic gap between the input representation and the information
we wish to extract from it.

e analysis vs. synthesis: usually the goal of a MIR task is to extract
musical information (analysis), but it could also be to generate music
(synthesis). This way one could create intelligent instruments that are
able to play along with an artist autonomously, for example.

The work described in this thesis focuses on content-based MIR (using
musical audio signals in particular), and on tasks with low specificity across
a range of abstraction levels.

Audio-based MIR is a relatively small field of research, especially com-
pared to the closely related field of speech processing and recognition. An
important reason for this is that it is difficult to obtain large enough datasets
due to licensing issues. As a result, researchers are dissuaded to share large
collections of music audio, and prefer to assemble and use their own personal
datasets. This hampers progress because research results are difficult to re-
produce and compare, and collecting and annotating data takes up valuable
research time.

A lot of work in audio-based MIR has been inspired by related work in
speech recognition: many models and feature representations of audio sig-
nals used in speech processing have been repurposed by MIR researchers.
The most notable example is the ubiquity of Mel Frequency Cepstral Coeffi-
cients (MFCCs) which are features extracted from audio signals that capture
the short-term power spectrum. These features were originally designed for

4 1 Introduction

speech, but have since been shown to be very versatile in the context of MIR
as well. Researchers have repurposed them for use in perceptual audio sim-
ilarity measures, instrument classification and genre classification, among
others.

1.1.1 The semantic gap in music

Content-based MIR tasks can be challenging, because there is typically a
large semantic gap between the musical properties of interest and the corre-
sponding audio signals. Some properties are easier to extract than others,
and this is usually tied to their abstraction level. For example, determin-
ing the instruments used in a recording of a piece of music is fairly easy by
modern standards, because it requires detecting the presence of certain tim-
bres in the audio signal, which correspond quite well to spectral envelopes.
Classifying audio recordings by genre is a bit more difficult, because there
are various patterns in the audio signal at various different timescales for
which the probability of occurrence depends on the genre of the music [147].
This is because the genre will affect e.g. the instrumentation, which is easy
to detect at a very fine-grained timescale, but also the musical form (e.g.
verse-chorus-verse structure), which can only be detected at a very coarse
timescale. In addition, the concept of a genre is less well-defined than that
of an instrument class, so there is more ambiguity in the class labels.

Some properties of music will affect the audio signal in ways that are in-
feasible to extract automatically: the genre of the music will affect its lyrical
content, but extracting lyrics from audio signals and analyzing their under-
lying meaning is quite challenging and probably not worth the considerable
engineering effort involved. Yet others are often not present in the audio
signal at all, such as the geographical location of the performing artist!.

Bridging the semantic gap in an automated fashion can be challenging,
and this problem has often been solved in the past by including humans
in the loop. The Music Genome Project?, for example, is a collection of
annotations for about 1 million songs with over 450 different attributes. The
annotations were obtained by having music experts listen to and manually
label each of the songs. This massive undertaking was started in 1999 and
is ongoing today. The data from the Music Genome Project is not publicly
available; it is currently used to power Pandora®’s music recommendation
and radio programming algorithms.

Unfortunately this approach is quite costly to scale, and many of Pan-

Lthis property is very relevant in music recommendation, for example, because listeners
are more likely to listen to artists from their own area.

2https://www.pandora.com/about/mgp

3http://www.pandora.com/

1.1 Music information retrieval 5

dora’s competitors boast music collections that are an order of magnitude
larger (e.g. Spotify’s catalog features over 30 million songs). As a result,
they have to use a different approach to recommend music. Automating
the annotation process as much as possible makes it feasible to annotate
larger collections, and this is where content-based MIR approaches can be
especially useful.

1.1.2 Musical audio signal representations

Audio signals represent pressure waves: moving patterns of low and high
pressure. They are continuous in both time and amplitude. To store them
in digital form, however, the signals need to be quantized in both of these
dimensions. This is referred to as pulse-code modulation (PCM). The result
is a sequence of integers® that represent an approximation of the original
waveform. Although quantization of a waveform in time (i.e. sampling)
need not necessarily lead to a loss of information for bandlimited signals,
quantization in amplitude always does.

The commonly used WAVE file format simply stores these sequences
of numbers unmodified. Other audio file formats, such as MP3, compress
the sequences with lossy schemes that remove information the human ear is
insensitive to, to reduce the amount of required storage space.

In the context of MIR, however, so-called mid-level representations are of-
ten extracted from digital audio signals and operated on instead [106]. They
typically represent sound in a way that matches more closely how humans
perceive it: as varying patterns of different frequencies over time. They are
referred to as such because they hold the middle between low-level repre-
sentations (i.e. raw audio signals) and high-level symbolic representations of
music.

The most commonly used mid-level representations are time-frequency
representations: instead of describing the amplitude of the signal as it varies
over time, they describe the amplitudes or energies of the signal in various
different frequency bands, as they vary over time on a much coarser timescale
[161]. In effect, these representations trade temporal resolution for frequency
resolution®.

Many commonly used time-frequency representations are based on spec-
trograms. A spectrogram of a signal can be obtained by computing the
short-time Fourier transform (STFT) of short windows that usually overlap
partially. From these transformed windows, power spectra can be obtained

40r multiple sequences of integers, in the case of audio signals with multiple channels.

51t is not possible for a representation to have the highest resolution in both time and
frequency; one has to be traded for the other. This is a form of the Heisenberg uncertainty
principle.

6 1 Introduction

that indicate the energy in various frequency bands within each window.
Each of these constitutes a frame. The successive frames are concatenated
into a matrix to form the spectrogram.

Spectrograms are often post-processed further to better match the prop-
erties of human perception. The energy values in the spectrogram are often
converted to a logarithmic scale, to match our logarithmic perception of loud-
ness. The frequency axis, which is linear by default as a result of the STFT,
is often converted to another scale, such as the mel scale [140] (giving rise to
mel spectrograms, which are commonly used in speech processing) or a log-
arithmic scale (resulting in constant-Q or log-frequency spectrograms, where
intervals between notes are equidistant across the frequency axis [126]). It
is also possible to obtain time-frequency representations using custom filter
banks (this approach is sometimes used to obtain constant-Q spectrograms
as well) or wavelet transforms.

High-level representations, such as mel-frequency cepstral coefficients
(MFCCs) or chroma representations (which represent only pitch informa-
tion and remove any timbral variation) are also commonly used [107]. I have
mostly avoided using them in this work, except for some baseline experi-
ments, seeing as the goal was to learn useful features from data instead.

1.1.3 Tasks of interest

The primary goals of the work described in this thesis are to facilitate search-
ing, sorting and browsing through large collections of musical audio, as well
as generating recommendations from them. Consequently, it covers a sub-
set of audio-based MIR tasks that are potentially useful for the automatic
annotation and recommendation of music at the song level. We will look
at three types of tasks in particular: music classification, automatic tagging
and music recommendation. For a more complete overview of the field of
MIR and its applications, we refer to Miiller [107].

Music classification

Classification is the task of categorizing examples into a set of classes by
assigning one or more class labels to each of them. These classes are typ-
ically non-overlapping, but don’t necessarily have to be. Classification can
be carried out manually, but increasingly many classification problems are
partially or fully automated through use of machine learning (see Section
1.2).

Music can be classified according to many different taxonomies on various
different levels of abstraction. Popular classification-based MIR problems are
instrument, genre and mood classification. Artist identification can also be

1.1 Music information retrieval 7

cast as a classification problem by creating a separate class for each artist,
provided that all artists are known to come from a given set.

Instrument classification: this is regarded as a less challenging prob-
lem in audio-based MIR, because the way different instruments manifest
themselves in an audio waveform is fairly straightforward: they affect its
spectral envelope, which we perceive as the timbre.

Genre classification: the concept of a ‘genre’ is somewhat ill-defined,
and will typically manifest itself in an audio waveform in many different ways
(instrumentation, rhythm, melody, ...) and at many different time scales.
This makes genre classification a more difficult problem than instrument
classification. It has nevertheless been a popular MIR task to study, in no
small part due to the public availability of the GTZAN genre classification
dataset [147]. This dataset, introduced in 2002, features 1000 audio clips
divided into 10 genres. As mentioned before, audio-based MIR datasets are
hard to come by, and as a result it has been used in a large body of work
[143].

Mood classification: the mood of a piece of music is somewhat sub-
jective and arguably even more ambiguous than its genre, so this problem
is even more ill-defined. Nevertheless, there is a lot of interest in this task
because mood information can be useful for making context-dependent rec-
ommendations.

Artist identification: this problem is usually studied on a fairly small
scale, where treating it as a classification problem is feasible.

Other classification tasks: other tasks of interesting include identi-
fying the key (i.e. the tonic note and chord) or the tempo of a piece of
music.

Classification is useful in the context of making large collections of music
easily browsable and searchable, because the assigned class labels can be
exposed to the user directly and used as filters. But it is also useful indirectly,
for music recommendation for example: we can determine the affinity of a
given user for each label based on their prior listening habits, and then find
songs to recommend by selecting songs from the classes for which the user has
a high affinity. Pandora’s radio programming algorithms are based on this
approach, using manual classifications obtained from experts (see Section
1.1.1).

Automatic tagging

Tags are keywords or short descriptions that can be associated with various
types of digital content, such as images, news articles or web pages. They
are also popular for categorizing and organizing music. In many cases, tags
can be associated with content by users, and the tags do not come from a

8 1 Introduction

prespecified taxonomy: the users can use any word or combination of words
as a tag. A good example is the last.fm® platform, where all songs, artists
and albums can be tagged by registered users. The most popular tags for
each content item are displayed on the associated web pages.

Because tags are arbitrarily chosen by many different users, they consti-
tute a fairly noisy form of metadata. Different users may use synonyms or
different spellings for the same word (e.g. ‘favorite’, ‘favourite’), leading to
redundancy. Many users use the tagging system to create categories that are
useful only to themselves (e.g. the ‘seen live’ or ‘favorite’ tags on last.fm).
Usually, tags form a flat taxonomy, without any form of hierarchy. In some
cases, tags may instead be assigned only by trained experts, and from a
limited predefined taxonomy (e.g. the Music Genome Project). In this case,
the tags are usually much more consistent and reliable.

The goal of automatic tagging is to automatically assign relevant tags to
pieces of content. Automatic tagging systems are usually built to reproduce
tag data obtained from users, so that they can be trained on this data. This
means it is useful to treat it as a problem category of its own. It is also
possible to cast automatic tagging as a classification problem. However, it
has several properties that set it apart from typical classification problems,
especially in a music context:

e Tag prediction is a multi-label classification task: each song can be
associated with multiple tags, so the classes are not disjoint.

e There are large numbers of tags; orders of magnitude more than there
are classes in typical classification problems.

e Tags are weak labels: if a song is not associated with a particular
tag, the tag may still be applicable to the song. In other words, some
positive labels are missing. This also has implications for the metrics
we use to measure the performance of automatic tagging systems.

e The labels are redundant: a lot of tags are correlated, or have overlap-
ping meanings. For example, songs tagged with disco are more likely
to also be tagged with 80’s. Misspellings and synonyms exacerbate
this problem.

e The labels are very sparse: most tags only apply to a small subset of
songs.

Nevertheless, for practical automatic tagging problems with limited tax-
onomies, creating a binary classifier for each tag is often sufficient.

Shttp://www.last.fm/

1.1 Music information retrieval 9

Music recommendation

The goal of music recommendation is to recommend new artists and songs to
listen to based on users’ preferences. These preferences can be determined in
many different ways and from various different data sources. Consequently,
there is a large variety of approaches to building recommender systems for
music. Recommender systems in general have become very common in re-
cent years and are applied in a variety of different settings. Besides music,
recommender systems exist for movies, books, products (e.g. in online shops)
and people (online dating).

Although recommender systems have been studied extensively, the prob-
lem of music recommendation in particular is complicated by the sheer va-
riety of different styles and genres, as well as social and geographic factors
that influence listener preferences. The number of different items that can be
recommended is very large, especially when recommending individual songs.
This number can be reduced by recommending albums or artists instead,
but this is not always compatible with the intended use of the system (e.g.
automatic playlist generation), and it disregards the fact that the repertoire
of an artist is rarely homogenous: listeners may enjoy particular songs more
than others.

The most popular approach to build a recommender system, both in
academia and industry, is using collaborative filtering. This technique can be
used to extract preference information for users from their prior consumption
patterns. As a result, it is content-agnostic: it can be applied to any type of
recommendation problem. It is based on the assumption that we can predict
which items a given user will like based on the preference of other users whose
consumption patterns are similar to theirs. Collaborative filtering works
very well for music. Preference information can be obtained by having users
rate songs or mark them as favourites (explicit feedback), or by analyzing
their listening patterns and other behaviours (implicit feedback). The latter
approach is more common in practice because it does not require any effort
on the part of the user.

It is also possible to build recommender systems that use information
about the users and the items. For example, we can use demographic infor-
mation about users, as this almost certainly affects their taste in music. We
can also use metadata about songs and artists (geographical location, year of
release, genre labels, tags), or the audio content of the songs. We will refer
to this as content-based recommendation. This approach is not as popular,
because it is typically more complex than collaborative filtering and requires
more data to be available. Collaborative filtering also tends to outperform
content-based approaches in many situations.

Nevertheless, collaborative filtering has certain problems that content-

10 1 Introduction

based approaches do not suffer from. The so-called cold start problem is
probably the most important: it is impossible to recommend new and un-
popular items using collaborative filtering, because not enough consumption
information is available to analyse. For the same reason, it is also impossible
to make recommendations for new users. This is why studying content-based
recommendation is worthwhile, and especially for music, where the cold-start
problem is exacerbated because so many niche genres and relatively unpop-
ular artists and songs exist.

A lot of other MIR tasks can indirectly be useful for music recommen-
dation: for example, tags predicted by an automatic tagging system can be
used to find good recommendations. However, we can also study music rec-
ommendation as a task in its own right and attempt to build an end-to-end
solution for this problem. Note that the problems of music recommenda-
tion and automatic tagging are closely related: just like tag prediction, user
preference prediction can be seen as a multi-label classification task. Users
who have not listened to a given song might still like it if they heard it, so
a lot of positive information is missing here as well. There is also a lot of
redundancy because many users have similar tastes, and the consumption
patterns tend to be very sparse because users only listen to a very small
subset of songs.

1.2 Machine learning

Machine learning is the study of systems that are able to learn from examples
without being explicitly programmed. This can be achieved by constructing
a parameterised model and then finding the optimal set of parameters by
minimizing an objective function that measures how well the model fits the
examples (i.e. an error measure). The goal is to make the model fit the
example data well, so it can make predictions about it, classify it, detect
anomalies or generate new examples.

Being able to solve prediction and classification tasks without having to
explicitly write a program to do so is valuable, because many such tasks are
difficult to capture in an algorithm. This is especially true for certain tasks
that are very easy to do for humans, such as identifying objects in an image,
or understanding speech. Machine learning makes it possible for computers
to perform these tasks without requiring a manually engineered solution.
This reduces development costs and ultimately leads to better performance
and more robust solutions.

Machine learning can be cast as an optimisation problem: given a dataset
consisting of training examples, a machine learning model is trained by op-

1.2 Machine learning 11

timising an objective function. However, it differs from typical optimisation
problems in a key point: the goal is to achieve good performance on new,
previously unseen data, instead of maximising performance on the available
training data. This is an extremely important distinction: if the parameters
of a model are simply optimised to minimise the training objective, this will
likely result in overfitting. The model will exhibit good performance on the
training data, but poor generalisation performance.

Overfitting is a consequence of the fact that training data for a machine
learning model is usually noisy. Powerful models may be able to fit this
noise exactly, allowing them to memorise each training example. To prevent
this from happening, the complexity of the model needs to be controlled by
regularisation.

Many practical problems can be solved by function approximation. In
this case, the training examples for a machine learning model would be pairs
(x,t), where z represents an example and ¢ represents the desired output of
the function for this example. The output of the model y = f(z) should then
approximate t as well as possible. This setting is referred to as supervised
learning. Examples of supervised learning include classification, regression
(predicting one or more continuous values) and ranking.

In the case of unsupervised learning, the model should instead discover
structure in the training data. Examples of unsupervised learning are clus-
tering, dimensionality reduction (mapping the examples into a lower-dimensional
space), feature learning (learning useful representations for use in supervised
learning problems) and density modeling (approximating the probability dis-
tribution of the training data).

This section is intended to provide an overview of the field of machine

learning, with a focus on the concepts and models that I have used in my
research.

1.2.1 Supervised learning

Let the vector x,, be a data point from a dataset D consisting of N examples,
and t,, its associated target vector:

D ={(Xn,tn),n=0,...,N —1}.

We will represent both the data point and the target as vectors for con-
venience, but they could have any dimensionality. Both the data points and
targets can be discrete or continuous. Let f(x]@) be a parameterised func-
tion representing the model, with parameter vector 8. Once the model is

12 1 Introduction

trained, we can obtain a prediction y,, for each data point x,,:
Yn = [(xn]0).

The goal of supervised learning is to make the predictions y,, approximate
the targets t,, as accurately as possible. We will need to define an objective
function J(D, 0) that measures the quality of the approximation across all
(Xn,tn) € D. Finally, we need an algorithm to optimise J(D,).

Regression

For a regression problem, t, is a continuous-valued scalar or vector. For
notational convenience, we will consider the case of scalar targets ¢,, in what
follows. As a result, the model predictions y, will also be scalar-valued. A
common choice for the objective function in this case is the mean squared
error (MSE):

1 N—-1 1 N—-1
J(D,O) = N Z (tn - yn)2 = N Z (tn - f(Xn|9))2-
n=0 n=0

This is the average across all data points of the squared difference be-
tween the target value and the predicted value. Of course, other types of
objective functions are also possible. Because this objective function mea-
sures the prediction error, it should be minimised with respect to the model
parameters 0 to find the optimal solution:

6 = arg mein J(D,0).

Classification

In a classification setting, each data point x, is understood to belong to
a subset of K classes, and the goal for the model is to be able to identify
which of these classes each data point belongs to. Typically, the classes will
be mutually exclusive, so each data point belongs to one class only, but they
do not have to be. We will assume that this is the case here. The K classes
can be represented by indices ranging from 0 to K — 1. We will use such
indices for the targets ¢, and the corresponding predictions ¥,, which are
both discrete in this case.

A classification model assigns a score s,i, k =0,..., K — 1 to each class,
given a data point x,,. The predicted class is then the one with the highest
score:

Yn = AIgMAX Spk.

1.2 Machine learning 13

Classification is often approached using a probabilistic interpretation.
The scores s, are then constrained to form a discrete probability distribu-
tion across the classes:

0<spe <1 Vn,k,

K-1
E Spk =1 Vn,
k=0

and we define p(y, = k) = spk. We can then use the conditional log-
likelihood p(y|x) of the model predictions given the data points as the ob-
jective function:

N-1
J(Dv 0) = Z 1ng(yn = tn|Xn)'
n=0
This objective should be maximised, because we wish to maximize the
likelihood of the data under the model. By convention, a minus sign is often
added in front to get the negative log-likelihood (NLL), turning it into a
minimisation problem.
The scores can be constrained to form a probability distribution by using
the so-called softmaz function in the model:

B exp(ank)
= SK-1)
Y ko €xp(ank)

where a,, are real numbers that come from the model.

Snk

1.2.2 Unsupervised learning

In the case of unsupervised learning, the dataset D consists only of the data
points x,,, because there are no associated target vectors:

D={xy,n=0,...,N—1}.

Because there are no targets, we cannot define the objective function
J(D,) in terms of how well the targets are approximated by the model.
Instead, we have to specify it directly in terms of the data points. Like
before, it should measure how well the model fits the data. We will also
need an algorithm to optimise J(D, 0).

Density modeling

The goal of density modeling is to model the distribution p(x) of the data
over the input space. The objective is then to maximise the log-likelihood

14 1 Introduction

of the data under the model:

J(D,0) = Z_: log p(xn).

Note that this is now expressed in terms of the distribution p(x), and
not in terms of the conditional distribution p(t|x) as was the case for classi-
fication.

Density modeling is arguably one of the most versatile forms of unsuper-
vised learning. Many types of models allow for the likelihood of new data
points to be estimated, and for plausible samples of new datapoints to be
drawn.

Clustering

Clustering entails finding groups of similar data points in a set. Some clus-
tering algorithms require the number of groups to be specified on beforehand,
but others do not. The objective function associated with clustering usually
rewards similarity between data points that are added to the same cluster
and penalizes dissimilarity within each cluster. Additionally it may also
penalize similarity between data points from different clusters.

Similarity between data points can be measured as the inverse of the dis-
tance between them in the input space. The objective can then be formulated
as a minimization of the distance between data points within clusters, while
simultaneously maximizing the distance between data points from different
clusters. Many clustering algorithms can be paired with different distance
metrics to get different results.

Dimensionality reduction

Dimensionality reduction is the task of finding a low-dimensional represen-
tation of high-dimensional data that retains as much valuable information
as possible. Low-dimensional representations are valuable because high-
dimensional data is more difficult to store and process, and many machine
learning algorithms scale very poorly as the dimensionality of the data in-
creases (the so-called curse of dimensionality). Furthermore, they often
make the data easier to interpret for humans.

1.2.3 Other learning paradigms

Although supervised and unsupervised learning are the most commonly stud-
ied machine learning paradigms, others exist.

1.2 Machine learning 15

Semi-supervised learning: supervised learning requires the availabil-
ity of a target vector for each training example. For many practical problems,
the training examples themselves are much easier to come by than the associ-
ated target vectors (for example because they require manual annotation by
humans). Semi-supervised learning allows for data with missing target vec-
tors to be harnessed. Models can still benefit from this data because it con-
tains more information about the distribution of the input. Semi-supervised
learning combines ideas from unsupervised and supervised learning to allow
for both types of data to be exploited.

Transduction: transduction is a particular form of semi-supervised
learning where the data points that the model will have to generate pre-
dictions for are already known on beforehand. These data points can also
be learnt from in a semi-supervised fashion.

Transfer learning: when several tasks are related, a model trained for
one of the tasks may extract knowledge that is also useful for the other
tasks. The idea of transfer learning is to transfer knowledge from one task
to another, for example by reusing learned representations, or even reusing
model parameters directly.

Reinforcement learning: in reinforcement learning, agents learn which
actions to take in response to their environment, in order to maximize some
form of reward. This is a much more difficult problem than supervised learn-
ing, because it is not possible to measure the effect of each action directly
- the only information available to the agent to learn from is the eventual
cumulative reward resulting from the sequence of actions it took. Reinforce-
ment learning has many applications in robotics.

1.2.4 Underfitting and overfitting

Although training a machine learning model involves fitting its parameters to
a set of training examples, the ultimate goal is to achieve good performance
on previously unseen examples instead, i.e. good generalisation performance.
These objectives are not completely aligned: if the model is very powerful,
it is possible to fit the training data exactly while performing no better than
chance on unseen data. This phenomenon is called overfitting. Conversely,
if the model is not powerful enough, it might not be able to perform well
even on the training data. This situation is referred to as underfitting.
Both problems can be demonstrated by considering the task of fitting a
polynomial curve to a set of points in a plane. Figure 1.1 shows a function
from which a couple of noisy input-output pairs were obtained by adding
Gaussian noise with a small standard deviation to the output values. Sub-
sequently, three polynomial curves were fit to these points, of degrees 1, 3
and 9 respectively. Higher-degree polynomial curves have more degrees of

2.0

1.5¢

1.0f

0.5

0.0

—0.5}

—-1.0}

—-1.5}¢

-2.0

0.0 0.2 0.4 0.6 0.8 1.0
Figure 1.1: Polynomial curve fitting. The original function and some
noisy samples from it are shown in black (thick line). Three different
polynomial approximations are shown: degree 1 (blue dashed line),
degree 3 (green solid line) and degree 10 (red dotted line).

1.2 Machine learning 17

test error

P
-
-

train error

model complexity

Figure 1.2: Schematic representation of train and test error of a model
in function of model complexity. The optimal model complexity is
marked by a vertical red line.

freedom: the higher the degree, the more coefficients the polynomial has.
Viewed as models, one could say that higher-degree polynomial curves have
a higher modeling capacity.

As the figure shows, the curve of degree 1 (a line) does not fit the data
very well. This is an example of underfitting, because a degree 1 polyno-
mial curve clearly cannot approximate the original function well under any
circumstances. The curve of degree 3 matches the original function remark-
ably well, despite the fact that we added Gaussian noise to the sampled
points. The curve of degree 9 goes through all of the points’, but compared
to the original function it is a poor fit. This is an example of overfitting: the
model is actually too powerful and is able to fit the noise, resulting in poor
generalisation.

The polynomial curve fitting example is covered in great detail in Chapter
1 of Bishop [19].

Figure 1.2 shows a schematic representation of the train error (modeling
error on the training examples) and the test error (modeling error on unseen
data) of a model in function of its complexity. For low-complexity models,
both the train and test error will be high (underfitting). For high-complexity
models, the train error will be low, but the test error can still be high

"This is a property of polynomials: for a set of N points, exactly one degree-N — 1
polynomial can be found that goes through all of them.

18 1 Introduction

(overfitting). There is an optimal model complexity where the minimal test
error is achieved, marked by a vertical red line on the figure.

It is worth noting that underfitting and overfitting are not binary phe-
nomena, in the sense that different levels of underfitting and overfitting may
occur. In hierarchical models such as the ones described later, both phe-
nomena may even co-occur within different layers of the same model.

1.2.5 Model validation

Because we are not interested in the performance of a model on training
data, but rather how it generalises to new, previously unseen data, it is
important to validate models on a holdout dataset. The training data and
this holdout set are typically referred to as the training set and the validation
set respectively.

Apart from trainable parameters, many models have several hyperparam-
eters that influence the model or the training procedure. Finding optimal
values for these parameters is also done by determining how each parameter
choice affects the performance on the validation set. This is especially im-
portant because some hyperparameters affect the generalisation capabilities
of the model, so it is not possible to measure their influence on the training
set at all.

Finally, another holdout set is usually reserved to evaluate the model
performance after all parameters and hyperparameters have been optimised:
the test set. This is done to obtain an unbiased estimate of the real-world
performance of the model. This three-way split (training, validation and
test sets) is crucial to be able to compare models in an unbiased manner.

Since data is often scarce, splitting it into three sets and only training on
one of them is not always feasible - it may have a detrimental effect on perfor-
mance because it reduces the amount of data available for training. Instead,
a common approach is to split off only the test data, and then iteratively
split the remainder into different training and validation sets several times.
Each split is called a fold. If there are K such folds, this procedure is termed
K-fold crossvalidation. The resulting performance metrics are then aver-
aged across folds to be able to compare different models. Sometimes nested
crossvalidation is performed: the procedure is also applied recursively, once
to split off a test set and once to split off a validation set.

1.2.6 Regularisation

To mitigate overfitting, a reduction of model complexity is typically in order.
Model complexity stems from the number of learnable parameters, but also
from how these parameters are used in the model. As a result, reducing

1.8 Deep learning and neural networks 19

model complexity does not necessarily imply a reduction in the number of
parameters.

In many types of models (including linear models), overfitting is often
8. This can be mitigated by adding
a term to the objective function that penalizes large parameter values. A

associated with large parameter values

very commonly used regularisation method is to add the sum of squared
parameter values to the objective:

J'(D,0) =J(D,0)+ X 0]

This is called L2 regularisation, after the L2 norm. The regularisation
parameter A controls the strength of the regularisation. The larger its value,
the stronger the resulting regularisation effect will be. Other types of penal-
ties such as the L1 norm can also be used.

Another common regularisation approach is to inject noise into the model
during training, to prevent the model from fitting the intrinsic noise in the
training data.

1.3 Deep learning and neural networks

The idea of deep learning is to build models that represent data at mul-
tiple levels of abstraction, and can discover accurate representations au-
tonomously from the data itself [8]. Deep learning models consist of several
layers of processing that form a hierarchy: each subsequent layer extracts a
progressively more abstract representation of the input data and builds upon
the representation from the previous layer, typically by computing a non-
linear transformation of its input. The parameters of these transformations
are optimized by training the model on a dataset.

1.3.1 Neural networks

A feed-forward neural network is an example of such a model, where each
layer consists of a number of units (or neurons) that compute a weighted lin-
ear combination of the layer input, followed by an elementwise non-linearity.
These weights constitute the model parameters. Let the vector x,_1 be the
input to layer n, W,, be a matrix of weights, and b,, be a vector of biases.
Then the output of layer n can be represented as the vector

Xp = f(wnxn—l + bn)7 (11)

8Large in magnitude, so either very positive or very negative values.

20 1 Introduction

where f is the activation function, an elementwise non-linear function. Com-
mon choices for the activation function are linear rectification [f(z) = max(x,
which gives rise to rectified linear units [ReLUs; 110], or a sigmoidal function
[f(x) = (1 +e ®)~1 or f(x) = tanh(z)]. Another possibility is to compute
the maximum across several linear combinations of the input, which gives
rise to mazout units [49]. We will consider a network with N layers. The
network input is represented by x¢, and its output by xy.

A schematic representation of a feed-forward neural network is shown in
Figure 1.3. The network computes a function of the input xy. The output
xn of this function is a prediction of one or more quantities of interest.
We will use t to represent the desired output (target) corresponding to the
network input xg. The topmost layer of the network is referred to as the
output layer. All the other layers below it are hidden layers.

1.3.2 Training

During training, the parameters of all layers of the network are jointly opti-
mized to make the output x approximate the desired output t as closely as
possible. We quantify the prediction error using an error measure e(xy,t).
As a result, the hidden layers will learn to produce representations of the
input data that are useful for the task at hand, and the output layer will
learn to predict the desired output from these representations.

To determine how the parameters should be changed to reduce the pre-
diction error across the dataset, we can use gradient descent: the gradient
of e(xy,t) is computed with respect to the model parameters W, b,, for
n = 1...N. The parameter values of each layer are then modified by re-
peatedly taking small steps in the direction opposite to the gradient:

Oe(xp, t)
— 1.2
Wt W,y ==, (1.2)
Ode(xp,t)
b, < b, —n———=. 1.
< b, (13)

Here, 1 is the learning rate, a hyperparameter controlling the step size.

1.3.3 Deep neural networks

Traditionally, models with many non-linear layers of processing have not
been commonly used because they were difficult to train: gradient informa-
tion would vanish as it propagated through the layers, making it difficult to
learn the parameters of lower layers [62]. Practical applications of neural

output

TXN
OOOOQQ) o

@O?OQ%mwmmﬁ

B
@OTOQTW%ﬂ

input

Figure 1.3: Schematic representation of a feed-forward neural network
with N layers.

22 1 Introduction

networks were limited to models with one or two hidden layers. Since 2006,
the invention of several new techniques, along with a significant increase in
available computing power, have made this task much more feasible.

Initially unsupervised pre-training was proposed as a method to facilitate
training deeper networks [61]. Single-layer unsupervised models (such as
restricted Boltzmann machines or auto-encoders [8]) are stacked on top of
each other and trained, and the learned parameters of these models are then
used to initialize the parameters of a deep neural network. These are then
fine-tuned using standard gradient descent. This initialization scheme makes
it possible to largely avoid the vanishing gradient problem. Nair and Hinton
[110] and Glorot et al. [45] proposed the use of rectified linear units (ReLUs)
in deep neural networks. By replacing traditional activation functions with
linear rectification, the vanishing gradient problem was significantly reduced.
This also makes pre-training unnecessary in most cases.

The introduction of dropout regularization [57, 138] has made it possible
to train larger networks with many more parameters. Dropout is a regu-
larization method that can be applied to a layer n by randomly removing
the output values of the previous layer n — 1 (setting them to zero) with
probability p. Typically p is chosen to be 0.5. The remaining values are
rescaled by a factor of (1 — p)~! to preserve the scale of the total input to
each unit in layer n. For each training example that is presented to the net-
work, a different subset of values is removed. During evaluation, no values
are removed and no rescaling is performed.

Dropout is an effective regularizer because it prevents coadaptation be-
tween units: each unit is forced to learn to be useful by itself, because its
utility cannot depend on the presence of other units in the same layer (as
they can be removed at random).

1.3.4 Convolutional neural networks

Convolutional neural networks or convnets [43, 83] are a subclass of neural
networks with constrained connectivity patterns between some of the layers.
They can be used when the input data exhibits some kind of topological
structure, like the ordering of image pixels in a grid, or the temporal structure
of an audio signal.

Convolutional neural networks contain two types of layers with restricted
connectivity: convolutional layers and pooling layers. We will describe the
case of an input with a two-dimensional structure (e.g. an image) in some
detail. A convolutional layer takes a stack of feature maps (e.g. the colour
channels of an image) as input and convolves each of these with a set of
learnable filters to produce a stack of output feature maps. This is ef-

1.8 Deep learning and neural networks 23

ficiently implemented by replacing the matrix-vector product W,x,,_1 in
Equation 1.1 with a sum of convolutions. We represent the input of layer
n as a set of K matrices Xgi)l, with £k = 1... K. Each of these matrices
represents a different input feature map®. The output feature maps Xg),
[=1...L are represented as follows:

K

k=1

Here, * represents the two-dimensional convolution operation, the matrices
Wslk’l) represent the filters of layer n, and b£f) represents the bias for feature
map [. Note that a feature map Xg) is obtained by computing a sum of K

convolutions with the feature maps of the previous layer. The bias bg) can

optionally be replaced by a matrix Bg)
feature map has its own bias (‘untied’ biases). This allows the sensitivity of

the filters to vary across the input.

, so that each spatial position in the

By replacing the matrix product with a sum of convolutions, the con-
nectivity of the layer is effectively restricted to take advantage of the input
structure and to reduce the number of parameters. Each unit is only con-
nected to a local subset of the units in the layer below, and each unit is
replicated across the entire input. This is shown in the left side of Fig-
ure 1.4. This means that each unit can be seen as detecting a particular
feature across the input (for example, an oriented edge in an image). Ap-
plying feature detectors across the entire input enables the exploitation of
translational symmetry in images.

As a consequence of this restricted connectivity pattern, convolutional
layers typically have far fewer parameters than traditional dense (or fully-
connected) layers that compute a transformation of their input according to
Equation 1.1. This reduction in parameters can drastically improve gener-
alization performance and make the model scale to larger input dimension-
alities.

Because convolutional layers are only able to model local correlations in
the input, the dimensionality of the feature maps is often reduced between
convolutional layers by inserting pooling layers. This allows higher layers
to model correlations across a larger part of the input, albeit with a lower
resolution. A pooling layer reduces the dimensionality of a feature map by
computing some aggregation function (typically the maximum or the mean)
across small local regions of the input [20], as shown in the right side of
Figure 1.4. This also makes the model invariant to small translations of the

9Note that this depends on the dimensionality of the data. In the case of a two-
dimensional convolution, a set of matrices is appropriate. It could also be a set of vectors
(1D) or tensors (3D).

< N N = o \lll\llr\r l'
N I AN I b I N A O RS o ukuisy i | 0
- D N:Ll
w®Eh e =T [
n xmv
(k)
VﬂSI 1
layer n — 1 layer n layer n 41
input convolutions pooling

Figure 1.4: A schematic overview of a convolutional layer followed by a pooling layer: each unit in the convolutional layer is
connected to a local neighborhood in all feature maps of the previous layer. The pooling layer aggregates groups of neighboring
units from the layer below.

1.4 Research contributions 25

input, which is a desirable property for modelling images and many other
types of data. Unlike convolutional layers, pooling layers typically do not
have any trainable parameters.

By alternating convolutional and pooling layers, higher layers in the net-
work see a progressively more coarse representation of the input. As a result,
these layers are able to model higher-level abstractions more easily because
each unit is able to see a larger part of the input.

Convolutional neural networks constitute the state of the art in many
computer vision problems. Since their effectiveness for large-scale image
classification was demonstrated, they have been ubiquitous in computer vi-
sion research [73, 118, 145, 132].

1.3.5 Deep learning for MIR

As mentioned before, music is hierarchically structured in many different
ways. In the context of MIR, this structure can be exploited by building
hierarchical models. Deep neural networks, with their layers that build upon
representations extracted by other layers further down in the hierarchy, are
able to do this efficiently while requiring minimal engineering effort: the
learning procedure is able to map the different layers of a model to different
levels of the musical hierarchy autonomously. This automatic mapping of
the hierarchical structure of the model to the hierarchy of the task at hand
has been observed before in e.g. computer vision tasks.

There is a very strong tradition of feature engineering in MIR: feature
representations for music are constructed based on detailed analysis and
intricate knowledge of how musical audio signals are structured. Another
common approach is to reappropriate features designed for related problems
such as speech recognition. Both of these approaches have proven effec-
tive, but are showing signs of stagnation [67]. The ability of deep learning
models to discover good representations autonomously largely obviates the
need for handcrafting feature representations. In both computer vision and
speech recognition, feature learning has all but displaced approaches based
on feature engineering, because it attains better performance at a reduced
engineering cost and requires less domain knowledge. The same trend is now
starting to materialize in MIR.

1.4 Research conftributions

Compared to more established fields like speech recognition and computer
vision, where approaches based on deep learning are well-established, rel-

26 1 Introduction

atively few researchers are working on MIR problems and an even smaller
fraction of those are exploring deep learning for this purpose. The work de-
scribed in this thesis represents an exploration of deep learning and feature
learning for audio-based music classification, tagging and recommendation.
This section provides an overview of the research contributions and an out-
line of the remainder of this thesis.

An appendix describes work on image classification using deep neural
networks that was done in the context of an international data science com-
petition. This work falls outside the main theme of this dissertation but
nevertheless constitutes a significant part of my work as a PhD student.

Deep learning is a burgeoning and rapidly evolving field of research: new
methods were being introduced and swiftly adopted during my time as a
PhD student, and the state of the art for a variety of problems has advanced
quickly. The same is still true today. Some of the work described in this
thesis was done several years ago, when different approaches were popular
and the available hardware for building and training deep learning models
was much less powerful than it is today. For this reason, each of the following
chapters is introduced by a brief discussion of the context in which the
research occurred. I will also pay special attention to recent developments
in the conclusion of each chapter, and discuss how the results should be
interpreted and what their relevance is today.

Music classification with a pre-trained convnet (Chapter
2)

The Million Song Dataset contains audio features and metadata for one
million songs. In this chapter, we build a convolutional network that is
trained on this dataset to perform artist recognition, genre recognition and
key detection. The network is tailored to summarize the audio features over
musically significant timescales. Because labels are scarce, it is infeasible
to train the network on all available data in a supervised fashion. We use
unsupervised pre-training to be able to harness the entire dataset: we train
a convolutional deep belief network on all data, and then use the learnt
parameters to initialize a convolutional multilayer perceptron with the same
architecture. The MLP is then finetuned on a labeled subset of the data for
each task.

Multiscale feature learning for music audio (Chapter 3)

Content-based music information retrieval tasks are typically solved with a
two-stage approach: features are extracted from music audio signals, and
are then used as input to a regressor or classifier. These features can be

1.4 Research contributions 27

engineered or learnt from data. Although the former approach was dominant
in the past, feature learning has started to receive more attention from the
MIR community in recent years. There has also been increased interest in
multiscale representations of music audio recently. Such representations are
more versatile because music audio exhibits structure on multiple timescales,
which are relevant for different MIR tasks to varying degrees.

Inspired by recent results in feature learning using very simple and fast
algorithms such as K-means to great effect, we propose three different archi-
tectures for multiscale audio feature learning using the spherical K-means
algorithm. We evaluate them for automatic tagging, similarity metric learn-
ing and genre recognition on the Magnatagatune and GTZAN datasets, as
well as subsets of the Million Song Dataset.

Deep content-based music recommendation (Chapter
4)

Automatic music recommendation has become an increasingly relevant prob-
lem in recent years, since a lot of music is now sold and consumed digitally.
Most recommender systems rely on collaborative filtering. However, this
approach suffers from the cold start problem: it fails when no usage data is
available, so it is not effective for recommending new and unpopular songs.

In this chapter, we propose to use a latent factor model for recommen-
dation, and predict the latent factors from music audio when they cannot
be obtained from usage data. We compare a traditional approach using
a bag-of-words representation of the audio signals with deep convolutional
neural networks, and evaluate the predictions quantitatively and qualita-
tively on the Million Song Dataset. We show that using predicted latent
factors produces sensible recommendations, despite the fact that there is
a large semantic gap between the characteristics of a song that affect user
preference and the corresponding audio signal. We also show that recent
advances in deep learning translate very well to the music recommendation
setting, with deep convolutional neural networks significantly outperforming
the traditional approach.

This work was done in close collaboration with my colleague Aéron van
den Oord.

End-to-end learning for music audio (Chapter 5)

Content-based music information retrieval tasks have traditionally been solved
using engineered features and shallow processing architectures. In recent
years, there has been increasing interest in using feature learning and deep
architectures instead, thus reducing the required engineering effort and the

28 1 Introduction

need for prior knowledge. However, this new approach typically still relies
on mid-level representations of music audio, e.g. spectrograms, instead of
raw audio signals.

In this chapter, we investigate whether it is possible to apply feature
learning directly to raw audio signals. We train convolutional neural net-
works using both approaches and compare their performance on an auto-
matic tagging task. Although they do not outperform a spectrogram-based
approach, the networks are able to autonomously discover frequency decom-
positions from raw audio, as well as phase- and translation-invariant feature
representations.

Conclusions and perspectives (Chapter 6)

Finally, overarching conclusions and some perspectives for future work are
given in this chapter.

Galaxy morphology classification with convnets (Appendix
A)

Measuring the morphological parameters of galaxies is a key requirement
for studying their formation and evolution. Morphological analysis has tra-
ditionally been carried out mostly via visual inspection by trained experts,
which is time-consuming and does not scale to large numbers of images.

Although attempts have been made to build automated classification sys-
tems, these have not been able to achieve the desired level of accuracy. The
Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting
online users to classify images by answering a series of questions. Unfortu-
nately, even this approach does not scale well enough to keep up with the
increasing availability of galaxy images.

In this appendix, we present a deep neural network model for galaxy mor-
phology classification which exploits translational and rotational symmetry.
It was developed in the context of the Galaxy Challenge, an international
competition to build the best model for morphology classification based on
annotated images from the Galaxy Zoo project.

1.5 List of publications

Journal publications

1. Dieleman S., Willett K., Dambre J. (2015). Rotation-invariant con-
volutional neural networks for galaxy morphology prediction. Montly

1.5 List of publications 29

2.

Notices of the Royal Astronomical Society, 450(2).

Verstraeten D., Schrauwen B., Dieleman S., Brakel P, Buteneers P.,
Pecevski D. (2012). Oger: modular learning architectures for large-
scale sequential processing. Journal of Machine Learning Research,
13.

Conference publications

1.

van den Oord A., Dieleman S., Schrauwen B. (2014). Transfer learn-
ing by supervised pre-training for audio-based music classification.
Proceedings of the 15th international society for music information
retrieval conference (ISMIR 2014).

. Dieleman S., Schrauwen B. (2014). End-to-end learning for music

audio. International Conference on Acoustics Speech and Signal Pro-
cessing (ICASSP 2014).

Pigou L., Dieleman S., Kindermans P.J., Schrauwen B. (2014). Sign
language recognition using convolutional neural networks. Furopean
Conference on Computer Vision, Workshop.

Caluwaerts K., wyflels F., Dieleman S., Schrauwen B. (2013). The
spectral radius remains a valid indicator of the echo state property
for large reservoirs IFEE International Joint Conference on Neural

Networks (IJCNN).

Dieleman 8., Schrauwen B. (2013). Multiscale approaches to music
audio feature learning. Proceedings of the 14th international society
for music information retrieval conference (ISMIR 2013).

van den Oord A., Dieleman S., Schrauwen B. (2013) Deep content-
based music recommendation. Advances in Neural Information Pro-
cessing Systems 26.

van den Oord A. Dieleman S., Schrauwen B. (2013) Learning a piece-
wise linear transform coding scheme for images. Proceedings of SPIE,
the International Society for Optical Engineering.

Brakel P., Dieleman S., Schrauwen B. (2012) Training restricted
Boltzmann machines with multi-tempering: harnessing parallelization.
Lecture notes in computer science.

Dieleman S., Schrauwen B. (2012). Accelerating sparse restricted
Boltzmann machine training using non-Gaussianity measures. NIPS
workshop: Deep learning and unsupervised feature learning.

30 1 Introduction

10. Dieleman S., van den Oord A., Schrauwen B. (2012). Parallel one-
versus-rest SVM training on the GPU. NIPS workshop: Big learning:
algorithms, systems and tools.

11. Dieleman S., Brakel P., Schrauwen B. (2011). Audio-based music
classification with a pretrained convolutional network. Proceedings of
the 12th international society for music information retrieval confer-
ence (ISMIR 2011).

Abstracts, demonstrations, presentations

1. Dieleman S. (2015). Deep content-based music recommendation.
Machine Learning for Music Discovery Workshop at the International
Conference on Machine Learning (ICML 2015), invited talk.

2. van den Oord A., Dieleman S., Schrauwen B. (2013). Deep content-
based music recommendation. Neural Information Processing Systems
26, demonstration.

3. Dieleman S., Schrauwen B. (2012). Learning content-based metrics
for music similarity. 5th International Workshop on Machine Learning
and Music, abstract.

Software

1. Dieleman S., Schliiter J., Raffel C., Olson E., Kaae Sgnderby S.,
Nouri D., van den Oord A., Battenberg E. (2015). Lasagne: first
release.

Music classification with a
pre-trained convolutional
neural network

2.1 Introduction

In 2011, the Laboratory for the Recognition and Organization of Speech and
Audio (LabROSA)! of Columbia University released a large music dataset
consisting of audio features and metadata for one million songs, aptly named
the ‘Million Song Dataset’ (MSD) [18]. One of the purposes of the dataset
was to encourage research on algorithms that scale to commercial datasets,
which are typically many orders of magnitude larger than those used in
academia, especially in the domain of music information retrieval.

Around the same time, some researchers started to look into applications
of deep learning to MIR problems. Deep learning methods scale very well
with dataset size, and many such methods arguably only work well when
the dataset on which they are trained is sufficiently large. The release of
the MSD came at the right time to be used for this kind of research. I have
made extensive use of the dataset throughout my PhD research.

Additionally, the MSD is ideally suited for experiments involving un-
supervised pre-training: most of the provided types of metadata are only
available for a subset of the dataset, so for many tasks it is not possible
to train models in an end-to-end supervised fashion on the entire dataset.
Instead, subsets of the dataset with strong, reliable labels for a specific task
can be constructed, and the remainder of the dataset (often an order of
magnitude larger than the selected subset) can be used for unsupervised
pre-training. This is the approach I took for this work.

In this chapter, a model for classifying songs according to their genre,
artist and key is developed: a convolutional network that summarizes input

Thttp://labrosa.ee.columbia.edu/

32 2 Music classification with a pre-trained convolutional neural network

feature representations of songs over musically significant timescales.

Developing techniques that can harness the entire dataset is quite a chal-
lenge. I use the majority of the data in an unsupervised learning phase, where
the network learns to model the audio features. Due to its size, the dataset
is very suitable for unsupervised learning. This is followed by a supervised
training phase, where only a small task-specific subset of the dataset is used
to train a discriminative model using the same network. I have investigated
the gains that can be achieved by using a convolutional architecture, and
the additional gains that unsupervised pre-training can offer.

This chapter is structured as follows: the layout of the dataset is detailed
in Section 2.2. An overview of convolutional neural networks and layerwise
pre-training follows in Section 2.3. Section 2.4 describes the classification
tasks that were used to evaluate the model. Section 2.5 provides an overview
of our approach, and Section 2.6 describes our experimental setup. Results
are given in Section 2.7.

2.2 Dataset

2.2.1 The Million Song Dataset

The Million Song Dataset is a collection of all the information that is avail-
able through The Echo Nest API? for one million popular songs. This means
that a lot of the data was automatically derived from musical audio signals,
which should be taken into account when it is used for learning. Available
metadata includes artist and album information and the year of the perfor-
mance. Musical information derived directly from the audio signal includes
the key, the mode and the time signature. User-assigned tags are also avail-
able.

The audio features in the dataset were obtained by first dividing each
song into so-called segments. Segment boundaries roughly correspond to
onsets of notes or other musical events. For each segment, a feature vector
consisting of 12 timbre and 12 chroma components was computed, as well
as the maximal loudness within the segment.

The chroma features describe the pitch content of the music. Each of
the 12 components corresponds to a pitch class (ranging from C to B).
Their values indicate the relative presence of the pitches, with the most
prominent one always having a value of 1. All components lie within the
interval [0, 1]. The timbre features are the coefficients of 12 basis functions
which capture certain timbral characteristics like brightness, flatness and

2http://the.echonest.com/

2.3 Background 33

attack. They are unbounded and roughly centered around 0. More details
about this representation can be found in the documentation for The Echo
Nest’s analyzer tool [70].

Unfortunately, the automated methods used to build the dataset lead
to the presence of a relatively large number of duplicate tracks. When the
dataset is divided into a train and a test set in a naive fashion, some examples
might occur in both subsets, which is undesirable. Luckily, the authors of
the dataset have published an extensive list of known duplicates®. Using this
list, over 78,000 tracks were removed.

2.2.2 Beat-aligned features

Although the segmentation that was performed to compute the audio fea-
tures has its merits, we are more interested in beat-aligned features such
as those used in [17]. The beat is the basic unit of time in music. Chord
progressions and changes in musical texture tend to occur on the beat, and
seeing as it is one of our goals to encode these characteristics in higher level
features, it makes sense to use beat-aligned features as a starting point.

The features from the dataset can be converted to beat-aligned fea-
tures using the rhythm information that is also supplied. The segments
are mapped to beats, and then the feature vectors for all segments corre-
sponding to the same beat are averaged.

2.3 Background

Deep learning is a fairly recent trend in machine learning: traditionally,
the use of deep architectures with many layers of processing [8] was not
very popular because they were very difficult to train. In 2006, Hinton
demonstrated a fast training method for deep belief networks (DBNs), a
particular type of deep model [61]. This led to a surge in popularity of
these models, establishing deep learning as a new area of research. Deep
belief networks are probabilistic generative models, which are obtained by
stacking multiple restricted Boltzmann machines (RBMs) on top of each
other.

2.3.1 Restricted Boltzmann machines

A restricted Boltzmann machine is a probabilistic model consisting of a set
of visible units and a set of hidden units which form a bipartite graph; there

3http://labrosa.ee.columbia.edu/millionsong/sites/default /files/ AdditionalFiles/msd_ duplicates.txt

34 2 Music classification with a pre-trained convolutional neural network

are no connections between pairs of visible units or pairs of hidden units,
but every visible unit is connected to every hidden unit. They are a kind of
undirected graphical model. A schematic representation is shown in Figure
2.1.

The visible units of an RBM correspond to the input variables of the
data that is to be modelled. In image processing, each visible unit typically
represents one pixel. The hidden units capture correlations between visible
units and can be seen as feature detectors. The model learns the underly-
ing distribution of the data by representing it in terms of features that are
derived from the data itself.

Each connection has a particular weight, and each of the units can also
have a bias. These trainable parameters can be learnt from data. Unfortu-
nately, maximum likelihood learning is intractable in RBMs. Instead, the
contrastive divergence learning rule, which is an approximation to maximum
likelihood learning, can be used [59].

Figure 2.1: Schematic representation of an RBM, with the visible units
at the bottom and the hidden units at the top. Note how there are no
lateral connections between two visible or two hidden units.

RBMs typically consist of binary units, which can be on or off. This
makes sense for the hidden units, which are feature detectors, but it is not
always the best choice for the visible units. It is also possible to construct
an RBM for continuous data, with Gaussian visible units?.

2.3.2 Deep belief networks

A deep belief network (DBN) can be represented as a hybrid graphical model
with both directed and undirected connections. It consists of multiple RBMs
stacked on top of each other, with the hidden units of RBM i being used as
visible units of RBM i 4 1. The bottom RBM learns a shallow model of the
data. The next one then learns to model the hidden units of the first, and so
on: higher-level features are extracted from lower-level features. Each RBM
is trained separately. The parameters of all these RBMs are then used to

4In fact, any distribution from the exponential family can be used, but binary
(Bernoulli) and Gaussian units are the most commonly used types.

2.3 Background 35

construct the DBN, which has undirected connections between the top two
layers of units (as in an RBM) and directed connections elsewhere.

Top-level features learnt by DBNs can be used to train discriminative
models. In this fashion, they have been applied succesfully to image process-
ing problems like handwriting recognition [61] and object recognition [74],
but also to classification of audio signals [85], and even music classification
[61]. For a detailed technical overview of RBMs and DBN, see [8].

2.3.3 Convolutional deep belief networks

Convolutional neural networks have previously been discussed in Section
1.3.4. Restricted Boltzmann machines and deep belief networks can also
be made convolutional by restricting the connectivity between their units,
and by inserting (max-)pooling operations between layers. Figure 2.2 shows
a stack consisting of a convolutional RBM and a max-pooling layer. This
combination can again be stacked multiple times to create a convolutional
deep belief network (CDBN). Convolutional deep belief networks have been
used for object recognition [113, 84], and to extract features from audio
signals, for speech recognition as well as for music classification [85].

e R
layer ¢ + 1

Sosoiemt
CO0OVOD

Figure 2.2: A max-pooling layer (i + 1) stacked on top of a convolu-
tional layer (7). Note that layer i—1 and Iayer t are not fully connected.
The connections are drawn in different styles to indicate which weights
are shared.

Convolutional models are typically used for image processing, where
stronger correlations between nearby pixels and the translation invariance
of image features are exploited to significantly reduce the number of pa-
rameters. Audio signals have similar characteristics, although the locality
is temporal rather than spatial. Whereas convolutions are typically applied
in two dimensions in the context of images, those applied to audio data are
often one-dimensional instead.

It is possible to use 2D convolutions when the input consists of time-
frequency representations of audio signals. In that case, convolution along

36 2 Music classification with a pre-trained convolutional neural network

the frequency axis in combination with pooling allows for transposition in-
variance. We briefly explore this in Section 3.5.5.

2.3.4 Supervised finetuning

As mentioned earlier, top-level DBN features can be used as input for a clas-
sification method; common choices are support vector machines or logistic
regression. We can train a logistic regression classifier by gradient descent,
using the DBN model to extract feature representations from the input data.

It is also possible to convert a DBN into a multilayer perceptron (MLP).
We can simply reuse the weights of the interconnections and the biases of the
hidden units. We then stack a logistic regression layer on top of this MLP
and train the whole model jointly using gradient descent. This approach
is called supervised finetuning: the DBN weights that were initially learnt
to model the data are now finetuned for a specific discriminative task using
backpropagation.

2.4 Tasks

We performed several classification tasks on music tracks: artist recognition,
genre recognition and key detection. Labeled datasets for each of the tasks
were extracted from the Million Song Dataset. Three (partially overlapping)
subsets were selected:

e artist recognition: the 50 artists with the most tracks in the dataset were
identified, and 100 tracks of each artist were selected (5000 tracks in total);

e genre recognition: 20 common genres were selected manually using tags®
that are included in the dataset: folk, punk, metal, jazz, country, blues,
classical, rnb, new wave, world, soul, latin, dance, reggae, techno, funk,
rap, hip hop, rock and pop. For each genre, 250 tracks were selected (5000
tracks in total);

e key detection: the key information in the dataset was automatically anno-
tated, so it may be unreliable. To avoid problems with incorrect labels, we
selected 250 tracks with a high key confidence for each of the 12 possible
keys (3000 tracks in total). Nevertheless, the results for this task should
be taken with a grain of salt, as what is actually being measured is how
well the network can reproduce the results of the algorithm that was used
to compute the annotations. Note that we also assume that each track is

5The dataset provides different kinds of tags. We used the MusicBrainz tags because
these are the most reliable [18].

2.5 Approach 37

associated with a single key (i.e. there is no modulation between multiple
keys). This is not necessarily true in practice.

The subsets were then divided into balanced train, validation and test
sets according to a 80% / 10% / 10% split.

2.5 Approach

We built a convolutional network, designed to aggregate the features from
the dataset on musically significant timescales. Properties that are typical
for certain genres, artists or keys should become apparent at this level. We
used the same network to tackle all three classification tasks, demonstrating
the versatility of the learned features.

To train the network, we first performed layerwise unsupervised pre-
training using an RBM for each layer on the entire Million Song Dataset.
We then trained and evaluated the network as an MLP with backpropagation
for each of the classification tasks. We used the Theano Python library to
implement all experiments, so they could be GPU-accelerated easily [14].

2.5.1 Network layout

The input of the network consists of beat-aligned chroma and timbre features
for a given track, so there are 24 input dimensions in total. The maximal
loudness component was not used, as the timbre features already include a
loudness component. Note that tracks vary considerably in length, but the
convolutional nature of the network allows us to cope easily with variable-
length input.

First, we separated the chroma and timbre features into two input layers
(layers Oa and Ob). Then, separate convolutional layers were stacked onto
both input layers (layers la and 1b). These layers learn features with a width
of 8 beats. It was observed that most of the tracks in the dataset have a 4/4
time signature (which is also true for contemporary music in general). This
means that there are 4 beats in a bar. The width of the features was chosen
to be two bars, seeing as this is the timescale on which chord progressions
and changes in musical texture are most likely to occur. We used 100 feature
maps for each layer.

By using two separate layers, the network does not learn correlations
between chroma and timbre features at this level. This allows it to focus
on learning correlations between timbre components and between chroma

SExcluding known duplicates and tracks used for validation and testing for any of the
tasks.

38 2 Music classification with a pre-trained convolutional neural network

components separately; such correlations are likely to be easier to discover.
A similar approach was used in [112] to learn features over multiple data
modalities.

The output of the convolutional layers was then max-pooled in the time
dimension with a pool size of 4 (layers 2a and 2b). Once again, we made
use of the observation that most of the tracks in the dataset have a 4/4
time signature, with 4 beats per bar; the output of the max-pooling layer is
invariant to all displacements of less than one bar (up to 3 beats).

The max-pooled outputs of both layers were then concatenated, yielding
200 features with a granularity of approximately 1 bar. We stacked another
convolutional layer with 100 feature maps on top of this, which learns fea-
tures with a width of 8 bars (layer 3). This width was selected because
musical themes are often contained within a length of 8 bars. Correlations
between timbre and chroma components can now be discovered as well.

Finally, another max-pooling layer with a pool size of 4 was added (layer
4). The features obtained from this layer have a granularity of 4 bars and
a scope of roughly 8 bars. To perform the classification tasks, a fifth layer
performing logistic regression was added. Classification is performed sepa-
rately for each timestep on layer 4, and the resulting posterior distributions
are averaged to obtain a posterior distribution for an entire track. The most
probable class is then selected. The layout of the network is shown in Figure
2.3.

(5: logistic regressionj

100 (4: max-pooling)
| themes
100 (3: convolution)

100 [2a: max-pooling] (2b: max-pooling] 100

bars

100[la: convolution] (1b: convolution]100

[12 [Oa: chroma features) (Ob: timbre features] 12 j beats

Figure 2.3: The network layout. The number of dimensions or feature
maps for each layer is indicated on the side. The layers have also been
grouped according to the timescale on which they operate.

2.5 Approach 39

2.5.2 Unsupervised pre-training

It would be impossible to train the network in a supervised fashion with the
entire Million Song Dataset. This is this computationally infeasible, and on
top of that the provided labels are not perfect; some are missing, others are
incorrect or have a very low confidence.

As mentioned before, I pre-trained the network using timbre and chroma
features for all tracks in the dataset. I used the beat-aligned chroma features
directly as inputs to the network; the timbre features were first normalized
per track to have zero mean and unit variance.

To train the RBM in layer 1b (timbre), I used Gaussian visible units,
which allow for continuous input data to be modeled. For layer la (chroma),
I used binary units. Technically, this is not possible because the chroma
features are continuous values that lie between 0 and 1, whereas binary
units are intended to model binary variables. However, we can interpret
these values as probabilities and sample from them, yielding binary input
data. In practice, we do not perform this sampling explicitly, but we use the
mean field approzimation (see Section 2.5.2.2). In RBMs, learning is much
more stable for binary units than for Gaussian units, so being able to use
binary units is a significant advantage.

I used single step constrastive divergence (CD-1) everywhere. A learn-
ing rate of 0.005 was used to train the RBMs with binary visible units; a
learning rate of 0.0001 was used for the RBM with Gaussian visible units.
We performed only a single run through the entire dataset. Due to its size,
performing multiple epochs turned out to be unnecessary (and would require
too much computation time).

2.5.2.1 Sparsity

I modified the hidden unit activations according to [46] to encourage them
to be sparse. Convolutional RBMs are overcomplete models, so adding a
sparsity penalty term ensures that the learnt feature representations are
useful [85]. In addition, sparse activations are essential for max-pooling to
work properly [20, 124].

I used a target activation probability of 0.05 for layers la and 1b, and a
target of 0.1 for layer 3. A relative sparsity cost of 0.1 was used in all cases.
Please refer to Hinton [60] for more information about these parameters.

2.5.2.2 Mean field approximation

Where possible, I eliminated sampling steps in the RBM training process
by using the mean field approximation: instead of sampling from a distri-

40 2 Music classification with a pre-trained convolutional neural network

bution, its mean value is used instead. This eliminates sampling noise and
often positively affects convergence. I used this for the chroma inputs and
in the contrastive divergence algorithm, except when updating the hidden
states, as recommended in [60]. Interpreting continuous input values that
are constrained to a finite interval as input probabilities to train an RBM is
common practice [59].

2.6 Experiments

I trained the network as a convolutional MLP for each of the classification
tasks described in Section 2.4: first with random initialization of the weights,
and then using the weights learnt by unsupervised pre-training (supervised
finetuning), yielding six different experiments. I tried learning rates of 0.05,
0.005 and 0.0005 and trained for 30 epochs. To initialize the random weights,
I sampled them from a Gaussian distribution with a mean and variance
corresponding to those of the weights learnt by the DBN. This ensures that
the results are comparable.

I also trained a naive Bayes classifier and a logistic regession classifier
that operate on time windows of features from the dataset, resulting in six
more experiments. I chose a window size of 32 beats (8 bars), which is
comparable to the timescale on which the convolutional network operates.
For the logistic regression classifier, I tried learning rates of 0.005, 0.0005,
5-107°,5-107% and 5-10~7 and also trained for 30 epochs. Both the chroma
features and the timbre features were normalized to have a zero mean and
a unit variance in this case.

For each of the twelve experiments, we determined the optimal parame-
ters using the validation sets, and then computed the classification accuracies
on the test sets using these parameters. The results can be found in Table
2.1.

2.7 Results

The first thing to notice is that the key detection task seems to be fairly
simple. The achieved accuracies are much higher than for the other tasks,
and the simplest technique performs best. There are multiple possible ex-
planations for this:

e the property we are trying to determine is quite low-level. The key
of a track is in a very close relationship with the chroma features and

‘Sulules3-aud INOYUM pPUE YLIM ‘SHSE] UOIIEDIJISSE[D Byl JO UYdEd J0j Soled Suluies] Suipuodssiiod pue SsIDeundde 3s9] :°g d|qel

(600°0) %TS¥8

(G0°0) %¥e e

(500°0) %1€°LT

gururery-oxd ym JIN AUOD

syoodo
(©00) %ises | (50°0) %I6ee | (S0°0) %0672 | Swrureny-oad oy gy auoo | S oo 08
(200°0) %¥8°€8 (60°0) %PLGE (S00°0) %T1°6¢ Sururer)-oxd yym JTIN “AUOD
(60°0) %¥s°€8 (c0'0) uveve | (500°0) %gg 6¢ | Sururen-sid noym JIN "AU0d | sypodd (¢

(¢—0T-G) %€S 98

(c_0T-G) %eTTE

(90T - ©) %06°SC

UOISSAISII OI)SISO] POMOPUIM

%VL €L

%089

%¢c0°01T

soAeg oAreU

UuO0130030p Aoy

UOIIUS0091 JSI}IR

UOI}TUZ0991 9IUD3

42 2 Music classification with a pre-trained convolutional neural network

how they evolve through time. Relating the genre or the artist to these
features is much more difficult;

e to construct the dataset for this task, I selected tracks with a high
key confidence. This implies that the algorithm used to annotate key
information in the Million Song Dataset could identify the key of these
tracks with relative ease. It would make sense that the same is true
for our models. Unfortunately, there is no way to verify this, except
by constructing a manually labeled dataset.

For the other tasks, the convolutional network has a definite edge over
the other approaches: the classification accuracies increase significantly.

The gains obtained with pre-training on the other hand seem to be much
more modest; this is only advantageous for the artist recognition task, which
is quite difficult because it is a 50-way classification problem. The utility of
pre-training for this task could stem from the fact that the number of tracks
per class available for training (80) is much lower compared to the other tasks
(200). Indeed, it has been shown that gains from unsupervised pre-training
are maximal when the amount of available labeled training data is limited
[35]. It is also worth noting that this data scarcity is intrinsic to the task at
hand, and not just an artefact of the way the dataset was constructed - few
artists have a discography with more than 100 tracks.

The optimal learning rate for key detection with the convolutional net-
work differs depending on whether pre-training is used or not. This is be-
cause the training for this task without pre-training did not converge after
30 epochs using a learning rate of 0.005. This indicates that convergence
is faster when pre-training is used. To investigate this, we also compared
classification accuracies obtained after only 20 training epochs, which can
be found in the bottom half of Table 2.1. We now observe that pre-training
is beneficial for all tasks. This confirms our intuition that it improves con-
vergence speed.

2.8 Conclusion

I have trained a convolutional network on beat-aligned timbre and chroma
features obtained from music audio data to perform a number of classification
tasks. The convolutional nature of the network allowed it to summarize
these features over musically significant timescales, leading to an increase in
accuracy. | used unsupervised pre-training with a very large dataset, which
improved convergence speed and, for the artist recognition task, classification
accuracy. It is clear that the ability to harness a large amount of unlabeled

2.8 Conclusion 43

data is advantageous for tasks where the amount of available training data
is limited.

The work described in this chapter was done in the first half of 2011 and
predates some high-impact innovations and profound changes in the way
convolutional neural networks are typically built and trained. This includes
the use of rectified linear units (ReLUs) [110, 45] and dropout regularisation
[138], among other things. Unsupervised pre-training has also lost a lot of its
importance since then, but is still a viable approach in this problem setting
today because of the abundance of data and the relative lack of useful labels.

The trained classifiers achieve relatively poor results overall. This is
partly because the genre and artist classification tasks are quite challenging,
but also due to how the datasets were constructed. The labels for the genre
classification set come from tags, which may not always be reliable and they
may potentially overlap. But most importantly, the input representation,
i.e. beat-aligned precomputed features, is far from optimal. Unfortunately
no other input representation was available at the time because I did not
have access to the raw audio data, which was not included in the dataset.
This is unfortunate because deep neural networks are especially suitable for
learning task-specific features from raw data. Having to learn high-level
features from a small set of pre-computed low-level features severely reduces
their effectiveness.

For further work on this dataset, described in Chapters 3 and 4, my col-
league Adron van den Oord and I managed to obtain 30 second clips for more
than 99% of the tracks in the MSD. This data would also have been very
useful for the work described in this chapter, although presumably learn-
ing features from audio signals or a time-frequency representation extracted
from the audio signals would have required a deeper network. Neural net-
work models with more than 4 or 5 layers had not been explored much at
that point in time, and the computational requirements for training are pro-
portional to the number of layers, so this may not have been feasible either.
Their training was also much more difficult due to the use of sigmoidal non-
linearities. Modern neural networks typically use piecewise linear activation
functions and sometimes have more than 20 layers. Such ‘very deep’ models
should be capable to achieve much better results on these tasks using audio
signals or mid-level representations as input.

Despite these shortcomings, this work shows the value of unlabeled data
and unsupervised pre-training to harness this data. This observation is still
relevant today because for many problems that can be tackled using a deep
learning approach, both inside and outside MIR, unlabeled data is abundant
whereas labels tend to be scarce and expensive to obtain.

Although the first applications of deep learning methods to MIR, prob-
lems predate this work (most notably the work of Hamel et al. [52, 51] and

44 2 Music classification with a pre-trained convolutional neural network

Lee et al. [84]), the availability of the MSD made it possible to explore un-
supervised pre-training in the context of MIR on a much larger scale. Since
then, feature learning for music has only gained popularity, with some re-
searchers arguing for a paradigm shift in the MIR community and moving
away from the deep-rooted tradition of manual feature design [67].

Feature learning for music using convolutional neural networks is also
explored in chapters 4 and 5, but the learning procedure is fully supervised
in both cases. An alternative unsupervised approach based on the K-means
algorithm is described in chapter 3.

Unsupervised multiscale
feature learning

3.1 Introduction

Feature learning and deep learning are often conflated, but not all feature
learning is necessarily deep: it is possible to learn shallow (i.e. single-layer)
representations of data, and this can also be useful. It often has significant
advantages in terms of computation cost as well.

In the previous chapter, I used a neural network to learn a hierarchy of
features. Here, I will explore a different approach to building a feature hier-
archy, using shallow feature learning with the spherical K-means algorithm
on multiple timescale representations of audio signals. In the resulting fea-
ture hierarchy, higher-level features do not build upon lower-level features,
but extract patterns at coarser timescales instead. In other words, the hier-
archy is entirely temporal: the features do not differ in terms of their level
of abstraction, but only in the timescale of the patterns they detect.

This alternative approach has some advantages; for example, the learn-
ing step is usually quick and can be executed in parallel for all levels of the
hierarchy. The learnt features are also easy to interpret due to their low
level of abstraction. Finally, the K-means algorithm is familiar to many re-
searchers in the MIR domain, and its spherical variant is easy to understand
and implement.

The rest of this chapter is structured as follows: the use of features in
MIR is briefly summarised in Section 3.2, and feature learning is discussed
in Section 3.3. An overview of the multiple timescale representations con-
sidered in this chapter is given in Section 3.4. The proposed feature learning
approach is described in Section 3.5. I demonstrate its versatility with a
number of different tasks on three datasets. The experiments and results
are given in Sections 3.6 and 3.7, and conclusions are drawn in Section 3.8.

46 3 Unsupervised multiscale feature learning

A paper describing a preliminary version of this work was presented at
the ISMIR 2013 conference [32]. This chapter describes the work in more
detail and extends it in the following ways:

e the evaluation includes a wider range of different tasks, and two addi-
tional datasets;

e [have evaluated two extensions of the proposed approach: incorporat-
ing frequency invariance and learning a multi-layer hierarchy of fea-
tures (see Sections 3.5.5 and 3.5.6 respectively).

3.2 Features for content-based MIR

A variety of different tasks and settings are studied in the context of content-
based MIR, including genre classification, artist recognition, automatic tag-
ging and music recommendation. Despite this, many content-based MIR
systems have a very similar architecture, consisting of two stages: features
are first extracted from music audio signals to transform them into a more
meaningful representation. These features are then used as input to a re-
gressor or a classifier, which is trained to perform the task at hand.

Casey et al. [23] and more recently Fu et al. [42] give an overview of the
types of features that are commonly used for this purpose. All of them are
the result of many years of research and engineering. They were developed
using domain knowledge about the data and the specific problem that they
were designed to solve. Nevertheless, they are often used for other types of
problems, for which they may be suboptimal: for example, Mel-Frequency
Cepstral Coefficients (MFCCs) were originally designed for speech recogni-
tion, but have been ubiquitous in MIR research ever since their introduc-
tion [40, 93].

Handcrafting features is costly and time-consuming, and it requires a lot
of insight. In recent years, some researchers have applied feature learning
techniques, which allow for feature representations to be learnt automatically
from data, in an attempt to automate the search for good representations
[85, 51, 56, 111]. I will discuss this approach in more detail in the next
section.

Another recent development in MIR research is the increased interest in
building systems that operate on multiple timescales [53, 3, 33, 41]. Music
audio exhibits structure on many different timescales: at progressively longer
timescales, we can identify notes, recurring motifs, phrases and themes. The
various timescales are relevant for different tasks to varying degrees. I in-

3.3 Feature learning 47

vestigate a number of different multiple timescale representations of audio
signals in Section 3.4.

3.3 Feature learning

3.3.1 Learning representations

The goal of feature learning is to learn transformations or representations
of data that make the useful information contained within it more appar-
ent [10]. For example, images are typically represented as grids of pixel
intensity values. If one wants to recognise a certain object in an image,
operating directly on such a representation makes this quite difficult. By
transforming the image into a different representation first, the recognition
task becomes much simpler. The same is true for musical audio signals,
which are typically represented as discrete time series, describing how the
signal amplitude varies over time. Such a representation is far removed from
musical properties such as genre, for example, which is why the signal is usu-
ally first transformed into a different representation (such as MFCCs) that
makes it easier to extract this type of information. However, as mentioned
before, designing this transformation by hand is quite complex. Feature
learning allows for this step to be automated.

A significant advantage of feature learning over manual feature design is
that it frees up resources and time that can be spent on other research efforts
instead. Feature learning algorithms also tend to be very reusable: they can
be applied to different types of data and for different tasks, without requiring
a lot of domain knowledge or manual finetuning. In many domains, including
speech recognition and computer vision, feature learning approaches are now
commonplace after improving on the previous state of the art in some tasks
by a large margin [127, 82, 73].

In summary, rather than investing a considerable amount of time and
effort in designing the best features for a specific task, using a feature learning
approach instead is likely to result in similar or better performance at a lower
engineering cost, and any insights and knowledge gained from this process
are often applicable to other tasks as well.

3.3.2 Feature learning in MIR

In recent years, feature learning has started to receive more attention in the
MIR community, with an increasing number of papers on the topic being
presented at the ISMIR conference since 2010. Humphrey et al. [67] ar-

48 3 Unsupervised multiscale feature learning

gue that the MIR community’s reliance on handcrafted features combined
with classifiers such as SVMs or logistic regression is hampering the field’s
progress. Instead they advocate the use of feature learning and deep pro-
cessing architectures. They give a thorough overview of the advantages of
this approach, and also describe some of its early applications in music in-
formatics. Its adoption has been relatively limited so far, due to a number
of reasons:

e Although it significantly reduces the amount of domain knowledge re-
quired to obtain a good representation, it requires knowledge about
feature learning instead. To this day, no real off-the-shelf feature learn-
ing solutions are available that can be applied without understanding
their internals.

e Many of the models that are currently used for feature learning require
a large amount of computational power to train. Sometimes special
hardware such as a GPU is necessary to be able to train them in a
reasonable amount of time. These resources are not readily available
to many researchers.

e Many feature learning techniques have a large number of hyperparam-
eters that should be tuned, which is at best inconvenient, and at worst
impossible to do without some knowledge about their significance.!

e Feature learning typically requires a large amount of training data. Un-
fortunately, data tends to be scarce in the context of music research,
because copyright regulations and licensing issues prevent the distribu-
tion of large collections of music audio. In recent years, some datasets
have been published that circumvent these issues [81, 18].

In image processing and computer vision, feature learning techniques are
typically applied directly to raw pixel values. When working with audio
signals however, the input is usually transformed into a time-frequency rep-
resentation first, such as spectrograms (see Section 1.1.2). Time-frequency
representations of audio signals are indispensible, because many higher-level
characteristics of sound relate to energies in different frequency bands. Many
techniques typically used for images can be applied to spectrograms as well,
because they have the same two-dimensional shape.

(a) Multiresolution spectrograms (b) Gaussian pyramid

(c) Laplacian pyramid

Figure 3.1: Three different 4-level multiscale time-frequency repre-
sentations of music audio. Level 0 is at the bottom, higher levels
correspond to coarser timescales.

50 3 Unsupervised multiscale feature learning

3.4 Multiscale representations

For images and audio signals, feature learning algorithms are typically ap-
plied to small patches or fragments of the data. The underlying idea is that
perceptual signals have a topological structure where neighbouring variables
are strongly correlated, whereas variables that are farther away from each
other are much less correlated. Furthermore, these local correlations tend to
be similar everywhere. As a result, we can model the majority of the corre-
lations by looking only at local neighbourhoods of variables, which consid-
erably reduces the size of the models, and hence computational complexity.

Nevertheless, both images and audio signals tend to exhibit correlations
at many different scales. Correlations at coarser scales are discarded by
this approach, which is undesirable for many tasks. Especially in the case
of music, a lot of structure is present at timescales much larger than the
typical resolution of an audio signal. Multiscale representations alleviate
this problem: they consist of multiple levels, each representing the input
with a different resolution. We can then model local correlations at each
level. At coarser scales, this means a larger part of the input will be taken
into account.

In image processing, a popular method to obtain a multiscale represen-
tation of an image is to construct a Gaussian or Laplacian pyramid [22].
Each consecutive level of a Gaussian pyramid is obtained by smoothing and
then subsampling the previous level by a factor of 2. The Laplacian pyramid
can be derived from the Gaussian pyramid by computing the difference of
each level and the level above it after upsampling. The top level remains the
same. The result is that the representations at finer scales will not contain
any information that is already represented at coarser scales. This reduces
redundancy between the levels of the pyramid.

In the context of feature learning, Laplacian pyramids have been used as
input to deep belief networks (DBNs) to learn features for image classifica-
tion and phone recognition [146]. Farabet et al. [37] propose to use a mul-
tiscale convolutional network for scene labeling, using a Laplacian pyramid
representation of images as its input, and achieves state of the art perfor-
mance on standard scene parsing datasets.

In convolutional neural networks, subsampling layers are often inserted
between the convolutional layers, so that features at each successive level
take a larger part of the input into account and are increasingly translation
invariant [83]. Although this results in a multiscale representation of the
input, only the top level is connected to the output layer. The fine-grained

IHowever, recently Snoek et al. [137] and Bergstra et al. [13] have looked into automat-
ing this process as well, with promising results.

8.4 Multiscale representations 51

features are only used indirectly to construct the higher-level features. This
approach has also been applied to music classification [88, 33] (see chapter
2).

3.4.1 Multiscale time-frequency representations
of music audio

In the case of musical audio signals, multiple scales are typically only con-
sidered for the time axis, and not for the frequency axis, because it does not
have the same topological structure. This is in contrast to images, where
both axes are of the same nature. There is little to be gained by considering
different levels of granularity in the frequency direction: to detect harmonic
content, using the finest possible granularity will give the best results, and
for inharmonic features, the precise granularity of the frequency axis does
not matter much since they tend to span the entire frequency range anyway.
In the time direction on the other hand, being able to detect features at
multiple scales is much more useful. We will explore three approaches to
obtain multiscale time-frequency representations of audio signals:

e multiresolution spectrograms: we can vary the size of the time
windows used to compute spectrograms to obtain a multiscale repre-
sentation. For each consecutive level, we will double the window size
of the previous level. This approach was previously investigated by
Eyben et al. [36] and Hamel et al. [54]. Although we could also dou-
ble the hop size to reduce the size of the higher level representations,
Hamel et al. found this to decrease performance considerably, so it is
kept the same for all levels. Figure 3.1a shows an example of a set of
multiresolution spectrograms. Note the decreased temporal resolution
and increased frequency resolution in the higher levels.

e Gaussian pyramid: in this case, spectrograms are extracted only at
the finest timescale and all higher levels can be obtained from them.
Higher-level representations in a Gaussian pyramid will be smaller be-
cause of the subsampling step. An example of a Gaussian pyramid is
shown in Figure 3.1b.

e Laplacian pyramid: as described earlier, this can be easily computed
from the Gaussian pyramid representation. An example of a Laplacian
pyramid is shown in Figure 3.1c. The top level of the pyramid is the
same as in the Gaussian case.

Other methods to obtain multiscale representations of audio signals in-
clude wavelet transforms [75, 148]. Whereas the temporal resolution of

52 3 Unsupervised multiscale feature learning

spectrograms is constant across the entire frequency range, wavelet repre-
sentations have a higher temporal resolution for higher frequencies, so they
inherently encompass multiple timescales. Anden et al. [3] have extended
MFCC features using wavelet filter banks to allow for non-stationary spec-
tral information to be captured. Other work on multiscale representations
of music includes that of Foucard et al. [41], who used boosting to combine
features expressed at different timescales. Finally, Morgan et al. [105] have
investigated the use of multiple analysis windows with different lengths in
the context of speech recognition, akin to the multiresolution spectrograms
approach, to increase robustness against noise.

3.5 Proposed approach

Recent results in feature learning indicate that simple techniques can be quite
effective, provided that the learnt feature representations are sufficiently
high-dimensional. In particular, the K-means algorithm turns out to be
very suitable for unsupervised feature learning, sometimes surpassing more
complicated approaches based on restricted Boltzmann machines (RBMs),
autoencoders and sparse coding in terms of discriminative performance [28].

Using the K-means algorithm for feature learning has several advantages:
it is simple, well-known and easy to implement. It has only a single hyperpa-
rameter (the number of centroids, corresponding to the size of the resulting
feature representation), and is typically several orders of magnitude faster
to train than RBMs or autoencoders. This also eliminates the need to in-
vest in special hardware, since it runs fast enough on commodity CPUs.
It has previously been applied to spectrograms to learn features for genre
classification [158] and for music similarity estimation [125].

Coates and Ng[27] describe in detail how K-means can be used for fea-
ture learning, and suggest to use a modified version where the centroids are
constrained to have a unit L2 norm (they must lie on the unit sphere). This
is achieved by adding a normalization step in every iteration after the means
are updated. This algorithm is called spherical K-means.

I will extract multiscale time-frequency representations from the audio
signals with up to 6 levels (numbered 0 to 5), as described in Section 3.4. I
will then learn features on each level separately using the spherical K-means
algorithm. To arrive at a multiscale feature representation, I will simply
concatenate feature vectors obtained from each level into one large feature
vector.

For each level, I will use the following feature extraction pipeline, which is
visualised schematically in Figure 3.2. First, I divide the spectrograms into

3.5 Proposed approach 53

1, 2 or 4 consecutive frames

e —
pooling window ¢
’ PCA whitening ‘

!

’ K-means ‘

!

’ Pooling ‘

!

features

Figure 3.2: Schematic overview of the feature extraction process at
a single timescale. The mel-spectrogram is divided into large pooling
windows. Smaller windows consisting of 1, 2 or 4 consecutive frames
are extracted convolutionally and PCA-whitened, and then K-means
features are extracted. The features are pooled by taking the maximum
across time over the pooling windows.

large pooling windows, several seconds in length. Smaller windows consisting
of 1, 2 or 4 consecutive frames are then extracted convolutionally? and PCA-
whitened, and spherical K-means features are extracted from the whitened
windows. The features are pooled by taking the maximum across time over
the pooling windows. The rest of this section describes each part of the
pipeline in detail.

Frames taken from multiresolution spectrograms will automatically model
longer-range temporal structure at higher levels, because the spectrogram
window size is increased. For the Gaussian and Laplacian pyramids how-
ever, this is not the case: any temporal structure present at longer timescales
is lost by the downsampling operation that is required to construct the higher
levels of the pyramid. Although frames at higher levels of the pyramid are
affected by a larger region of the input, they do not reflect temporal struc-
ture within this region as a result. This is why I use windows of a small
number of consecutive frames as input instead: it allows for this structure
to be taken into account by the feature learning algorithm and improves
discriminative performance [111].

2This means that the extracted windows overlap by all but one frame.

54 3 Unsupervised multiscale feature learning

3.5.1 Time-frequency representation

We will use log-scaled mel-spectrograms as a time-frequency representation.
The mel frequency scale is used rather than a linear one, because it matches
more closely how humans perceive pitch and it reduces the dimensionality of
the input. Other possible representations include constant-Q spectrograms,
where the frequency scale is logarithmic, and auditory spectrograms, which
are based on the properties of the human auditory system [94]. Although
I opted to use log-scaled mel-spectrograms for our experiments, the feature
learning approach is generic and not dependent on the type of time-frequency
representation that is used.

For all experiments described in this paper, I extracted spectrograms
with a window size of 1024 audio samples and a hop size of 512 samples.
These spectrograms have a linear frequency scale, so I converted them to
mel-spectrograms with 128 components by pooling components together. I
converted the mel-spectrograms to a logarithmic intensity scale by applying
the elementwise function f(z) = log(l + C - x), where C is a constant con-
trolling the amount of compression [106], which I set to 10,000 for the best
results.

3.5.2 PCA whitening

Before applying the feature learning algorithm, the input is first whitened
using PCA. This significantly improves the features learnt by the K-means
algorithm [28]. In practice, I randomly sample a set of 100,000 windows
from the data to compute the whitening transform. Enough components are
kept to retain 99% of the variance. The whitened windows are then used to
learn the dictionary.

3.5.3 Spherical K-means

K-means has often been used as a dictionary learning algorithm in the past,
but it has only recently been shown to be competitive with more advanced
techniques such as sparse coding. The one-of-K coding used in the algorithm
(i.e., each example being assigned to a single mean) is beneficial during
learning, but it turns out to be less suitable for the encoding phase [26].
By replacing the encoding procedure, the features become significantly more
useful. For spherical K-means, a linear encoding scheme works well: the
feature representation of a data point is obtained by multiplying it with the
dictionary matrix: this is the concatenation of all the learned mean vectors
in the original space. By performing this matrix multiplication, we compute
the dot product between the data point and each of the mean vectors. The

3.5 Proposed approach 55

resulting scalars measure the similarity between the mean vectors and the
data point, and together they form its feature representation.

To extract features from mel-spectrograms with a sliding window, we
have to whiten the windows and extract features, which can be implemented
as a single convolution with the product of the whitening matrix and the dic-
tionary matrix. This makes the feature extraction step efficient and simple
to implement.

The K-means step can also be skipped altogether and the PCA com-
ponents obtained after whitening can be used as features directly instead.
These features were referred to as principal mel-spectrum components (PM-
SCs) by Hamel et al. [53]. They are in fact very similar to MFCCs: if the
windows consist of single frames, replacing the PCA whitening step with a
discrete cosine transform (DCT) results in MFCC vectors. Both transfor-
mations serve to decorrelate the input.

The feature learning algorithm is applied to windows sampled from the
data, and as a result, the features it learns are expected to reconstruct entire
windows. This is sometimes termed patch-based training [71]. Nevertheless,
these features are then extracted from the data in a convolutional fashion,
leading to a certain redundancy: groups of features may be learnt that differ
only by a translation in the time direction. This can be prevented by us-
ing convolutional training instead, by allowing the features to be translated
when reconstructing the windows during training as well. However, this is
much more computationally demanding, and adapting the feature learning
algorithm in this way is not straightforward. In the end, the simplicity of
the patch-based approach trumps the effects of having multiple redundant
features, and a simpler solution to this problem is to learn a larger number
of features instead.

Figure 3.3 shows a random selection of features learnt from windows of 4
consecutive mel-spectrogram frames at different levels in a 6-level Gaussian
pyramid, with PCA whitening (top) and with spherical K-means (bottom).
Some features are stationary across the time dimension, others resemble per-
cussive events and changes in pitch. Many of the K-means features seem to
reflect harmonic structure. This is especially the case for the two lowest lev-
els, where the features span between 160 and 320 ms. This type of structure
is less pronounced in the PCA features.

3.5.4 Pooling

The representation we obtain by extracting features convolutionally from
mel-spectrograms is very large, and for many tasks, it is beneficial to sum-
marise the features across time first. The features are pooled across large
time windows several seconds in length. Although a combination of the

(a) level 0 (b) level 1 (c) level 2

(d) level 3 (e) level 4 (F) level 5

Figure 3.3: A random selection of features learnt with PCA whitening
(top) and spherical K-means (bottom) from windows of 4 consecutive
mel-spectrogram frames sampled from the Magnatagatune dataset, at
different levels in a Gaussian pyramid. The frequency increases from
bottom to top.

3.5 Proposed approach 57

mean, variance, minimum and maximum across time has been found to work
well for this purpose [53], we use only the maximum, because it was found to
be the best performing single pooling function. This reduces the size of the
feature representation fourfold, which speeds up experiments significantly
while having only a limited impact on performance.

I used non-overlapping pooling windows of 128 frames. Because the time
resolution of the higher levels of the pyramid representations is coarser, the
pooling window has to be shrunk accordingly so that the feature vectors
from different levels are aligned and can be concatenated.

A result of the pooling operation is that accurate time information is lost:
we only retain information about which features are active for a given input,
but not when in the audio signal they occur. For the tasks investigated in
this paper (see Section 3.6) this information is not necessary.

Note that without this pooling stage, there would be a linear relation
between features extracted using Gaussian and Laplacian pyramids. The
non-linear operation of taking the maximum across time ensures that we get
different feature vectors for both representations. If we had used a linear
pooling function such as the mean, the resulting feature vectors would be
linear transformations of each other, so they would contain exactly the same
information.

3.5.5 Frequency invariance

Salient patterns in music tend to occur at many different frequencies. For
example, a song often features many pitch-shifted versions of the same mo-
tifs. For many tasks, the precise frequencies at which these patterns occur
are not important, so it is useful to have a feature representation that is fre-
quency invariant. We can modify the proposed feature extraction pipeline
to incorporate frequency invariance, by introducing a pooling step in the fre-
quency direction as well as in the time direction. The features will then span
fewer than 128 mel-spectrogram components. I will also use the maximum
function for frequency pooling.

3.5.6 Feature hierarchies

Another possible modification is to extract a hierarchy of features with mul-
tiple layers. I will simply apply the combination of PCA whitening and
K-means feature learning a number of times in succession, to extract higher-
level features. Note that due to the linearity of the convolutional feature ex-
traction (see Section 3.5.3), higher-layer features will be linear combinations
of lower-layer features. Because we are working with multiscale representa-
tions of audio signals, it is important to distinguish the layers of the feature

58 3 Unsupervised multiscale feature learning

hierarchy from the levels of the multiple timescale representations. We will
extract multiple layers of features separately for each timescale.

3.6 Experiments

Four different feature learning setups were evaluated: PCA whitening, and
spherical K-means with 200, 500 and 1000 means. I also compared 7 differ-
ent multiscale approaches: Gaussian and Laplacian pyramids with windows
of 1, 2 and 4 consecutive frames, and multiresolution spectrograms. This
yields 28 different architectures in total. I used 4 tasks on 3 datasets to
evaluate these architectures: tag prediction and similarity metric learning
on Magnatagatune, tag prediction on the Million Song Dataset and genre
recognition on GTZAN. The extensions proposed in Sections 3.5.5 and 3.5.6
were evaluated on the Magnatagatune tag prediction task only.

3.6.1 Datasets

e Magnatagatune: the Magnatagatune dataset [81] contains 25863
29-second audio clips taken from songs by 230 artists sampled at
16000 Hz, along with metadata and tags. It comes in 16 parts, of
which I used the first 12 for training, the 13th for validation and the
remaining 3 for testing.

e GTZAN: the GTZAN music genre dataset [147] is one of the most
frequently used datasets in MIR. It contains 1000 30-second excerpts,
sampled at 22 050 Hz, categorised into 10 genres. Although some prob-
lems with this dataset have been pointed out recently [143], I still in-
clude it for comparison purposes. Due to its small size, I report results
obtained with 5-fold cross-validation.

e Million Song Dataset: the Million Song Dataset [18] is a collection
of metadata and precomputed audio features for one million contem-
porary songs. Although no audio excerpts are provided, the metadata
includes unique identifiers for most of the songs, with which 29 second
audio clips can be downloaded from 7digital.com. In this way, I ob-
tained audio clips for 10000 songs sampled at 22050 Hz. I used 7000
for training, 1000 for validation and 2000 for testing.

3.6 FExperiments 59

3.6.2 Tag prediction

The tag prediction task allows us to evaluate the versatility of the repre-
sentations, because tags describe a variety of different aspects of the music:
genre, instrumentation, tempo and dynamics, among others. All clips in the
Magnatagatune dataset are annotated with tags from a set of 188. I only
used the 50 most frequently occurring tags for our experiments, to ensure
that enough training data is available for each of them. For the Million Song
Dataset, I used 50 of the most popular last.fm tags, excluding user-specific
tags such as ‘favorites’, ‘awesome’ and ‘seen live’.

I trained a multilayer perceptron (MLP) on the proposed multiscale fea-
ture representations to predict the presence of the tags, with a hidden layer
consisting of 1000 rectified linear units [110]. I used minibatch gradient
descent with weight decay to minimise the cross entropy between the predic-
tions and the true tag assignments, and stopped training when the perfor-
mance on the validation set was no longer increasing. The hyperparameters
I used are listed in Table 3.1. I trained the MLP on feature vectors obtained
from pooling windows. Tag predictions for an entire clip were computed by
taking the average of the predictions across all pooling windows. I computed
the area under the ROC-curve (AUC) for all tags individually and then took
the average across all tags to get a measure of the predictive performance of
the trained models.

I also used the tag prediction task on Magnatagatune to evaluate the
model extensions proposed in Sections 3.5.5 and 3.5.6. For the frequency
invariance experiment, I varied the amount of invariance (i.e. the size of the
pooling window in the frequency dimension) from 1 to 32, to determine how
much invariance is necessary. For the feature hierarchy experiment, I learnt
three layers of features and compared the performance of the individual lay-
ers, as well as a combination of the first and second layer, and a combination
of all three layers.

3.6.3 Similarity metric learning

The features were also used to learn a music similarity metric on the Mag-
natagatune dataset. Using Neighborhood Components Analysis (NCA) [47],
a linear projection of the features into a 50-dimensional space is learnt, such
that similar clips are close together in terms of Euclidean distance. Each clip
is mapped into this space by projecting the feature vectors corresponding to
each pooling window and then taking the mean across all pooling windows.
The linear projection matrix is then optimised with minibatch gradient de-
scent to project clips by a given artist into the same region. This approach
was previously explored by Slaney et al. [136].

60 3 Unsupervised multiscale feature learning

Magnatagatune | MSD | GTZAN
MLP NCA MLP MLP
learning rate | 0.1 0.01 0.1 0.003
weight decay | 107° 1073 107° 0
minibatch size | 100 100 100 100
min. number of epochs | 100 100 100 -
max. number of epochs | 500 500 500 -
epoch patience 10 20 10 -
number of epochs - - - 100
number of hidden units | 1000 - 1000 100
number of dimensions - 50 - -

Table 3.1: Hyperparameter values used to train the MLPs for tag
prediction on Magnatagatune and the Million Song Dataset, and genre
recognition on GTZAN, as well as NCA for similarity metric learning
on Magnatagatune. The ‘epoch patience’ is the number of epochs
to continue training when performance on the validation set has not
increased.

NCA is based on a probabilistic version of K-nearest neighbor classifi-
cation, where neighbors are selected probabilistically proportionally to their
distance and each data point inherits the class of its selected neighbour. The
objective is then to maximise the probability of correct classification. I re-
port this probability on the test set. Both NCA and the MLP used for the
tag prediction task were implemented using the Theano library [14].

3.6.4 Genre recognition

For genre recognition on GTZAN, I also trained an MLP for each of the
architectures, this time with 100 hidden units and for 100 epochs (see Ta-
ble 3.1). I trained on feature vectors obtained from pooling windows, and
averaged predictions across pooling windows to obtain predictions for an en-
tire clip. I measured the classification accuracy to assess the discriminative
performance of the features.

3.7 Results

3.7.1 Architectures

The results for the tag prediction task on Magnatagatune and the Million
Song Dataset obtained with each of the 28 different architectures are shown

8.7 Results 61

in Figure 3.4 and Figure 3.5 respectively. All reported results are averaged
across 10 MLP training runs with different initializations. Unfortunately I
cannot directly compare the results with those of Hamel et al. [54], who eval-
uated a combination of multiresolution spectrograms with PCA whitening
for feature learning, because they used a different version of the Magnata-
gatune dataset which is not publicly available.

Using features learnt with spherical K-means almost always yields in-
creased performance, although the difference between using 500 or 1000
means is usually negligible. Interestingly, the best performing architecture
for Magnatagatune uses a Laplacian pyramid, with features learnt from sin-
gle frames. This is somewhat unexpected, because it implies that grouping
consecutive frames into windows is not necessary for this type of multiscale
representation. This does seem to help when using a Gaussian pyramid,
however. A Gaussian pyramid with windows of 2 consecutive frames works
well for both datasets.

For the similarity metric task on Magnatagatune, results are shown in
Figure 3.6. A Gaussian pyramid with windows of 2 consecutive frames works
best. Using 1000 means is noticeably worse than using 500 means. This can
be attributed to the fact that the NCA objective is very prone to overfitting
when using a large amount of input features (6000 in this case, for 6 levels),
despite the use of weight decay and early stopping for regularization.

Results for the genre recognition task on GTZAN are shown in Figure 3.7.
Here, the difference between using PCA and spherical K-means features is
especially pronounced. A Gaussian pyramid with windows of 2 consecutive
frames also works best for this task. We achieve an accuracy of 84.8%, which
is comparable to the state of the art on this dataset.

3.7.2 Relevant timescales

To assess the merit of using a multiscale representation, and to determine
which timescales are relevant for different tags in the tag prediction task, I
took the best architecture from the tag prediction task on Magnatagatune
and tried to predict tags from each level individually. Although a combina-
tion of all levels performs best for all tags, it is not always obvious precisely
which timescales are the most relevant ones for a given tag. Figure 3.8 shows
a selection of tags where some patterns can be identified.

Two tags describe the tempo of the music: slow and fast. Both tags
benefit quite a lot from the multiscale representation: a combination of all
levels performs much better than any level individually. Tags describing
dynamics, such as loud, quiet and soft, seem to rely mostly on the top levels,
corresponding to the coarsest timescales. This may also be because the top
level is the only level in the Laplacian pyramid that is not a difference of

0.905

EE PCA

0.900 - [K-means (200) |
. [K-means (500)

nUu I K-means (1000)
= 0.895
(0]
(o))
g
o 0.890
<
0.885
0.880 - - - - - - - -
multiresolution Gaussian Gaussian Gaussian Laplacian Laplacian Laplacian
spectrograms 1 frame 2 frames 4 frames 1 frame 2 frames 4 frames

Figure 3.4: Results for the tag prediction task on Magnatagatune, for 28 different multiscale feature learning architectures. All

reported results are averaged across 10 MLP training runs with different initializations. Error bars indicate the standard deviation
across these 10 runs.

'sunJ QT 9S2Yl SSOIDE UOIIBIASP pJepuels
9yl 931edipul sieq JoJi3 ‘suoljezijelliul jusJdayiip yiim suni w:_:_m_u d1N QT ssoJde _uwwm._w>m 9Je sjjnsal twu_oaw._ IV 'S°4n31d9}
-1y2Je 3ujuies| 2injes) S|edSIINW 1USJ3JIp 8¢ 40} ‘19sere Suog uol||il Syl uo ysel uolidipaid 3el syi Joj synssy :G ¢ 24nSi4

sowel sowel} g awely | sawel} ¢ sawel} g awell | sweiboJjoads

ueloe|de] ueloe|de ueloe|de ueIssner) ueissner) ueissner) uolnjosaJinw

(0001) suesw-) N
(00G) sueaw-y A
(002) suesw-y

vod

8L°0

640

080

18°0

¢80

Ny abeiony

c [PCA

.m 0-945 [K-means (200)

£ 0.940 -{EEE K-means (500) b

[]

m 0.935 I K-means (1000)

[&]

S 0.930

o

g 0.925

©0.920

S

& 0.915

0.910 - . " " . . - -

multiresolution Gaussian Gaussian Gaussian Laplacian Laplacian Laplacian
spectrograms 1 frame 2 frames 4 frames 1 frame 2 frames 4 frames

Figure 3.6: Results for the similarity metric learning task on Magnatagatune, for 28 different multiscale feature learning
architectures. All reported results are averaged across 10 training runs with different initializations. Error bars indicate the
standard deviation across these 10 runs.

'SunJ QT 9S3Y3} SSOIDE UOIIBIASP pJEpUE]S Sy} S1eDIpul Sieq J40.4]

‘suoljez|| 1 JUSJ3451p YUM sunus Suluiesy (T SSOJOe paSesdane pue UOIIEPI|BA-SSOID Ploj-G YSnoiyy pauleiqo aie synsas paroda

IV 'Se4njosiiyote Suluies| 24nleay S|edsI)NW JUBIBIP 82 40} 'NYZLD UO dsel uoiniuSodas a4usS syl Jof synsay :2°¢ aunSi4
sowel} ¢ sowel} g swelj | sewel} ¢ sawel} g awely | sweJboljoads
uejoe|de uejoe|de ueloe|de ueIssner) ueIssnex) uelssner) uonnjosaJinw

(0001) suesw-y A
(005) sueaw-y A
(002) suesw-y ||

vod

¥.°0

9.0

8L°0

08°0

¢80

¥8°0

980

88°0

Aoeinooe abelony

AUC

1.00

0.95

0.90

0.85

0.80

0.75

T
1 all levels

= level O (finest)
I level 5 (coarsest)

slow fast loud quiet soft vocal female singing vocals flute
Figure 3.8: Results for a selection of individual tags, when using features from all levels combined and when using features from

each level individually. The reported AUCs are for K-means with 500 means on the Laplacian pyramid with features learnt from
single frames.

3.7 Results 67

0-95 3 alllevels i
2090 [level 0 (finest) i
© I level 5 (coarsest)
>
8 085} = 1
® T
C
S 080} 1
©
Q
@ 0.75 8
1)

Y
© o070} .
0.65

0.5
Figure 3.9: Results for the genre recognition task, when using features
from all levels combined and when using features from each level in-
dividually. The reported accuracies are for K-means with 1000 means
on the Gaussian pyramid with features learnt from pairs of consecutive
frames.

two levels in the Gaussian pyramid.

Tags related to vocals can be predicted most accurately from intermediate
levels, as evidenced by the results for vocal, female, singing and vocals. Of
these, female is the easiest to predict, being the most specific tag. Finally,
the flute tag is somewhat atypical among the tags describing instruments,
in that it is the only one that relies mostly on the coarsest timescale (results
for other instruments are not shown). A possible reason for this could be
that the instrument lends itself well to playing longer, drawn out notes. A
quick examination of the dataset reveals that many examples tagged flute
feature such notes.

I conducted the same experiment for genre recognition (see Figure 3.9),
and observed that the lower levels are clearly more important for this task.
Nevertheless, using a combination of all levels still results in a noticeable
increase in performance. Here, the reported accuracies are for K-means
with 1000 means on the Gaussian pyramid with features learnt from pairs
of consecutive frames.

3.7.3 Frequency invariance

Using the best performing architecture for the tag prediction task on Mag-
natagatune, I modified the pipeline to incorporate frequency invariance, as
described in Section 3.5.5. The results are shown in Figure 3.10. It is clear
that adding a limited amount of frequency invariance improves performance,
from an average AUC of 0.8990 without frequency invariance to 0.9037 with
a frequency invariance of 12. This increase is comparable to that obtained

68 3 Unsupervised multiscale feature learning

Average AUC
o
o
8

1
0 5 10 15 20 25 30
Figure 3.10: Results for the tag prediction task on Magnatagatune,
for different levels of frequency invariance. The reported AUCs are for
K-means with 500 means on the Laplacian pyramid with features learnt
from single frames.

by using K-means for feature learning instead of using whitened PCA com-
ponents as features directly. Performance increases rapidly initially as the
amount of invariance is increased, after which it slowly decreases again.

3.7.4 Feature hierarchies

Using the same architecture, three layers of features were learnt, and I com-
pared results using different combinations of layers, as shown in Figure 3.11
(see Section 3.5.6). All layers perform approximately the same individually.
Combining layers results in a performance increase, albeit a very modest
one. Presumably the linearity of the feature extraction limits the expres-
sivity of the higher-layer features, so they do not provide much additional
information.

3.8 Conclusion

I have proposed three approaches to building multiscale feature learning ar-
chitectures for music audio, and I have evaluated them using several tasks
designed to demonstrate the versatility of the learnt features. Learning fea-
tures with the spherical K-means algorithm consistently improves results
over just using PCA components, and a Gaussian pyramid representation
with features learnt from pairs of consecutive frames seems to perform well
for all tasks, although it is not always the best option. It is clear that learning
features at multiple timescales improves performance over single-timescale

3.8 Conclusion 69

Average AUC

1 2 3 1,2 1,2,3
Figure 3.11: Results for the tag prediction task on Magnatagatune,
for different combinations of feature layers. The reported AUCs are
for K-means with 500 means on the Laplacian pyramid with features
learnt from single frames.

approaches, and that the features perform very well in a discriminative set-
ting, even though the learning algorithm is entirely unsupervised (only the
classifier is learnt using label information). I also found that different kinds
of tags tend to rely on different timescales.

The feature learning algorithm I used is very fast and easy to imple-
ment, making the proposed approach an accessible and efficient alternative
to feature engineering. It is especially effective for tasks where large-scale
temporal structure is of less importance. This is because features learnt
at higher timescales are based on a much more coarse-grained representa-
tion of the audio signal. Although these features are able to capture more
long-range structure, their resolution is much lower.

The feature learning method described in this chapter was originally
introduced by Coates et al. [28], but it had only been applied to image
data at that point. My success applying this method to time-frequency
representations of audio signals inspired some researchers to do the same
for different applications, including birdsong classification [142] and urban
sound analysis [122].

I applied a single timescale version of the method with frequency pool-
ing to the problem of detecting whale calls in underwater recordings in the
context of a Kaggle competition: the ‘Whale Detection Challenge™. I spent
only three days working on this competition. Nevertheless, using the pro-
posed approach on spectrograms extracted from the recorded audio signals,
I was able to finish 8th out of 245 participating teams. The fast training

Shttps://www.kaggle.com/c/whale-detection-challenge

70 3 Unsupervised multiscale feature learning

procedure enabled me to try many different combinations of hyperparame-
ters in a short timespan, which helped considerably to achieve a good rank.
This is testament to the usefulness of the approach when the computational
cost should be kept to a minimum.

The method makes some simplifying assumptions: the learnt features
only capture a limited amount of long-range temporal structure, and what
is captured is modeled at a coarse resolution. It also assumes that the tasks
can be tackled without needing any exact temporal information about where
certain patterns occur in the audio signal. As the MIR community moves
on to more challenging tasks, these assumptions will become problematic
and higher-capacity models that do not rely on them will be required. With
today’s hardware and the state of deep learning research, it is feasible to
learn hierarchical representations on large collections of music audio using
neural networks (both in a supervised and unsupervised fashion). In the
long run I believe these models, which have fewer limitations and are better
able to capture long-range structure and invariances, will be a more effective
general purpose solution for a variety of MIR tasks.

Deep conftent-based
MusiC recommendation

4.1 Infroduction

In previous chapters, I have primarily considered classification and tagging
tasks. In practical applications of MIR, obtaining classifications or tag asso-
ciations is not typically a goal in itself - this information is usually intended
to serve some other purpose, such as facilitating music search or enabling
content-based music recommendation. Tackling the intermediary task of as-
signing musical audio signals to one or more categories allows us to use many
existing tools for this purpose: classification and tagging are paradigms that
have been studied extensively, both outside and within MIR.

In this chapter, I will describe a different approach to content-based mu-
sic recommendation, casting it as a regression problem instead. From data
about the listening habits of a large number of users, latent factor vectors for
songs are obtained using collaborative filtering techniques. These vectors of
real numbers are compact but opaque representations of the various aspects
of the music that affect listening preference. They obviate the need for a
manually designed ontology of classes or tags that could be used as an al-
ternative intermediate representation. A deep neural network model is then
trained to learn to predict these vectors from audio signals. This allows us to
incorporate content information directly into a more traditional recommen-
dation approach based on historical listening data. This is especially useful
for less popular music, where listening data is scarce. This biases the rec-
ommendations towards popular songs, which is undesirable. Content-based
approaches have no such bias.

The work described in this chapter was done in close collaboration with
my colleague Adron van den Oord. I will use plural first person pronouns
in the text to reflect this. My contribution consists primarily of the im-

72 4 Deep content-based music recommendation

plementation of the collaborative filtering algorithm we used to obtain the
latent factor vectors (weighted matrix factorization [64]) and the extraction
of spectrogram representations from the audio signals. Adron designed and
trained the convolutional neural networks and conducted the baseline exper-
iments. I also wrote the majority of the paper resulting from this research,
which was presented at NIPS 2013 [149].

The rest of this chapter is structured as follows: in Section 4.2, I describe
different approaches to automatic music recommendation. Section 4.3 covers
the dataset we used for this work, which is based chiefly on the Million Song
Dataset. Section 4.4 describes the weighted matrix factorization (WMF)
algorithm for collaborative filtering. Section 4.5 describes our approach and
experimental setup. Experiments and results are given in Section 4.6. Sec-
tion 4.7 lists some related work and we conclude in Section 4.8.

4.2 Music recommendation

In recent years, the music industry has shifted more and more towards dig-
ital distribution through online music stores and streaming services such as
iTunes, Spotify, Grooveshark and Google Play. As a result, automatic mu-
sic recommendation has become an increasingly relevant problem: it allows
listeners to discover new music that matches their tastes, and enables online
music stores to target their wares to the right audience.

Although recommender systems have been studied extensively, the prob-
lem of music recommendation in particular is complicated by the sheer va-
riety of different styles and genres, as well as social and geographic factors
that influence listener preferences. The number of different items that can be
recommended is very large, especially when recommending individual songs.
This number can be reduced by recommending albums or artists instead,
but this is not always compatible with the intended use of the system (e.g.
automatic playlist generation), and it disregards the fact that the repertoire
of an artist is rarely homogenous: listeners may enjoy particular songs more
than others.

Many recommender systems rely on usage patterns: the combinations of
items that users have consumed or rated provide information about the users’
preferences, and how the items relate to each other. This is the collaborative
filtering approach. Another approach is to predict user preferences from
item content and metadata.

The consensus is that collaborative filtering will generally outperform
content-based recommendation [135]. However, it is only applicable when
usage data is available. Collaborative filtering suffers from the cold start

4.2 Music recommendation 73

problem: new items that have not been consumed before cannot be recom-
mended. Additionally, items that are only of interest to a niche audience are
more difficult to recommend because usage data is scarce. In many domains,
and especially in music, they comprise the majority of the available items,
because the users’ consumption patterns follow a power law [24]. Content-
based recommendation is not affected by these issues.

4.2.1 Content-based music recommendation

Music can be recommended based on available metadata: information such
as the artist, album and year of release is usually known. Unfortunately
this will lead to predictable recommendations. For example, recommending
songs by artists that the user is known to enjoy is not particularly useful.

One can also attempt to recommend music that is perceptually similar
to what the user has previously listened to, by measuring the similarity
between audio signals [136, 125]. This approach is almost always applicable,
but it also very computationally demanding. Furthermore, it requires the
definition of a suitable similarity metric. Such metrics are often defined
ad hoc, based on prior knowledge about music audio, and as a result they
are not necessarily optimal for the task of music recommendation. Because
of this, some researchers have used user preference data to tune similarity
metrics [101, 139].

4.2.2 Collaborative filtering

Collaborative filtering methods can be neighborhood-based or model-based
[119]. The former methods rely on a similarity measure between users or
items: they recommend items consumed by other users with similar pref-
erences, or similar items to the ones that the user has already consumed.
Model-based methods on the other hand attempt to model latent charac-
teristics of the users and items, which are usually represented as vectors
of latent factors. Latent factor models have been very popular ever since
their effectiveness was demonstrated for movie recommendation in the Net-
flix Prize [12].

4.2.3 The semantic gap

Latent factor vectors form a compact description of the different facets of
users’ tastes, and the corresponding characteristics of the items. To demon-
strate this, we computed latent factors for a small set of usage data, and
listed some artists whose songs have very positive and very negative values
for each factor in Table 4.1. This representation is quite versatile and can be

74

4 Deep content-based music recommendation

Artists with positive values

Artists with negative values

Justin Bieber, Alicia Keys, Maroon 5,
John Mayer, Michael Bublé

The Kills, Interpol, Man Man, Beirut, the
bird and the bee

Bonobo, Flying Lotus, Cut

Chromeo, Boys Noize

Copy,

Shinedown, Rise Against, Avenged Seven-
fold, Nickelback, Flyleaf

Phoenix, Crystal Castles, Muse, Royk-
sopp, Paramore

Traveling Wilburys, Cat Stevens, Cree-
dence Clearwater Revival, Van Halen, The

Police

Table 4.1: Artists whose tracks have very positive and very negative
values for three latent factors. The factors seem to discriminate be-
tween different styles, such as indie rock, electronic music and classic
rock.

used for other applications besides recommendation, as we will show later
(see Section 4.6.1). Since usage data is scarce for many songs, it is often
impossible to reliably estimate these factor vectors. Therefore it would be
useful to be able to predict them from music audio content.

As previously discussed in Section 1.1.1, there is a is a large semantic
gap between the characteristics of a song that affect user preference, and the
corresponding audio signal. Extracting high-level properties such as genre,
mood, instrumentation and lyrical themes from audio signals requires pow-
erful models that are capable of capturing the complex hierarchical structure
of music. Additionally, some properties are impossible to obtain from au-
dio signals alone, such as the popularity of the artist, their reputation and
and their location. This semantic gap is precisely why collaborative filter-
ing tends to yield better results than content-based music recommendation
when historical listening data is available.

In this chapter, we strive to bridge the semantic gap in music by train-
ing deep convolutional neural networks to predict latent factors from music
audio. We evaluate our approach on the Million Song Dataset, an industrial-
scale dataset with audio excerpts of over 380,000 songs, and compare it with
a more conventional approach using a bag-of-words feature representation
for each song. We assess to what extent it is possible to extract characteris-
tics that affect user preference directly from audio signals, and evaluate the
predictions from our models in a music recommendation setting.

4.3 The dataset

The Million Song Dataset (MSD) [18], which was also used for the work
in chapters 2 and 3, is a collection of metadata and precomputed audio

4.4 Weighted matriz factorization 75

features for one million contemporary songs. Several other datasets linked
to the MSD are also available, featuring lyrics, cover songs, tags and user
listening data. This makes the dataset suitable for a wide range of different
music information retrieval tasks. Two linked datasets are of interest for our
experiments:

e The Echo Nest Taste Profile Subset provides play counts for over
380,000 songs in the MSD, gathered from 1 million users. The dataset
was used in the Million Song Dataset challenge [102] in 2012.

e The Last.fm dataset provides a multitude of tags for over 500,000
songs.

Traditionally, research in music information retrieval (MIR) on large-
scale datasets was limited to industry, because large collections of music
audio cannot be published easily due to licensing issues. As discussed before
in the previous two chapters, the authors of the MSD circumvented these is-
sues by providing precomputed features instead of raw audio. Unfortunately,
the audio features provided with the MSD are of limited use, and the process
by which they were obtained is not very well documented. The feature set
was extended by Rauber et al. [117], but the absence of raw audio data, or
at least a mid-level representation, is still an issue. However, we were able to
attain 29 second audio clips for over 99% of the dataset from 7digital.com.

Due to its size, the MSD allows for the music recommendation problem to
be studied in a more realistic setting than was previously possible. It is also
worth noting that the Taste Profile Subset is one of the largest collaborative
filtering datasets that are publicly available today.

4.4 Weighted matrix factorization

The Taste Profile Subset contains play counts per song and per user, which
is a form of implicit feedback. We know how many times the users have
listened to each of the songs in the dataset, but they have not explicitly
rated them. However, we can assume that users will probably listen to songs
more often if they enjoy them. If a user has never listened to a song, this
can have many causes: for example, they might not be aware of it, or they
might expect not to enjoy it. This setting is not compatible with traditional
matrix factorization algorithms, which are aimed at predicting ratings.

We used the weighted matriz factorization (WMF) algorithm, proposed
by Hu et al. [64], to learn latent factor representations of all users and
items in the Taste Profile Subset. This is a modified matrix factorization
algorithm aimed at implicit feedback datasets. Let r,; be the play count for

76 4 Deep content-based music recommendation

user u and song i. For each user-item pair, we define a preference variable
pui and a confidence variable ¢,; (I(x) is the indicator function, o and € are
hyperparameters):

Pui = I(ry; > 0), (4.1)
cui = 1+ alog(l + e try;).

The preference variable indicates whether user u has ever listened to song
1. If it is 1, we will assume the user enjoys the song. The confidence variable
measures how certain we are about this particular preference. It is a function
of the play count, because songs with higher play counts are more likely to
be preferred. If the song has never been played, the confidence variable will
have a low value, because this is the least informative case.

The WMF objective function is given by:

i et o+ (Sl + Sl) (4
u i

u,t

where A is a regularization parameter, x,, is the latent factor vector for
user u, and y; is the latent factor vector for song i. It consists of a confidence-
weighted mean squared error term and an L2 regularization term. Note
that the first sum ranges over all users and all songs: contrary to matrix
factorization for rating prediction, where terms corresponding to user-item
combinations for which no rating is available can be discarded, we have to
take all possible combinations into account. As a result, using stochastic
gradient descent for optimization is not practical for a dataset of this size.
Hu et al. propose an efficient alternating least squares (ALS) optimization
method, which we used instead.

4.5 Predicting latent factors fromn mu-
sic audio

Predicting latent factors for a given song from the corresponding audio sig-
nal is a regression problem. It requires learning a function that maps a time
series to a vector of real numbers. We evaluate two methods to achieve this:
one follows the conventional approach in MIR by extracting local features
from audio signals and aggregating them into a bag-of-words (BoW) repre-
sentation, discarding any large-scale temporal structure in the process. Any

4.5 Predicting latent factors from music audio 77

traditional regression technique can then be used to map this feature repre-
sentation to the factors. The other method is to use a deep convolutional
network, which is able to take into account large-scale temporal structure in
its higher layers.

Latent factor vectors obtained by applying WMF to the available usage
data are used as ground truth to train the prediction models. It should be
noted that this approach is compatible with any type of latent factor model
that is suitable for large implicit feedback datasets. We chose to use WMF
because an efficient optimization procedure exists for it.

4.5.1 Bag-of-words representafion

Many MIR systems rely on the following feature extraction pipeline to con-
vert music audio signals into a fixed-size representation that can be used as
input to a classifier or regressor [101, 155, 154, 40, 63]:

o Extract MFCCs from the audio signals. We computed 13 MFCCs
from windows of 1024 audio frames, corresponding to 23 ms at a sam-
pling rate of 22050 Hz, and a hop size of 512 samples. We also com-
puted first and second order differences, yielding 39 coefficients in total.

e Vector quantize the MFCCs. We learned a dictionary of 4000
elements with the K-means algorithm and assigned all MFCC vectors
to the closest mean.

e Aggregate them into a bag-of-words representation. For every
song, we counted how many times each mean was selected. The re-
sulting vector of counts is a bag-of-words feature representation of the
song.

We then reduced the size of this representation using PCA (we kept
enough components to retain 95% of the variance) and used two different
models on top of this to predict latent factors: linear regression and a mul-
tilayer perceptron with 1000 hidden units. We also used it as input for the
metric learning to rank (MLR) algorithm [100], to learn a similarity met-
ric for content-based recommendation. This was used as a baseline for our
music recommendation experiments, which are described in Section 4.6.2.

4.5.2 Convolutional neural networks

Convolutional neural networks (CNNs) have recently been used to improve
on the state of the art in speech recognition and large-scale image classifica-
tion by a large margin [58, 73]. Three ingredients seem to be central to the
success of this approach:

78 4 Deep content-based music recommendation

o Using rectified linear units (ReLUs) [110] instead of sigmoid nonlin-
earities leads to faster convergence and reduces the vanishing gradient
problem that plagues traditional neural networks with many layers.

e Parallellization is used to speed up training, so that larger models can
be trained in a reasonable amount of time. We used the Theano library
[14] to take advantage of GPU acceleration.

e A large amount of training data is required to be able to fit large
models with many parameters. The MSD contains enough training
data to be able to train large models effectively.

We have also evaluated the use of dropout regularization [57], but this
did not yield any significant improvements.

We first extracted an intermediate time-frequency representation from
the audio signals to use as input to the network. We used log-compressed
mel-spectrograms with 128 components and the same window size and hop
size that we used for the MFCCs (1024 and 512 audio frames respectively).
The networks were trained on windows of 3 seconds sampled randomly from
the audio clips. This was done primarily to speed up training. To predict
the latent factors for an entire clip, we averaged over the predictions for
consecutive windows.

The network consisted of two convolutional layers with 128 filters span-
ning 6 timesteps and the entire frequency range, yielding one-dimensional
convolutions. A max-pooling layer with a pooling window of 4 timesteps
followed the first convolutional layer, and one with a pooling window of 5
timesteps followed the second convolutional layer. A fully connected hidden
layer with 400 units was stacked on top of this, and finally the output layer
had a number of units equaling the number of latent factors to predict (50
or 400, see Section 4.6.2).

Convolutional neural networks are especially suited for predicting latent
factors from music audio, because they allow for intermediate features to
be shared between different factors, and because their hierarchical structure
consisting of alternating feature extraction layers and pooling layers allows
them to operate on multiple timescales.

4.5.3 Objective functions

Latent factor vectors are real-valued, so the most straightforward objective is
to minimize the mean squared error (MSE) of the predictions. Alternatively,
we can also continue to minimize the weighted prediction error (WPE) from
the WMF objective function. Let y; be the latent factor vector for song 1,

4.6 Experiments 79

obtained with WMF, and y; the corresponding prediction by the model. The
objective functions are then (6 represents the model parameters):

. 1112
i — Yill™ 4.4
min § llyi — yil| (4.4)

. o T2
meancm(pm Ty i) . (4.5)

u,t

4.6 Experiments

4.6.1 Versatility of the latent factor representa-
fion

To demonstrate the versatility of the latent factor vectors, we compared
them with audio features in a tag prediction task. Tags can describe a
wide range of different aspects of the songs, such as genre, instrumentation,
tempo, mood and year of release.

We ran WMF to obtain 50-dimensional latent factor vectors on a subset
of 9,330 of the most popular songs in our dataset, and trained a logistic re-
gression model to predict the 50 most popular tags from the Last.fm dataset
for each song. We also trained a logistic regression model on a bag-of-words
representation of the audio signals, which was first reduced in size using
PCA (see Section 4.5.1). We used 10-fold cross-validation and computed the
average area under the ROC curve (AUC) across all tags. This resulted in
an average AUC of 0.69365 for audio-based prediction, and 0.86703 for
prediction based on the latent factor vectors.

4.6.2 Latentfactor prediction: quantitative eval-
uation

To assess quantitatively how well we can predict latent factors from music
audio, we used the predictions from our models for music recommendation.
For every user u and for every song ¢ in the test set, we computed the
score x1y;, and recommended the songs with the highest scores first. As
mentioned before, we also learned a song similarity metric on the bag-of-
words representation using metric learning to rank. In this case, scores for a
given user are computed by averaging similarity scores across all the songs
that the user has listened to.
The following four models were used to predict latent factor vectors:

80 4 Deep content-based music recommendation

Model | mAP AUC

MLR 0.01801 | 0.60608
linear regression | 0.02389 | 0.63518

MLP 0.025364 | 0.646112

CNN with MSE | 0.05016 | 0.70987
CNN with WPE | 0.04323 | 0.70101

Table 4.2: Results for all considered models on a subset of the dataset
containing only the 9,330 most popular songs, and listening data for
20,000 users.

e Linear regression trained on the bag-of-words representation described
in Section 4.5.1.

e A multi-layer perceptron (MLP) trained on the same bag-of-words rep-
resentation.

e A convolutional neural network trained on log-scaled mel-spectrograms
to minimize the mean squared error (MSE) of the predictions.

e The same convolutional neural network, trained to minimize the weighted
prediction error (WPE) from the WMF objective instead.

For our initial experiments, we used a subset of the dataset containing
only the 9,330 most popular songs, and listening data for only 20,000 users.
We used 1,881 songs for testing, leaving 7,449 songs for training. For the
other experiments, we used all available data: we used all songs that we have
usage data for and that we were able to download an audio clip for (382,410
songs and 1 million users in total, 46,728 songs were used for testing, leaving
335,682 songs for training).

[Model mAP [AUC |

random 0.00015 | 0.49935
linear regression | 0.00101 | 0.64522
CNN with MSE | 0.00672 | 0.77192

upper bound 0.23278 | 0.96070

Table 4.3: Results for linear regression on a bag-of-words representa-
tion of the audio signals, and a convolutional neural network trained
with the MSE objective, on the full dataset (382,410 songs and 1 mil-
lion users). Also shown are the scores achieved when the latent factor
vectors are randomized, and when they are learned from usage data
using WMF (upper bound).

4.6 Experiments 81

We report the mean average precision (mAP, cut off at 500 recommenda-
tions per user) and the area under the ROC curve (AUC) of the predictions.
We evaluated all models on the subset, using latent factor vectors with 50
dimensions. We compared the convolutional neural network with linear re-
gression on the bag-of-words representation on the full dataset as well, using
latent factor vectors with 400 dimensions. Results are shown in Tables 4.2
and 4.3 respectively.

On the subset, predicting the latent factors seems to outperform the met-
ric learning approach. Using an MLP instead of linear regression results in a
slight improvement, but the limitation here is clearly the bag-of-words fea-
ture representation. Using a convolutional neural network results in another
large increase in performance. Most likely this is because the bag-of-words
representation does not reflect any kind of temporal structure.

Interestingly, the WPE objective does not result in improved perfor-
mance. Presumably this is because the weighting causes the importance of
the songs to be proportional to their popularity. In other words, the model
will be encouraged to predict latent factor vectors for popular songs from
the training set very well, at the expense of all other songs.

On the full dataset, the difference between the bag-of-words approach
and the convolutional neural network is much more pronounced. Note that
we decided not to train an MLP on this dataset due to the small difference in
performance with linear regression on the subset. We also included results
for when the latent factor vectors are obtained from usage data. This is
an upper bound to what is achievable when predicting them from content.
There is a large gap between our best result and this theoretical maximum,
but this is to be expected: as we mentioned before, many aspects of the
songs that influence user preference cannot possibly be extracted from audio
signals only. In particular, we are unable to predict the popularity of the
songs, which considerably affects the AUC and mAP scores.

4.6.3 Latent factor prediction: qualitative eval-
uation

Evaluating recommender systems is a complex matter, and accuracy metrics
by themselves do not provide enough insight into whether the recommen-
dations are sound. To establish this, we also performed some qualitative
experiments on the subset. For each song, we searched for similar songs
by measuring the cosine similarity between the predicted usage patterns.
We compared the usage patterns predicted using the latent factors obtained
with WMF (50 dimensions), with those using latent factors predicted with
a convolutional neural network. A few songs and their closest matches ac-

82 4 Deep content-based music recommendation

cording to both models are shown in Table 4.4. When the predicted latent
factors are used, the matches are mostly different, but the results are quite
reasonable in the sense that the matched songs are likely to appeal to the
same audience. Furthermore, they seem to be a bit more varied, which is a
useful property for recommender systems.

Following McFee et al. [101], we also visualized the distribution of pre-
dicted usage patterns in two dimensions using t-SNE [150]. A few close-ups
are shown in Figure 4.1. Clusters of songs that appeal to the same audience
seem to be preserved quite well, even though the latent factor vectors for all
songs were predicted from audio.

4.7 Related work

Many researchers have attempted to mitigate the cold start problem in col-
laborative filtering by incorporating content-based features. We review some
recent work in this area of research.

Wang et al. [152] extend probabilistic matrix factorization (PMF) [121]
with a topic model prior on the latent factor vectors of the items, and apply
this model to scientific article recommendation. Topic proportions obtained
from the content of the articles are used instead of latent factors when no
usage data is available. The entire system is trained jointly, allowing the
topic model and the latent space learned by matrix factorization to adapt
to each other. Our approach is sequential instead: we first obtain latent
factor vectors for songs for which usage data is available, and use these to
train a regression model. Because we reduce the incorporation of content
information to a regression problem, we are able to use a deep convolutional
network.

Stenzel et al. [139] cluster playlists of songs in an unsupervised fashion,
and use the affinities of songs with these clusters as a form of latent represen-
tation. They then compute cosine similarities between these representations
to find similar songs. To incorporate content, they train an SVM to predict
these affinities from 30 audio features extracted using the Marsyas frame-
work [147]. They observe that recommendations improve significantly over
using a purely content-based approach (i.e. defining a similarity measure
directly on the audio features).

McFee et al. [101] define an artist-level content-based similarity mea-
sure for music learned from a sample of collaborative filter data using metric
learning to rank [100]. They use a variation on the typical bag-of-words ap-
proach for audio feature extraction (see Section 4.5.1). Their results corrob-
orate that relying on usage data to train the model improves content-based

"3JOMISU |BJNSU |BUOIIN|OAUOD B AQ pa1dipaid sio1de) 1usie|
Suisn pue {\AA YHM paulelqo siol1doe) juale| Suisn ‘suislied 98esn Jo sw9l Ul SSYdIeW 1S9SO|D 19yl pue sSuos mdy Y iy dlqel

WSTUPIA O, 9INUI\ SU() - 901Isn
Yonog, au() - wejsAspunog (DT

OIWRUAPOIDY / oWIL], 8I0J\ du() - fund e
9IWRUAPOISY - Jung e

[0y u.poy
sse[310YG I9ISUOIN 104 - Snjo SuIk[q (uoisiop soezuor)) Suor] oqQJ, - und e - yung yeq
AR RART - 9ZION SAog UOISTAYSIN - Jund Jeq
UG UG - 9ZI0N sdog HOOILH 3I04S - und Jed
ysnipior) oy, - Aefdpio) poox) g¢g - sIofjolg Seuo[
Ie9q 9INjeaI)) - I9A] Uog au() axenbg - Aerdpro) fomy wey T
POOMAT[OH - 9u0)g ®eI[N[23 SNSUY A 23 X - Aerdpiop - ferdpiop
Surreaddy nox - ¢8IN ysnipox) oy, - Ae[dprop
suruuny Ie)) oy, deay] - a1 apedry pue)g NOX SILYA [nJoIe)) - Aeidpro))
IR)g UBOLIOWY - [[PUeYS / oukep [I'T pojuney - euuRYIY
Kemy SOl - RUUOPRIN 9AOT U] A[snorodue(] - 9oUOKog ssoqyooadg
oYPON 9 sH o1duwelg - zueg orpueloly aA0r pafre)) Suly, o] Azei)) - snjeig-f / euueyry - gouokog
pojuney - euueyry Appe(- eouokog ’
9UQ 9, JON 91,NOX JT - PPY3UIPag [prueq 0BIIA WOL] YY) - 9ouokeg
SI0SRUSIT, - 9OURWOY [edTwor)) AN poox) g¢g - SIojolg Seuo[
WOUAA 9], 10, NOZ UL], - 90UBWOY [T AN 000€ TBdX - SIO)OIg Seuo uO PIoH

NOX I9A() SPUSLL] AN - AIO[Y) PUNO; MON
sourer) - SIOY10Ig Seuof
[A15) 09PIA - SISYJ0IE Seuof

un,j oAR RUURAA SN[S[IIK) - SNLIAD) AS[I]N
(MO WBIN S1D) "O'N'D - SnIk) A9y
sourer) - SI9YOIY Seuol

- SI9Y)oIg Seuof

(pogorpead) syor1) Ie[rwuls ISOIN

(ANA) S3PRI} Te[IUIS 4SO

A1on)

Beyonc

ony;.
Yael N
Sugarland i
1 Wayne) (K{Leona Lewis
Kelly Clarkson = . . Lo
Bey. ambino J=jvril Lavi
Be) lei! Ashlee Simpsonfh
Monica featuring Ty il <<m<:mm \:mm:mq._m
Bo a/ J-Status Miley Cyr(Niariah Carey]
Mbrifariah T Gwen StelBritney Spears S
z_w JustiiMadonnaJisher) DeBarge)g{Aquals toatury
eyonc :
Y eLunalilportishea Fer(Lindsay Lohan Rudeboy
Keri Hilson ERUTR A
Timbaland / ._.svo .Uoo Donavon Fral

Figure 4.1: t-SNE visualization of the distribution of predicted usage patterns, using latent factors predicted from audio. A few
close-ups show artists whose songs are projected in specific areas. We can discern hip-hop (red), rock (green), pop (yellow) and
electronic music (blue). This figure is best viewed in color.

4.8 Conclusion 85

recommendations. For audio data they used the CAL10K dataset, which
consists of 10,832 songs, so it is comparable in size to the subset of the MSD
that we used for our initial experiments.

Weston et al. [155] investigate the problem of recommending items to a
user given another item as a query, which they call ‘collaborative retrieval’.
They optimize an item scoring function using a ranking loss and describe a
variant of their method that allows for content features to be incorporated.
They also use the bag-of-words approach to extract audio features and eval-
uate this method on a large proprietary dataset. They find that combining
collaborative filtering and content-based information does not improve the
accuracy of the recommendations over collaborative filtering alone.

Both McFee et al. and Weston et al. optimized their models using a
ranking loss. We have opted to use quadratic loss functions instead, because
we found their optimization to be more easily scalable. Using a ranking loss
instead is an interesting direction of future research, although we suspect
that this approach may suffer from the same problems as the WPE objective
(i.e. popular songs will have an unfair advantage).

4.8 Conclusion

We have investigated the use of deep convolutional neural networks to predict
latent factors from music audio when they cannot be obtained from usage
data. We evaluated the predictions by using them for music recommenda-
tion on an industrial-scale dataset. Even though a lot of characteristics of
songs that affect user preference cannot be predicted from audio signals, the
resulting recommendations seem to be sensible. We can conclude that pre-
dicting latent factors from music audio is a viable method for recommending
new and less well-known music.

We also showed that recent advances in deep learning translate very well
to the music recommendation setting in combination with this approach,
with deep convolutional neural networks significantly outperforming a more
traditional approach using bag-of-words representations of audio signals.
This bag-of-words representation is used very often in MIR, and our re-
sults indicate that a lot of research in this domain could benefit significantly
from using deep neural networks. This is not surprising, given the impressive
improvements that have been achieved with these methods in other domains
such as computer vision and speech recognition.

As mentioned in the introduction of this chapter, this work was presented
at NIPS 2013. It was accompanied by an interactive demo: people could
suggest any YouTube video of their choosing, an excerpt of which was then

86 4 Deep content-based music recommendation

analysed by our convolutional neural network. Ten samples from the Million
Song Dataset whose predicted latent factors were closest to the factors of the
analyzed excerpt where then presented as recommendations®. This allowed
conference attendees to evaluate our approach qualitatively for themselves.

We made a conscious decision to present this work at NIPS 2013, a
general machine learning conference, instead of a venue targeted at MIR
researchers. Our intention was to showcase MIR as an interesting application
among the broader deep learning community. Until now, most research into
the application of deep learning for MIR problems has been internal to the
MIR community.

A few authors have expanded on our work. Liang et al. [89] explored
using a neural network trained on audio content as a prior in a latent fac-
tor model, integrating information from content and collaborative filtering.
Wang and Wang [153] similarly attempted to integrate both content and
collaborative filtering information into a single probabilistic model, although
they did not use a convolutional architecture to model the audio content.

There has been considerable interest in our work from industry as well.
Following the publication of our paper, both Adron and I were offered intern-
ships to work on music recommendation, at Google and Spotify respectively.
At Spotify, I expanded upon the work described in this chapter. I was able to
apply it on a larger dataset, consisting of the 1 million most popular tracks
on Spotify at the time. Multiple collaborative filtering models are used in
their recommendation pipeline, so I used the latent factors computed by
these algorithms as targets. I also scaled up the convolutional neural net-
work to have more layers and more units per layer, as the model used in this
work is relatively small by modern standards. I employed data augmentation
and dropout regularization to reduce overfitting due to the larger number of
trainable parameters. I have described my work at Spotify in some detail in
a blog post?.

INote that we excluded all training data to avoid issues resulting from overfitting.
2http://benanne.github.io/2014/08/05 /spotify-cnns.html

End-to-end learning

5.1 Introduction

Feature learning and deep learning have become the gold standard in several
research domains that were previously dominated by manual feature design.
Most notably, these domains include computer vision and speech recognition,
where feature learning techniques have advanced the state of the art by a
significant margin [58, 73]. This has allowed researchers to build models of
data requiring only a minimum of prior knowledge.

As indicated in previous chapters, feature learning has also been receiv-
ing more attention from the MIR community lately [67]. However, most
research on the application of feature learning to MIR problems relies on
using mid-level representations of audio, such as spectrograms. This is also
a form of prior knowledge. Some researchers also use handcrafted feature
representations as input to feature learning algorithms (I did the same in
chapter 2). In computer vision, on the other hand, modern feature learning
techniques are able to operate directly on raw pixel representations of im-
ages, without requiring any form of preprocessing or feature extraction on
beforehand [82].

In this chapter, I investigate whether it is possible to apply feature learn-
ing directly to raw audio signals, thus further reducing the amount of prior
knowledge required when using feature learning for MIR tasks. I train convo-
lutional neural networks to perform an automatic tagging task and compare
different input representations and network architectures.

This chapter is structured as follows: in Section 5.2, I describe the mid-
level representations of audio that are frequently used in MIR. In Section
5.3, I discuss the end-to-end learning paradigm. Experiments and results
are described in Section 5.4, and I draw conclusions in Section 5.5.

88 5 End-to-end learning

5.2 Mid-level representations

Many higher-level characteristics of sound relate to the energies in different
frequency bands. This explains the utility of time-frequency representations
of audio such as spectrograms, which are frequently used in literature [85,
56, 158, 32] (see Section 1.1.2). Another advantage in the context of feature
learning is that they convert the audio data into a representation that is
very similar to an image. This makes it easier to translate feature learning
approaches, which are often designed with image data in mind, to an audio
context.

Most researchers do not use raw spectrograms, which have a linear fre-
quency scale. The mel scale or a logarithmic frequency scale are preferred
instead: they reduce the resolution for higher frequencies, which matches the
human perception of frequency, and reduces the size of the representation
(and hence computational requirements). Another common preprocessing
step is to apply some form of dynamic range compression, for example by
taking the logarithm of the spectrograms.

Although there has been some work about learning features directly from
speech signal fragments [86, 87, 69], to our knowledge feature learning has
not been applied directly to raw music audio signals in literature.

5.3 End-to-end learning

The term end-to-end learning is used to refer to processing architectures
where the entire stack, connecting the input to the desired output, is learned
from data [108]. An end-to-end learning approach greatly reduces the need
for prior knowledge about the problem, and minimises the required engi-
neering effort; only the tuning of the model hyperparameters requires some
expertise, but even that process can be automated [13]. Learning features
can result in better performance than engineering them, because they are
automatically tailored to the task at hand. Furthermore, training the en-
tire processing architecture can lead to new insights about what kind of
information is salient for a given task [67, 56].

Convolutional neural networks (CNNs) [83] in particular lend themselves
well to this setting, because they consist of many layers of processing that are
all learned using the same objective function, which is propagated through
the network. CNNs have been used for image classification [73, 84], speech
recognition [85], epileptic seizure detection [104], and many other applica-
tions. In music information retrieval, they have been used for onset detection

5.4 Ezperiments and results 89

[77], genre classification [85, 88, 33|, artist recognition [85, 33|, instrument
classification [66] and content-based recommendation [149].

From a biological perspective, computing mid-level representations from
audio signals before applying learning algorithms to them makes sense: the
human brain also perceives sound in the form of a mid-level representation.
This results from sound passing through the cochlea, which is in essence a
mechanical filter bank. Different parts of the cochlea respond to different
frequencies. Nevertheless, it is still interesting to attempt to learn this part
of the processing pipeline as well. Some information in raw audio signals
is discarded by commonly used mid-level representations (most notably the
phase). Learning from raw audio signals ensures that no potentially relevant
information is discarded, and that the learned representations are tuned to
the task at hand.

5.4 Experiments and results

To compare end-to-end learning with the traditional MIR approach of using a
mid-level representation of the audio signals, I trained deep CNNs to perform
automatic tagging on the Magnatagatune dataset [81]. The dataset contains
25863 29-second audio clips with a sample rate of 16 kHz, taken from songs
by 230 artists, annotated with 188 tags. It comes in 16 parts, of which I
used the first 12 for training, the 13th for validation and the remaining 3 for
testing. I only used the 50 most frequent tags to ensure that enough training
data was available for all of them.

5.4.1 Experimental setup

The CNN architecture that I used as a basis for all our experiments is visu-
alised in Figure 5.1. It consists of 6 layers in total: two convolutional layers
with 32 filters of length 8, alternating with max-pooling layers with pooling
size 4, and two dense layers with 100 and 50 units respectively. I used rec-
tified linear units [110] in all layers except for the top layer, where I used
sigmoidal units. I extended this architecture for each the experiments de-
scribed in the following subsections. Note that all convolutions and pooling
operations are one-dimensional, i.e. only along the axis representing time.
Although it is possible to convolve and pool in the frequency direction in
the case of spectrogram input [1], T did not investigate this approach here to
ensure a fair comparison, as it is not possible with raw audio input.

I trained the network using minibatch gradient descent, with minibatches
of 10 examples. I used windows of about 3 seconds of audio as input. To

90 5 End-to-end learning

o Bl n

tag predictions

A

(6: fully connected #50)
I

C5: fully connected #100)
I

(4: max-pooling 4)
I

C3: convolution #32 8)
I

[2: max-pooling 4)
I

convolution #32 8)

A 4 T =

(strided conv.) }C feature pooling)
I

[strided conv. j

!
!
!
|
|
|
|
|
|
|
|
!
!
|
|
|
|
|
1

raw audio

Figure 5.1: The convolutional neural network architecture | used for
the experiments. The filter sizes and pooling sizes (+») and numbers
of units (#) are indicated. | consider three possible approaches: (a)
spectrograms as input, (b) raw audio as input by adding an additional
strided convolutional layer, and (c) raw audio with feature pooling.

compute tag predictions for a clip, I averaged the predictions over consecu-
tive windows. I evaluated the use of dropout regularization [57] in the fully
connected layers, but this did not affect performance significantly. To eval-
uate the predictions, I computed the area under the ROC curve (AUC) for
each tag and computed the average across all 50 tags. For each experiment,
I performed roughly 5 million parameter updates and validated the model
at regular intervals. I report results on the test set for the parameters that
achieved the best validation score. I used the Theano library to enable GPU
acceleration [14].

5.4 Ezperiments and results 91

length stride | AUC (spectrograms) AUC (raw audio)
1024 1024 0.8690 0.8366
1024 512 0.8726 0.8365
512 512 0.8793 0.8386
512 256 0.8793 0.8408
256 256 0.8815 0.8487

Table 5.1: Results for the tag prediction task on Magnatagatune, with
convolutional neural networks using spectrograms and raw audio, for
different combinations of filter lengths and strides. AUCs on the test
set are reported. 1024 samples correspond to 64 ms at a sample rate
of 16 kHz.

5.4.2 Spectrograms versus raw audio

To assess whether the task of tag prediction can be solved with a CNN using
only raw audio, I compared two approaches:

e spectrograms: I extracted mel-spectrograms with 128 components,
and performed dynamic range compression by applying the element-
wise function f(z) =log(l+ C - z), where C' is a constant controlling
the amount of compression [106], which I set to 10,000. This repre-
sentation was used as input to the network, as shown in Figure 5.1a.
I tried a number of different window lengths and strides (hop sizes),
which are listed in Table 5.1.

e raw audio: I extended the basic architecture described in the previous
subsection by adding an additional convolutional layer at the input
side, and used raw audio as input, as shown in Figure 5.1b. The
additional layer performs a strided convolution, i.e. a convolution with
a stride larger than one, because it would be computationally infeasible
to compute full convolutions on raw audio signals. For this layer, I tried
the same lengths and strides as for the spectrogram extraction. The
raw audio signals were not preprocessed in any way.

The results for these experiments are listed in Table 5.1. The spectrogram
approach consistently outperforms using raw audio, and a smaller window
length consistently improves results. Presumably the increased time granu-
larity is useful for this task. Reducing the stride to half the window length
does not result in any significant improvement.

To see whether the network using raw audio as input is able to learn
frequency-selective filters in the lowest layer, I computed their squared mag-
nitude spectra. I have visualised the spectra of the filters ordered according

92 5 End-to-end learning

to the dominant frequency (low to high) in Figure 5.2. From this visualisa-
tion, it is clear that most features are indeed frequency-selective, and they
cover the lower half of the spectrum. This is to be expected, as the harmonic
content of music tends to be mostly in the lower end of the spectrum. It is
especially worth noting that the filters seem to linearly span the frequency
range up to about 1000 Hz, whereas filters that are selective for higher fre-
quencies are more spread out. This is reminiscent of the mel scale. Some of
the learned filters are shown in Figure 5.3, ordered by dominant frequency.
They are quite noisy, but the dominant frequency is visible for most.

8000 T T T T T T
7000 3
6000 =
5000 =
4000 5
3000 |
2000 <t .
1000 g a

O "]]]]]
0 20 40 60 80 100 120
filters

Figure 5.2: Normalised magnitude spectra of the filters learned in the
lowest layer of a convolutional neural network that processes raw audio
signals, ordered according to the dominant frequency (from low to
high). Each vertical line in the graph represents the frequency spectrum

of a different filter. The filters have a length and stride of 512 samples.

frequency [Hz]

Despite the fact that the training procedure is able to discover a fre-
quency decomposition from raw audio examples, there is a significant per-
formance gap between both approaches. This may be because the network
architecture for raw audio input is not sufficiently expressive to perform an
operation similar to spectrogram extraction. In the following experiments,
I have attempted to incorporate some aspects of spectrograms into the net-
work architecture, to assess whether they are important to achieve good
performance.

5.4 FExperiments and results 93

A N W Wy
Mgl gt gl
i A AR
P WA AN AN

Figure 5.3: A subset of filters learned in the lowest layer of a con-
volutional neural network that processes raw audio signals, ordered by
dominant frequency. The filters have a length and stride of 512 sam-
ples.

5.4.3 Dynamic range compression

The mel-spectrograms were compressed using the nonlinear function de-
scribed in Section 5.4.2. This type of nonlinearity is probably difficult to
learn using a network consisting of rectified linear units. I replaced the rec-
tification nonlinearity in the strided convolutional layer with a compression
function. The results are shown in Table 5.2. Unfortunately, this does not
have the desired effect, and in fact it severely degrades performance. The
logarithmic nonlinearity seems to impede the optimization process.

5.4.4 Invarionce

Spectrograms exhibit various types of invariance, which are likely to be use-
ful for the task of tag prediction: they are phase-invariant, and translation-

nonlinearity f(z) AUC
rectified linear max (0, x) 0.8366
logarithmic ~ log(1+ C - z?) | 0.7508
logarithmic ~ log(1+ C - |z|) | 0.7487

Table 5.2: Results for the tag prediction task on Magnatagatune, with
convolutional neural networks using raw audio as input, for different
types of nonlinearities used in the strided convolutional layer. AUCs on
the test set are reported. A filter length and stride of 1024 were used
for all experiments.

94 5 End-to-end learning

pooling pool size | AUC
no pooling 1 0.8366
L2 pooling 2 0.8387
L2 pooling 4 0.8387
max-pooling 2 0.8183
max-pooling 4 0.8280

Table 5.3: Results for the tag prediction task on Magnatagatune, with
convolutional neural networks using raw audio as input, for different
types of feature pooling after the strided convolutional layer. AUCs on
the test set are reported. A filter length and stride of 1024 were used
for all experiments.

invariant to a limited extent as well. Mel-scaled spectrograms are also some-
what frequency-invariant, particularly for higher frequencies. Automatically
discovering these invariances from data may be quite challenging. To facil-
itate this process, we can further modify the network architecture to pool
across groups of filters, as shown in Figure 5.1c. Hyvérinen and Hoyer [68]
showed that summing the squares of the activations of a set of linear filters
(L2 pooling) allows for learning phase- and translation-invariant features.
More recently, units computing the maximal activation across a set of linear
filters (mazout units) have been used to achieve state of the art image clas-
sification performance on several benchmark datasets [49]. T have evaluated
both approaches.

The results are shown in Table 5.3. Although L2 pooling does not seem
to perform significantly better than no pooling, and max-pooling performs
worse, it should be noted that combining linear filters by pooling reduces
the effective number of features computed in the strided convolutional layer.
This in turn reduces the number of parameters in the next convolutional
layer, leading to a network with fewer trainable parameters. Some filters
learned by the network with L2 pooling and a pool size of 4 are shown
in Figure 5.4. As expected, most of the pools consist of filters that are
translated or phase-shifted versions of each other.

5.5 Conclusion

In this chapter, I have investigated whether end-to-end learning for music
audio is feasible using convolutional neural networks to solve an automatic
tagging task. Although the performance level of a spectrogram-based ap-
proach was not reached, I have shown that the networks are able to learn

5.5 Conclusion 95

Figure 5.4: A subset of filters learned in a convolutional neural network
with a feature pooling layer (L2 pooling with pools of 4 filters). The
filters have a length and stride of 1024 samples. Each row represents
a filter group. The filters were low-pass filtered to remove noise and
make the dominant frequencies stand out.

useful features from raw audio: they are able to autonomously discover fre-
quency decompositions, and when a feature pooling layer is incorporated,
they discover phase- and translation-invariant features as well.

Given larger datasets and more complex tasks, which provide opportuni-
ties to train much larger and deeper networks, I believe the performance of a
network trained on raw audio signals should eventually be able to match or
even exceed that of a network trained on spectrogram inputs. Large networks
are expressive enough to reproduce (or indeed improve on) the spectrogram
extraction operation in their lower layers, and if there is enough available
data they should be able to learn this function without overfitting. This
could also be verified by initializing the parameters of the lower layers in
such a way that they already perform this operation without any training,
and subsequently finetuning them further through backpropagation.

Within the deep learning community, there has been a noticeable in-
creased interest in generative models in the past two years. Although most
research is focused on the generation of images or discrete sequences, gener-
ating audio signals is also an interesting application. In this line of research
it would also be useful to eliminate mid-level representations and let the
models generate raw audio signals directly, because inverting mid-level rep-
resentations can be cumbersome. Future work on using neural networks with
raw audio signals is likely to be situated chiefly in this domain.

Conclusion and
perspectives

In this chapter, I will provide a summary of research conclusions. I will
also review some potential directions for future work. In a broad sense, I
will discuss my view of the future of deep learning and feature learning for
MIR applications. In a more narrow sense I will also provide some potential
follow-up work for the material covered in this thesis.

6.1 Summary

The ongoing digitization of the music industry, which started around the turn
of the century with the advent of online music stores and later streaming
services, has resulted in an increased interest in music information retrieval
(MIR) in recent years, and in content-based MIR in particular. It has created
a need to efficiently organize and categorize large collections of music, and
to make them easily browseable and searchable.

In this thesis, I have explored how deep learning and feature learning
techniques can be used for music classification, tagging and recommendation,
task that are of considerable interest to music retailers, artists and listeners
alike. I have developed content-based MIR approaches for these tasks that
exploit the inherent hierarchical structure present in music. Deep neural
networks allow for this hierarchy to be learnt from data while requiring only
a minimal amount of domain knowledge.

In chapter 2 I developed a model for audio-based music classification us-
ing a pre-trained convolutional neural network. I made use of the Million
Song Dataset (MSD), a large collection of metadata and precomputed au-
dio features for one million songs. I demonstrated how convolutional neural
networks are able to harness large amounts of unlabeled data through unsu-
pervised pre-training, which is especially useful when labeled training data

98 6 Conclusion and perspectives

is scarce. Most work on audio-based music classification thus far has been
limited by the lack of industry-scale music datasets to develop and test new
methods on. This work was some of the first in this domain taking advantage
of the availability of the MSD, a dataset that is orders of magnitude larger
than was typically the case in MIR research until then.

The work was limited in other ways, however: only a limited number of
precomputed audio features were provided with the MSD, and there was no
way to obtain raw audio signals, or even excerpts of them. This means that,
while the proposed approach was based on feature learning, only higher-level
features could be learned. The lower-level features were fixed by the authors
of the dataset. Furthermore, some of the metadata provided with the dataset
is not necessarily suitable for evaluating classification tasks. For example,
the musical key information I used was computed using an algorithm and
not manually annotated, reducing its usefulness.

The work should also be viewed in context - it predates a number of
high-impact changes in how deep learning is typically practiced, such as
the use of piecewise linear activation functions and dropout regularization.
Nevertheless, the conclusion that unlabeled data can be valuable for MIR
classification tasks still stands today, and will only become more relevant as
music collections grow larger and manual annotation becomes increasingly
unwieldy.

Subsequently I investigated an alternative approach to build a feature hi-
erarchy for music classification and automatic tagging in chapter 3. Rather
than having the levels of the hierarchy build upon each other, I proposed
a purely temporal hierarchy where higher-level features simply encompass
coarser timescales, but all features are learned directly from (temporally
downsampled versions of) mid-level representations. While this does not
qualify as deep learning because only one level of features is learned, this
hierarchy also allows for patterns to be captured at different levels of abstrac-
tion, because in music higher abstraction levels tend to manifest themselves
on coarser timescales.

I used an unsupervised feature learning technique based on the spherical
K-means algorithm. This has many advantages: the training procedure is
very fast and the algorithm is simple to understand and implement. It
also turns out that the resulting feature representations are quite effective
for the classification and tagging tasks I investigated. A downside is that
higher level features necessarily have a much lower resolution. So while this
method is able to capture high-level features, it cannot capture them in as
much detail. As a result it is only useful for tasks where detailed temporal
structure on longer timescales is not as important. With a more traditional
‘deep’ feature hierarchy, where higher level features build upon lower level
features, this problem does not occur.

6.1 Summary 99

In chapter 4, I describe a new approach to content-based music rec-
ommendation which my colleague Aédron van den Oord and I developed
together. We obtain latent factor vector representations of songs from his-
torical listening data using collaborative filtering techniques and then build a
convolutional neural network to map audio signals into this vector space, re-
ducing content-based music recommendation to a regression problem in the
process. Through both qualitative and quantitative evaluation, we showed
that this approach yields sensible recommendations for songs for which no
listening history is available, which makes it suitable for cold-start recom-
mendations.

Despite these promising results, audio-based music recommendation is
only in the early stages of adoption. Commercial services that provide music
recommendations still rely mostly on a traditional collaborative filtering ap-
proach, often combined with human curation. For content-based recommen-
dation to become practically usable and economically viable, more research
is needed into how it can be combined with the aforementioned traditional
approach so as to profit from the advantages of both. Although both collab-
orative filtering and content-based recommendation have been shown to be
very effective for specific use cases, hybrid systems rarely show significant
overall improvements.

Furthermore, the market for content-based recommenders is relatively
small: most listeners are not particularly interested in receiving recommen-
dations that are similar to their known preferences in terms of sound - they
may prioritize other attributes (such as novelty, popularity and other social
aspects), or they may not be interested in recommendations at all. Those
that are tend to be music fans who actively seek out new artists and albums
to discover.

This implies that content-based recommendation needs to reach a very
high standard of quality before it is worth investing in: it can improve
the user experience, but only for the subset of the user base that fits this
particular profile, and only consistent high quality recommendations will
appease this group and create a sense of trust. Services like SoundCloud
and Bandcamp tend to cater specifically to this type of listener, so they
might benefit more from content-based recommendations than mainstream
streaming services and online music stores such as Spotify, Google Play
Music, Pandora and iTunes.

The potential of our work was recognized by various music streaming and
online music retailing companies, and lead to an internship for both A&dron
and myself: he spent the summer with the Google Play Music team, and I
spent three months at Spotify. Both of us had the opportunity to try out
our method at an industrial scale.

In chapter 5, I investigated the necessity of mid-level time-frequency rep-

100 6 Conclusion and perspectives

resentations in the context of automatic tagging of music with convolutional
neural networks. One of the promises of deep learning is to make feature
engineering and the incorporation of domain knowledge about the data and
the problem largely obsolete - yet in the context of content-based MIR, the
norm is to use mid-level representations of audio signals as input to learning
algorithms, rather than the raw PCM-encoded audio signals themselves. I
wanted to determine whether this is strictly necessary, and if it is possible
to do away with this form of domain knowledge altogether.

Although convolutional neural networks trained on raw audio signals
were not able to achieve the same level of automatic tagging performance
as those trained on spectrogram representations, these networks were able
to autonomously discover phase- and translation-invariant frequency decom-
positions that resemble the mel-scale, purely by supervised training. With
larger datasets and further tuning of the network architecture, I believe that
networks trained on raw audio signals should be able to match, and possibly
even exceed the performance of those trained on spectrograms.

In summary, my exploration of solutions for MIR problems based on
deep learning and feature learning has demonstrated that these techniques
will potentially have a huge impact on the field — as has already been the
case for various other fields related to signal processing such as computer
vision, speech recognition and natural language processing.

6.2 Perspectives

In the future, MIR applications will only gain importance as the music in-
dustry continues to move to digital distribution. Music streaming is growing
rapidly, with Spotify doubling its number of paying subscribers from 10 mil-
lion to 20 million over the past year! and new competitors such as Google,
Apple and Tidal entering the streaming market. In this context, I would
like to propose a few immediate extensions of the work described in this
thesis, as well as some longer-term ideas and research questions that may be
of interest.

6.2.1 Pre-trained convolutional neural networks
for music classification

As discussed in the previous section, my work on music classification using a
pre-trained convolutional neural network is quite dated by now. The results

Lhttps://news.spotify.com/uk/2015/06/10/20-million-reasons-to-say-thanks/

6.2 Perspectives 101

could be improved considerably by modernising the network architecture:
using different nonlinearities, making the network deeper, and using better
regularization and learning algorithms. Furthermore, the work would benefit
from a more end-to-end approach: rather than having the network learn
high-level features based on pre-extracted handcrafted features, the entire
feature hierarchy could be learned from raw audio signals or a mid-level
representation such as spectrograms.

6.2.2 Multiscale representations

My research on multiscale representations could be extended to be more
suitable for tasks that rely on precise time information, by refraining from
aggregating the features across time using a pooling strategy (i.e. the bag-
of-words approach) and using smarter approaches to incorporate long-range
temporal structure. The recent surge of interest in recurrent neural networks
(RNNs), and more specifically long short-term memory networks (LSTM
networks) has resulted in the development of a versatile framework for the
processing of time series, which could be of use for e.g. cover song detection,
score following or the identification of individual songs.

The multiscale representations based on spherical K-means feature learn-
ing were only tested for tagging and classification tasks. Their merits for
other tasks, such as audio-based music recommendation, were never estab-
lished. It would be interesting to determine how well they fare against con-
volutional neural network-based approaches in this context — in other words,
to establish the importance of hierarchies based on depth, rather than on
multiple timescales for this particular task. Multiscale representations have
the advantage that each level in the hierarchy can be learned independently,
and the learning procedures tend to be less computationally intensive. These
traits could be beneficial for large-scale music recommendation.

The proposed approach for obtaining multiscale representations resulted
in quite some redundancy between different levels. I have already investi-
gated the use of Laplacian pyramids to avoid this, but it should be possible
to remove more of this redundancy and reduce the size of the representations
without losing any information in the process.

My work on multiscale representations relied solely on unsupervised learn-
ing, whereas the deep hierarchical representations described throughout this
thesis were learned in a supervised or semi-supervised fashion (typically us-
ing convolutional neural networks). When available, supervision is valuable
because it allows for feature representations to be adapted and specialised
for the task at hand. Indeed, many state-of-the-art results in deep learning
of late have been obtained using supervised learning exclusively.

102 6 Conclusion and perspectives

Therefore it would be interesting to explore supervised learning in com-
bination with multiscale representations, as well as unsupervised approaches
for learning deep hierarchical representations. This would allow for disen-
tangling the choice between supervised and unsupervised approaches on the
one hand, and the choice between deep and multiscale representations on
the other hand. Both choices could then be studied individually.

Finally, a feature hierarchy need not be either deep or multiscale — it
could also be both. I already briefly explored this in Section 3.5.6, but
a more in-depth treatment could provide insight into the relation between
abstraction levels and musical timescales.

6.2.3 Content-based music recommendation

As stated before, content-based music recommendation is not widely in use
at the time of writing. Further research is required before we will be able
to build systems that produce high quality recommendations that meet the
required standard of quality for economic viability.

Better integration with traditional techniques such as collaborative filter-
ing will be instrumental, seeing as they are largely complementary. While
collaborative filtering provides adequate recommendations in many situa-
tions, content-based approaches could be used to filter outliers, or to provide
good recommendations in contexts where historical preference information
is not available. Furthermore, I believe there should be a focus on producing
consistent high quality recommendations and avoiding missteps: gaining the
users’ trust is very important for a recommender system to be successful.

Another promising avenue of future research concerns the interpretability
of the recommendations. Content-based approaches have the potential to
make the underlying motivation for a recommendation much more explicit,
by having the recommender point out specific passages or even acoustic
characteristics that led it to make a certain recommendation, as well as
providing comparisons to other songs. For example, the system could provide
the explanation that a recommended song contains a guitar solo that is
similar in style to those in two other songs that the listener has previously
enjoyed. It could then provide said listener with the option to play back
the relevant parts of those two songs, in order to verify the similarity for
themselves. Such explanations should increase trust and engagement and
make the recommender more useful.

Note that, although neural networks have long had the undeserved repu-
tation of being black boxes that are unable to provide these explanations, a
plethora of recent research has demonstrated that features learned by these
models are often very interpretable, and some new techniques to obtain such
interpretations have been developed in the last two years [159, 133, 95, 2].

6.2 Perspectives 103

This work has focussed mostly on the interpretation of image features, but
almost all of it should be equally applicable to audio signals with minor
modifications.

Once the aspects and relations that motivate recommendations have
been made explicit, we can also exploit them to make the recommendations
context-dependent, or even tunable: we can give the listener the ability to
(de-)emphasize certain aspects of the music that they feel are (less) impor-
tant, allowing them to guide the recommendation process. This will likely
be appreciated in particular by those listeners that would benefit the most
from audio-based recommendations in the first place.

6.2.4 End-to-end feature learning

Although my experiments showed that training convolutional neural net-
works on raw audio signals rather than mid-level representations results in
slightly worse performance, these results were very promising considering
the relatively small scale of the automatic tagging task. By scaling up the
complexity of the task, as well as drastically increasing the amount of avail-
able training data, it should be possible to match and maybe even exceed
the performance of the approach based on mid-level representations using
only raw audio signals.

Reducing the amount of prior knowledge required to achieve good results
is valuable: if enough data is available, better representations might be learnt
than those we can handcraft. In that sense, it is interesting that the networks
I trained on raw audio were able to rediscover frequency decompositions and
the mel-scale. As an intermediate step, it would be interesting to initialize
the lower layers of a network that takes raw audio as input in such a way that
it performs spectrogram extraction. This operation can then be finetuned
during training.

In the long term, tools and techniques for processing raw audio with
neural networks will be important for building generative models of audio
signals. Although generative models can be built at the spectrogram level,
resynthesizing spectrograms is sometimes challenging because phase infor-
mation is usually discarded (and it is much harder to model).

6.2.5 Long-term perspectives

6.2.5.1 Modeling long-range structure

A limitation of many MIR systems (including those proposed in this thesis)
is that they operate on fragments of songs, not on entire songs. This is often
done for convenience or to reduce computational requirements. It hinges on

104 6 Conclusion and perspectives

the assumption that a fragment of a song is representative for the song as a
whole?.

The high-level structure of music that manifests itself on longer timescales
is not modeled by these systems. This is in part because of diminishing re-
turns: modeling this structure is difficult and computationally intensive, and
for many common MIR, tasks the resulting performance improvement would
likely be marginal. Another reason is that it often requires a different mod-
eling approach: both traditional methods and convolutional neural networks
are not very suitable.

Building integrated models that are able to model both local and global
structure efficiently is an important challenge that has not yet been met.
I believe that recurrent neural networks (RNNs) and especially long short-
term memory networks (LSTMs), whose popularity has steadily risen over
the last few years and which are now in common use for the classification
and generation of sequences, hold a lot of promise for MIR as well. A
combination of convolutional layers for modeling local temporal structure,
as well as recurrence for modeling long-range structure could prove very
effective.

6.2.5.2 Industrial-scale training and evaluation

Another important avenue for future work is the application of the proposed
methods to large-scale datasets with better annotations. Unfortunately this
is not possible today, because such datasets are simply unavailable. The
Million Song Dataset, the largest dataset used in this work, is at least an
order of magnitude smaller than the catalogs of music streaming services
such as Spotify and Apple Music.

To ensure the relevance of future research into audio-based music classi-
fication and recommendation, access to larger datasets will be a necessity.
Furthermore, it has already been demonstrated in other fields (most notably
computer vision) that deep learning approaches scale very well with dataset
size. In addition to improved performance, larger datasets will also allow for
the further reduction of prior knowledge encoded in the models. In other
words, the models will be able to learn more with more data.

6.2.5.3 Generative models for music audio

The work in this thesis focuses on extracting information from music audio,
but another interesting research question is how to build models that are able

2This assumption is not always valid. An interesting counter-example is the song
‘Bohemian Rhapsody’ by Queen.

6.2 Perspectives 105

to generate plausible-sounding musical audio signals given some kind of high-
level representation of the desired characteristics. Deep learning holds a lot
of promise here as well. Research into generative models of images has made
great strides in recent years, thanks to the development of better models
such as deep Boltzmann machines (DBMs) [120], variational autoencoders
(VAEs) [72] and generative adversarial networks (GANs) [48], all of which
should be applicable to music audio as well. As stated before, I believe it
will be especially important to develop good tools to work with raw audio
signals in combination with these models, as mid-level representations often
discard phase information and are difficult to invert without artifacts.

Galaxy morphology
classification

During my time as a PhD student I participated in a number of data science
competitions. One of these competitions was the Galazy Challenge!. It was
hosted online on the Kaggle platform? and ran from December 20th, 2013 to
April 4th, 2014. The goal was to build a system for automated morphological
classification of galaxy images. There were 326 participants, including both
teams and individuals. I finished in the first place using an approach based
on convolutional neural networks.

Although this work falls outside of the scope of this thesis seeing as it does
not concern a music information retrieval application, I wanted to include it
because it demonstrates the versatility and adaptability of deep learning and
feature learning tecnhiques: the entire pipeline is learnt from data, so these
techniques can readily adapt to various different types of input data and
can be applied to new problems with only a minimum of domain knowledge.
Another motivation for including a description of this work in my thesis is
that I spent a substantial amount of time on this work, and leaving it out
entirely would seem inappropriate.

This appendix is a lightly edited version of a paper about the classifica-
tion system I developed, which I wrote together with one of the competition
organizers [34]. It was published in MNRAS, a prominent astronomy and
astrophysics journal.

A.1 Infroduction

Galaxies exhibit a wide variety of shapes, colours and sizes. These proper-
ties are indicative of their age, formation conditions, and interactions with

Lhttps://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
2https://www.kaggle.com/

108 A Galazy morphology classification

other galaxies over the course of many Gyr. Studies of galaxy formation
and evolution use morphology to probe the physical processes that give rise
to them. In particular, large, all-sky surveys of galaxies are critical for dis-
entangling the complicated relationships between parameters such as halo
mass, metallicity, environment, age, and morphology; deeper surveys probe
the changes in morphology starting at high redshifts and taking place over
timescales of billions of years.

Such studies require both the observation of large numbers of galaxies
and accurate classification of their morphologies. Large-scale surveys such
as the Sloan Digital Sky Survey (SDSS)? have resulted in the availability of
image data for millions of celestial objects. However, manually inspecting all
these images to annotate them with morphological information is impractical
for either individual astronomers or small teams.

Attempts to build automated classification systems for galaxy morpholo-
gies have historically had difficulties in reaching the levels of reliability re-
quired for scientific analysis [25]. The Galaxy Zoo project? was conceived
to accelerate this task through the method of crowdsourcing. The original
goal of the project was to obtain reliable morphological classifications for
~ 900,000 galaxies by allowing members of the public to contribute classi-
fications via a web platform. The project was much more successful than
anticipated, with the entire catalog being annotated within a timespan of
several months (originally projected to take years). Since its original incep-
tion, several iterations of the project with different sets of images and more
detailed classification taxonomies have followed.

Two recent sets of developments since the launch of Galaxy Zoo have
made an automated approach more feasible: first, the large strides in the
fields of image classification and computer vision in general, primarily through
the use of deep neural networks [73, 118]. Although neural networks have ex-
isted for several decades [99, 43|, they have recently returned to the forefront
of machine learning research. A significant increase in available computing
power, along with new techniques such as rectified linear units [110] and
dropout regularization [57, 138], have made it possible to build more pow-
erful neural network models.

Secondly, large sets of reliably annotated images of galaxies are now avail-
able as a consequence of the success of Galaxy Zoo. Such data can be used
to train machine learning models and increase the accuracy of their mor-
phological classifications. Deep neural networks in particular tend to scale
very well as the number of available training examples increases. Never-
theless it is also possible to train deep neural networks on more modestly
sized datasets using techniques such as regularization, data augmentation,

Shttp://www.sdss.org/
“http://www.galaxyzoo.org/

http://www.sdss.org/
http://www.galaxyzoo.org/

A.2 Galazy Zoo 109

parameter sharing and model averaging, which we discuss in Section A.6.2
and following.

An automated approach is also becoming indispensable: modern tele-
scopes continue to collect more and more images every day. Future telescopes
will vastly increase the number of galaxy images that can be morphologi-
cally classified, including multi-wavelength imaging, deeper fields, synoptic
observing, and true all-sky coverage. As a result, the crowdsourcing ap-
proach cannot be expected to scale indefinitely with the growing amount of
data. Supplementing both expert and crowdsourced catalogues with auto-
mated classifications is a logical and necessary next step.

We propose a convolutional neural network model for galaxy morphol-
ogy classification that is specifically tailored to the properties of images of
galaxies. It efficiently exploits both translational and rotational symmetry
in the images, and autonomously learns several levels of increasingly ab-
stract representations of the images that are suitable for classification. The
model was developed in the context of the Galaxy Challenge, an international
competition to build the best model for automatic galaxy morphology clas-
sification based on a set of annotated images from the Galaxy Zoo 2 project.
This model finished in first place out of 326 participants®. The model can
efficiently and automatically annotate catalogs of images with morphology
information, enabling quantitative studies of galaxy morphology on an un-
precedented scale.

The rest of this appendix is structured as follows: we introduce the
Galaxy Zoo project in Section A.2 and Section A.3 explains the set up of
the Galaxy Challenge. We discuss related work in Section A.4. Our method
to incorporate rotation invariance into convolutional neural networks is de-
scribed in Section A.5. We provide a complete overview of our modelling
approach in Section A.6 and report results in Section A.7. We analyse the
model in Section A.8. Finally, we draw conclusions in Section A.9.

A.2 Galaxy Zoo

Galaxy Zoo is an online crowdsourcing project where users are asked to de-
scribe the morphology of galaxies based on colour images [91, 90]. Our model
and analysis uses data from the Galaxy Zoo 2 iteration of the project, which
uses colour images from the SDSS and a more detailed classification scheme
than the original project [157]. Participants are asked various questions such
as ‘How rounded is the galaxy?’ and ‘Does it have a central bulge?’, with the

5The model was independently developed by SD for the Kaggle competition. KWW
co-designed and administered the competition, but shared no data or code with any
participants until after the closing date.

110 A Galazy morphology classification

users’ answers determining which question will be asked next. The questions
form a decision tree (Figure A.1) which is designed to encompass a range of
common and more irregular morphologies. The classification scheme has 11
questions and 37 answers in total (Table A.1).

Because of the structure of the decision tree, each individual participant
answered only a subset of the questions for each classification. When many
participants have classified the same image, their answers are aggregated
into a set of weighted vote fractions for the entire decision tree. These vote
fractions are used to estimate confidence levels for each answer, and are
indicative of the difficulty users experienced in classifying the image. More
than half a million people have contributed classifications to Galaxy Zoo,
with each image independently classified by 40 to 50 people®.

Data from the Galaxy Zoo projects have already been used in a wide
variety of studies on galaxy structure, formation, and evolution [134, 5, 123,
92, 30, 97, 98, 131, 103, 156]. Comparisons of Galaxy Zoo morphologies
to smaller samples from both experts and automated classifications show
high levels of agreement, testifying to the accuracy of the crowdsourced
annotations [5, 157].

A.3 The Galaxy Challenge

Our model was developed in the context of the Galaxy Challenge, an online
international competition organized by Galaxy Zoo, sponsored by Winton
Capital, and hosted on the Kaggle platform for data prediction contests.
It was held from December 20th, 2013 to April 4th, 2014. The goal of the
competition was to build a model that could predict galaxy morphology from
images like the ones that were used in the Galaxy Zoo 2 project.

Images of galaxies and morphological data for the competition were taken
from the Galaxy Zoo 2 main spectroscopic sample. Galaxies were selected
to cover the full observed range of morphology, colour, and size, since the
goal was to develop a general algorithm that could be applied to many types
of images in future surveys. The total number of images provided is limited
both by the imaging depth of SDSS and the elimination of both uncertain and
over-represented morphological categories as a function of colour (primarily
red elliptical and blue spiral galaxies). This helped to ensure that colour
is not used as a proxy for morphology, and that a high-performing model
would be based purely on the images’ structural parameters.

SNote that the vote fractions are post-processed to increase their reliability, for example
by weighting users based on their consistency with the majority, and by compensating for
classification bias induced by different image apparent magnitudes and sizes [157].

‘[26T] "1e 19 139||IM Ul T 24nS14 wouy padnpoudsy 9941 UOISIDSP g 007 Axele) sy :T'y 24nSi4

¢Axered ayy jo 3531 9y} 03 paredurod
‘a8[nq 1enuad ayj st jusurword Moy

5o}

Jurdped wre

£QI3) dIe suire ﬂ‘:am Auewr MOY]

S| © | @®

Ly ;readde suwre rexids ayj op punom ApySn moy

rexrds e yo uis Aue arayy s| |

~ | & |

;adeys yeym ‘os J1
$onuad s)1 je 3Z[nq e aaey Axered ay) sao(q

¢Axered a3 Jo axudd Y}
ySnoxyy a1nyeay xeq e yo uSrs e 313y S| #

;U0-33Ppa PaMaIIA MSIp € 3q ST} P[NoD)

*

DISIP E Jo uSIs ou yyrm
‘papunoz pue yjoows Adurs Axered ayj sy

SEEN
B

;rem3a111 10 paqin)sip Axered
ayj st 10 “Surx © 31NjEIJ PPO Y3 S|

;ppo Sunphue a1a1 S|

__t 1

231 ST Papunox Moxy

*

question answers next
Q1 Is the galaxy simply smooth and 21; ?m(t)oth' disk Q;
rounded, with no sign of a disk? ' catures or dis Q
Al.3 star or artifact end
Q2 Could this be a disk viewed A2.1 yes Q9
edge-on? A2.2 no Q3
Q3 Is there a sign of a bar feature A3.1 yes Q4
through the center of the A3.2 no Q4
galaxy?
Q4 Is there any sign of a spiral arm A4.1 yes Q10
pattern? A4.2 o Q5
H inent is th tral A5.1 no bulge Q6
ow prominent is the centra. R .
Q5 bulge, compared with the rest of A5.2 JUSt' noticeable Q6
the galaxy? A5.3 obvious Q6
Ab5.4 dominant Q6
. A6.1 yes Q8
6 Is th th dd?
Q s there anything o A6.2 o end
AT7.1 completely round Q6
Q7 How rounded is it? AT.2 in between Q6
A7.3 cigar-shaped Q6
A8.1 ring end
A8.2 lens or arc end
Is the odd feature a ring, or is A8.3 disturbed end
Q8 the galaxy disturbed or A8.4 irregular end
irregular? A8.5 other end
A8.6 merger end
A8.7 dust lane end
A9.1 ded
Qo Does the galaxy have a bulge at Ag 9 ;;oun ¢ Qg
its center? If so, what shape? : Xy Q
A9.3 no bulge Q6
. . A10.1 tight Q11
Q10 How tightly :vound do the spiral A10.2 medium Q11
arms appear?
A10.3 loose Q11
Alll 1 Q5
Al1.2 2 Q5
Q11 How many spiral arms are Al11.3 3 Q5
there? All4d 4 Q5
A11.5 more than four Q5
Al11.6 can’t tell Q5

Table A.1: All questions that can be asked about an image, with the
corresponding answers that participants can choose from. Question 1
is the only one that is asked of every image. The final column indi-
cates the next question to be asked when a particular answer is given.
Reproduced from Table 2 in Willett et al. [157].

A.8 The Galazy Challenge 113

The final training set of data consisted of 61,578 JPEG colour images of
galaxies, along with probabilities” for each of the 37 answers in the decision
tree. An evaluation set of 79,975 images was also provided, but with no
morphological data — the goal of the competition was to predict these values.
Each image is 424 by 424 pixels in size. The morphological data provided was
a modified version of the weighted vote fractions in the GZ2 catalog; these
were transformed into “cumulative” probabilities that give higher weights
to more fundamental morphological categories higher in the decision tree.
Images were anonymized from their SDSS IDs, with any use of metadata
(such as colour, size, position, or redshift) to train the algorithm explicitly
forbidden by the competition guidelines.

Because the goal was to predict probabilities for each answer, as opposed
to determining the most likely answer for each question in the decision tree,
the models built by participants were actually solving a regression problem,
and not a classification problem in the strictest sense. The predictive perfor-
mance of a model was determined by computing the root-mean-square error
(RMSE) between predictions on the evaluation set and the corresponding
crowdsourced probabilities. Let pr be the answer probabilities associated
with an image (k = 1...37), and pj the corresponding predictions. Then
the RMSE e(p, p) can be computed as follows:

(A1)

This metric was chosen because it puts more emphasis on questions with
higher answer probabilities, i.e. the topmost questions in the decision tree,
which correspond to broader morphological categories.

The provided answer probabilities are derived from crowdsourced classifi-
cations, so they are somewhat noisy and biased in certain ways. As a result,
the predictive models that were built exhibited some of the same biases.
In other words, they are models of how the crowd would classify images of
galaxies, which may not necessarily correspond to the “true” morphology.
An example of such a discrepancy is discussed in Section A.8.

The models built by participants were evaluated as follows. The Kaggle
platform automatically computed two scores based on a set of model predic-
tions: a public score, computed on about 25% of the evaluation data, and a
private score, computed on the other 75%. Public scores were immediately
revealed during the course of the competition, but private scores were not
revealed until after the competition had finished. The private score was used

"These are actually post-processed vote fractions obtained from the Galaxy Zoo par-
ticipants’ answers, but we treat them as probabilities in this paper.

114 A Galazy morphology classification

to determine the final ranking. Because the participants did not know which
evaluation images belonged to which set, they could not directly optimize
the private score, but were instead encouraged to build a predictive model
that generalizes well to new images.

A.4 Related work

Machine learning techniques, and artificial neural networks in particular,
have been a popular tool in astronomy research for more than two decades.
Neural networks were initially applied for star-galaxy discrimination [114, 15]
and classification of galaxy spectra [39]. More recently they have also been
used for photometric redshift estimation [38, 29].

Galaxy morphology classification is one of the most widespread applica-
tions of neural networks in astronomy. Most work in this domain proceeds
by preprocessing the photometric data and then extracting a limited set of
handcrafted features that are known to be discriminative, such as ellipticity,
concentration, surface brightness, and radii and log-likelihood values mea-
sured from various types of radial profiles [141, 78, 109, 79, 4, 6]. Support
vector machines (SVMs) have also been applied in this fashion [65].

Earlier work in this domain typically relied on much smaller datasets and
used networks with very few trainable parameters (between 10! and 103).
Modern network architectures are capable of handling at least ~ 107 param-
eters, allowing for more precise fits and a larger morphological classification
space. More recent work has profited from the availability of larger training
sets using data from surveys such as the SDSS [6, 65].

Another recent trend is the use of general purpose image features, instead
of features that are specific to galaxies: the WND-CHARM feature set [115],
originally designed for biological image analysis, has been applied to galaxy
morphology classification in combination with nearest neighbour classifiers
[128, 129, 76].

Other approaches to this problem attempt to forgo any form of hand-
crafted feature extraction by applying principal component analysis (PCA)
to preprocessed images in combination with a neural network [31], or by
applying kernel SVMs directly to raw pixel data [116].

Our approach differs from prior work in two main areas:

e Most prior work uses handcrafted features (e.g., WND-CHARM) that
required expert knowledge and many hours of engineering to develop.
We work directly with raw pixel data and our use of convolutional
neural networks allows for a set of task-specific features to be learned
from the data. The networks learn hierarchies of features, which allow

A.4 Related work 115

them to detect complex patterns in the images. Handcrafted features
mostly rely on image statistics and very local pattern detectors, mak-
ing it harder to recognize complex patterns. Furthermore, it is usually
necessary to perform feature selection because the handcrafted repre-
sentations are highly redundant and many features are irrelevant for
the task at hand. Although many other participants in the Galaxy
Challenge used convolutional neural networks, there is little discussion
of this approach in the astronomical literature.

e Apart from the recent work of Kuminski et al. [76], whose algorithms
are also trained on Galaxy Zoo data, most research has focused on
classifying galaxies into a limited number of classes (typically between
2 and 5), or predicting scalar values that are indicative of galaxy
morphology (e.g., Hubble T-types). Since the classifications made by
Galaxy Zoo users are much more fine-grained, the task the networks
must solve is more challenging. Since many outstanding astrophysi-
cal questions require more detailed morphological data (such as the
number and arrangements of clumps into proto-galaxies, the relation
between bar strength and central star formation, link between merging
activity and active black holes, etc.), development of models that can
handle these more difficult tasks is crucial.

Our method for classifying galaxy morphology exploits the rotational
symmetry of galaxy images; however, there are other invariances and sym-
metries (besides translational) that may be exploited for convolutional neu-
ral networks. Bruna et al. [21] define convolution operations over arbitrary
graphs, generalizing from the typical grid of pixels to other locally connected
structures. Sifre and Mallat [130] extract representations that are invariant
to affine transformations, based on scattering transforms. However, these
representations are fixed (i.e., not learned from data), and not specifically
tuned for the task at hand, unlike the representations learned by convolu-
tional neural networks.

Mairal et al. [96] propose to train convolutional neural networks to ap-
proximate kernel feature maps, allowing for the desired invariance properties
to be encoded in the choice of kernel, and subsequently learned. Gens and
Domingos [44] propose deep symmetry networks, a generalization of con-
volutional neural networks with the ability to form feature maps over any
symmetry group, rather than just the translation group. Our approach for
exploiting rotational symmetry in the input images, described in Section A.5,
is quite similar in spirit to this work. The major advantage to our imple-
mentation is a demonstrably effective result at a reasonable computational
cost.

116 A Galazy morphology classification

A.5 Exploiting rotational symmetry

Convolutional neural networks can be used when the input data exhibits
some kind of topological structure, like the ordering of image pixels in a
grid, or the temporal structure of an audio signal. The connectivity of the
convolutional layers is restricted to exploit this structure and encode it in
the network architecture. These restricted connectivity patterns drastically
reduce the number of parameters required to model large images, by ex-
ploiting translational symmetry. However, there are many other types of
symmetries that occur in images. For images of galaxies, rotating an image
should not affect its morphological classification. This rotational symmetry
can be exploited by applying the same set of feature detectors to various ro-
tated versions of the input. This further increases parameter sharing, which
has a positive effect on generalization performance.

Whereas convolutions provide an efficient way to exploit translational
symmetry, applying the same filter to multiple rotated versions of the input
requires explicitly instantiating these versions. Additionally, rotating an
image by an angle that is not a multiple of 90° requires interpolation and
results in an image whose edges are not aligned with the rows and columns
of the pixel grid. These complications make exploiting rotational symmetry
more challenging.

We note that the original Galaxy Zoo project experimented with crowd-
sourced classifications of galaxies in which the images were both vertically
and diagonally mirrored. Land et al. [80] showed that the raw votes had an
excess of 2.5% for S-wise (anticlockwise) spiral galaxies over Z-wise (clock-
wise) galaxies. Since this effect was seen in both the raw and mirrored
images, it was interpreted as a bias due to preferences in the human brain,
rather than as a true excess in the number of apparent S-wise spirals in the
Universe. The existence of such a directional bias in the brain was demon-
strated by Gori et al. [50]. The Galaxy Zoo 2 probabilities do not contain
any structures related to handedness or rotation-variant quantities, and no
rotational or translational biases have yet been discovered in the data. If
such biases do exist, however, this would presumably reduce the predictive
power of the model since the assumption of rotational invariance to the out-
put probabilities would no longer apply.

Our approach for exploiting symmetry is visualized in Figure A.2. We
compute rotated and flipped versions of the input images, which are referred
to as viewpoints, and process each of these separately with the same convo-
lutional network architecture, consisting of alternating convolutional layers
and pooling layers. The output feature maps of this network for the different
viewpoints are then concatenated, and one or more dense layers are stacked

A.6 Approach 117

on top. This arrangement allows the dense layers to aggregate high-level
features extracted from different viewpoints.

In practice, we also crop the top left part of each viewpoint image both
to reduce redundancy between the viewpoints and to reduce the size of the
input images (and hence computation time). Images are cropped in such
a way that each one contains the center of the galaxy, because this part of
the image tends to be very informative. The practical implementation of
viewpoint extraction is discussed in Section A.6.5, and the modified network
architecture is described in Section A.6.6.

A.6 Approach

In this section, we describe our practical approach to developing and training
a model for galaxy morphology prediction. We first discuss our experimental
setup and the problem of overfitting, which was the main driver behind our
design decisions. We then describe the successive steps in our processing
pipeline to obtain a set of answer probabilities from an image. This pipeline
consists of five steps (Figure A.3): input preprocessing, augmentation, view-
point extraction, a convolutional neural network and model averaging. We
also briefly discuss the practical implementation of the pipeline from a soft-
ware perspective.

A.6.1 Experimental setup

As described in Section A.3, the provided dataset consists of a training set
with 61,578 images with associated answer probabilities, and an evaluation
set of 79,975 images. Feedback could be obtained during the competition
by submitting predictions for the images in the evaluation set. During the
competition, submitted predictions were scored by computing the RMSE on
a subset of approximately 25% of the evaluation images. It was not revealed
which images were part of this subset. The scores used to determine the final
ranking were obtained by computing the RMSE on the remaining 75% of
images. This arrangement is typical for competitions hosted on the Kaggle
platform. We split off a further 10% of the training set images for real-
time evaluation during model training, and trained our models only on the
remaining 90%.

EeE

—
—

| ﬂ@ =
—
-

Iy

— — |H @@@
1. input 2. rotate 3. crop 4. convolutions 5. dense 6. predictions

Figure A.2: Schematic overview of a neural network architecture for exploiting rotational symmetry. The input image (1) is first
rotated to various angles and optionally flipped to yield different viewpoints (2), and the viewpoints are subsequently cropped
to reduce redundancy (3). Each of the cropped viewpoints is processed by the same stack of convolutional layers and pooling
layers (4), and their output representations are concatenated and processed by a stack of dense layers (5) to obtain predictions

(6).

input

|

preprocessing
Section A.6.3

viewpoints

.-

rre

i

preprocessed input

|

convnet
Section A.6.6

augmentation
Section A.6.4

predictions

Y

i

augmented input

i

model averaging
Section A.6.8

viewpoint extraction

Section A.6.5

Y
averaged predictions

Figure A.3: Schematic overview of the processing pipeline.

120 A Galazy morphology classification

A.6.2 Avoiding overfitting

Modern neural networks typically have a large number of learnable param-
eters — several million in the case of our model. This is in stark contrast
with the limited size of the training set, which had only 5 x 10* images. As
a result, there is a high risk of overfitting: a network will tend to memorize
the training examples because it has enough capacity to do so, and will not
generalize well to new data. We used several strategies to avoid overfitting:

e data augmentation: extending the training set by randomly perturb-
ing images in a way that leaves their associated answer probabilities
unchanged;

e regularization: penalizing model complexity through use of dropout
[57);

e parameter sharing: reducing the number of model parameters by
exploiting translational and rotational symmetry in the input images;

e model averaging: averaging the predictions of several models.

A.6.3 Preprocessing

Images are first cropped and rescaled to reduce the dimensionality of the
input. It was useful to crop the images because the object of interest is
in the middle of the image with a large amount of sky background, and
typically fits within a square with a side of approximately half the image
height. We then rescaled the images to speed up training, with little to no
effect on predictive performance. Images were cropped from 424 x 424 pixels
to 207 x 207, and then downscaled 3 times to 69 x 69 pixels.

For a small subset of the images, the cropping operation removed part of
the object of interest, either because it had an unusually large angular size
or because it was not perfectly centered. We looked into recentering and
rescaling the images by detecting and measuring the objects in the images
using SExtractor [16]. This allowed us to independently estimate both the
position and Petrosian radii of the objects. This information is then used to
center and rescale all images to standardize the sizes of the objects before
further processing.

This normalization step had no significant effect on the predictive per-
formance of our models. Nevertheless, we did train a few models using this
approach, because even though they achieved the same performance in terms
of RMSE compared to models trained without it, the models make different
mistakes. This is useful in the context of model averaging (Section A.6.8),

A.6 Approach 121

where high variance among a set of comparably performing models is desir-
able [19].

The images for the competition were provided in the same format that is
used on the Galaxy Zoo website (424 x 424 JPEG colour images). We found
that keeping the colour information (instead of converting the images to
grayscale) improved the predictive performance considerably, despite the fact
that the colours are artificial and intended for human eyes. These artificial
colours are nevertheless correlated with morphology, and our models are able
to exploit this correlation.

A.6.4 Data augmentation

Due to the limited size of the training set, performing data augmentation to
artificially increase the number of training examples is instrumental. Each
training example was randomly perturbed in five ways, which are shown in
Figure A.4:

e rotation: random rotation with an angle sampled uniformly between
0° and 360°, to exploit rotational symmetry in the images.

e translation: random shift sampled uniformly between —4 and 4 pix-
els (relative to the original image size of 424 by 424) in the x and y
direction. The size of the shift is limited to ensure that the object of
interest remains in the center of the image.

e scaling: random rescaling with a scale factor sampled log-uniformly
between 1.37! and 1.3.

o flipping: the image is flipped with a probability of 0.5.

e brightness adjustment: the colour of the image is adjusted as de-
scribed by Krizhevsky et al. [73], with two differences: the first eigen-
vector has a much larger eigenvalue than the other two, so only this
one is used, and the standard deviation for the scale factor is set to
a = 0.5. In practice, this amounts to a brightness adjustment.

The first four of these are affine transformations, which can be collapsed
into a single transformation together with the one used for preprocessing.
This means that the data augmentation step has no noticeable computational
cost. To maximize the effect of data augmentation, we randomly perturbed
the images on demand during training, so the models were never presented
with the exact same training example more than once.

122 A Galazy morphology classification

(a) none (b) rotation (c) translation
(d) scaling (e) flipping (f) brightness

Figure A.4: The five types of random data augmentation used in this
model. Note that the effect of translation and brightness adjustment
is fairly subtle.

A.6.5 Viewpoint extraction

After preprocessing and augmentation, we extracted viewpoints by rotating,
flipping and cropping the input images. We extracted 16 different viewpoints
for each image: first, two square-shaped crops were extracted from an input
image, one at 0° and one at 45°. Both were also flipped horizontally to
obtain 4 crops in total. Each of these crops is 69 x 69 pixels in size. Then,
four overlapping corner patches of 45 x 45 pixels were extracted from each
crop, and rotated so that the center of the galaxy is in the bottom right
corner of each patch. These 16 rotated patches constitute the viewpoints
(Figure A.5).

This approach allowed us to obtain 16 different viewpoints with just two
affine transformation operations, thus avoiding additional computation. All
viewpoints can be obtained from the two original crops without interpola-
tion®. This also means that image edges and padding have no effect on the
input, and that the loss of image fidelity after preprocessing, augmentation
and viewpoint extraction is minimal.

8In practice, extracting a viewpoint from these crops constitutes an array indexing
operation.

(a) 4 crops from an image

(b) 4 viewpoints from each crop

Figure A.5: Obtaining 16 viewpoints from an input image. (a) First,
two square-shaped crops are extracted from the image, one at 0° (red
outline) and one at 45° (blue outline). Both are also flipped horizontally
to obtain 4 crops in total. (b) Then, four overlapping corner patches
are extracted from each crop, and they are rotated so that the galaxy
center is in the bottom right corner of each patch. These 16 rotated
patches constitute the viewpoints.

124 A Galazy morphology classification

A.6.6 Network architecture

All viewpoints were presented to the network as 45 by 45 by 3 arrays of
RGB values, scaled to the interval [0, 1], and processed by the same convo-
lutional architecture. The resulting feature maps were then concatenated
and processed by a stack of three fully connected layers to map them to the
37 answer probabilities.

The architecture for the best performing network is visualized in Fig-
ure A.6. There are four convolutional layers, all with square filters, with
filter sizes 6, 5, 3 and 3 respectively, and with untied biases (i.e. each spatial
position in each feature map has a separate bias, see Section 1.3.4). The rec-
tification non-linearity is applied after each layer [110]. 2 by 2 max-pooling
follows the first, second and fourth convolutional layers. The concatenated
feature maps from all viewpoints are processed by a stack of three fully con-
nected layers, consisting of two maxout layers [49] with 2048 units with two
linear filters each, and a linear layer that outputs 37 real numbers. Maxout
layers were used instead of ReLLU layers to reduce the number of connections
to the next layer (and thus the number of parameters). We did not use
maxout in the convolutional layers because it proved too computationally
intensive.

We arrived at this particular architecture after a manual parameter
search: more than 100 architectures were evaluated over the course of the
competition, and this one was found to yield the best predictive performance.
The network has roughly 42 million trainable parameters in total. Table A.2
lists the hyperparameter settings for the trainable layers.

The 37 values that the network produces for an input image are converted
into a set of probabilities. First, the values are passed through a rectification
non-linearity, and then normalized per question to obtain a valid categorical
probability distribution for each question. Valid probability distributions
could also be obtained by using a softmax function per question (as in a
logistic regression model), instead of rectification followed by normalization.
However, this decreases the overall performance since it is harder for the
network to predict a probability of exactly 0 or 1.

The distributions still need to be rescaled, however; they give the prob-
ability of an answer conditional on its associated question being asked, but
each user is only asked a subset of the questions. This implies that some
questions have a lower probability of being asked, so the probabilities of the
answers to these questions should be scaled down to obtain unconditional
probabilities. In practice we scale them by the probabilities of the answers
that preceded them in the decision tree (see Figure A.1).

This post-processing operation is incorporated into the network. Because

“19Ke| yoes Joy paredipul aJe sdew aunjesy

pue sI31|1} 9Y3 JO SIZIS Y| "paulesi am 1eyl diomisu Suiwiopiad 1599 9y JO 24N1I91YDIIE Y3 JO MIIAISAC DIIRWSYDS :9°y a4nSi4
(z)inoxew (g)inoxew

LE

8¥0¢

80¢ 9T X
l— [|
) (99y) €
ozxoz = CE€ I
[Burjood S
l—o 8Xg = 9 XeAl or
Suijood
Xt = 8¢T xe 91
Suijood 8¢l 9 W
XeA v S

91

oy

.Em
/@

type # features filter size mnon-linearity initial biases initial weights

1 | convolutional 32 6 x 6 ReLU 0.1 N(0,0.01)
2 | convolutional 64 5x5 ReLU 0.1 N(0,0.01)
3 | convolutional 128 3x3 ReLU 0.1 N(0,0.01)
4 | convolutional 128 3x3 ReLU 0.1 N(0,0.1)

5 dense 2048 - maxout (2) 0.01 N(0,0.001)
6 dense 2048 - maxout (2) 0.01 N(0,0.001)
7 dense 37 - constraints 0.1 N(0,0.01)

Table A.2: The hyperparameters of the trainable layers of the best performing network that we trained, also depicted in
Figure A.6. The last two columns describe the initialization distributions of the weights and biases of each layer. See Section A.6.6
for a description of the incorporation of the output constraints into the last layer of the network.

A.6 Approach 127

it consists only of differentiable operations”, the gradient of the objective
function can be backpropagated through it. This guarantees that the output
of the network will not violate the constraints that the answer probabilities
must adhere to (for example, ppa, must be greater to or equal to pspiral in
the cumulative probabilities, since it is a higher-level question in the decision
tree). This resulted in a small but significant performance improvement.

In addition to the best performing network, we also trained variants
for the purpose of model averaging (see Section A.6.8). These networks
differ slightly from the best performing network, and make slightly different
predictions as a result. Variants included:

e a network with only two dense layers instead of three;

e a network with a different filter size configuration (filter sizes 8, 4, 3,
3 respectively instead of 6, 5, 3, 3);

e a network with ReLLUs in the dense layers instead of maxout units;

e a network with 256 filters instead of 128 in the topmost convolutional
layer.

In total, 17 different networks were trained on this data set.

A.6.7 Training

To train the models we used minibatch gradient descent with a batch size'®

of 16 and Nesterov momentum [11] with coefficient 1 = 0.9. Nesterov mo-
mentum is a method for accelerating gradient descent by accumulating gradi-
ents over time in directions that consistently decrease the objective function
value. This and similar methods have are commonly used neural network
training because they speed up the training process and often lead to im-
proved predictive performance [144].

We performed approximately 1.5 million gradient updates, corresponding
to 25 million training examples. Following Krizhevsky et al. [73], we used
a discrete learning rate schedule to improve convergence. We began with
a constant learning rate n = 0.04 and decreased it tenfold twice: it was
decreased to 0.004 after 18 million examples, and to 0.0004 after 23 million
examples. For the first 10,000 examples, the output constraints were ignored,

9 Although the rectification operation is not technically differentiable everywhere, it is
subdifferentiable so this does not pose a problem in practice.

10The batch size chosen is small because the convolutional part of the network is applied
16 times to different viewpoints of the input images, yielding an effective batch size of
256.

128 A Galazy morphology classification

and the linear output of the top layer of the network was simply clipped
between 0 and 1. This was necessary to ensure convergence.

Weights in the model were initialized by sampling from zero-mean normal
distributions [9]. The variances of these distributions were fixed at each layer,
and were manually chosen to ensure proper flow of the gradient through
the network. All biases were initialized to positive values to decrease the
risk of units getting stuck in the saturation region. Although this is not
necessary for maxout units, the same strategy was used for the dense layers.
The initialization strategy for all layers is shown in the last two columns of
Table A.2.

During training, we used dropout [57] in all three dense layers. Using
dropout was essential to reduce overfitting to manageable levels.

A.6.8 Model averaging

To further improve the prediction accuracy, we averaged the predictions
of several different models, and across several transformations of the input
images. Two requirements for model averaging to be effective is that each
individual model must have roughly the same prediction accuracy, and the
prediction errors should be as uncorrelated as possible.

For each model, we computed predictions for 60 affine transformations of
the input images: a combination of 10 rotations, spaced by 36°, 3 rescalings
(with scale factors 1.271, 1 and 1.2) and optional horizontal flipping. An un-
weighted average of the predictions was computed. Even though the model is
trained to be robust to these types of deformations (see Section A.6.4), com-
puting averaged predictions in this fashion still helped to increase prediction
accuracy (see Table A.3).

In total, 17 variants of the model were trained with predictions computed
from the mean across 60 transformations. This resulted in 1020 sets of
predictions averaged in total.

A.6.9 Implementation

All aspects of the model were implemented using Python and the Theano
library [14, 7]. This allowed the use of GPU acceleration without any ad-
ditional effort. Theano is also able to perform automatic differentiation,
which simplifies the implementation of gradient-based optimization tech-
niques. Networks were trained on NVIDIA GeForce GTX 680 cards. Data
augmentation was performed on the CPU using the scikit-image pack-
age [151] in parallel with model training on the GPU. Training the network
described in Section A.6.6 took roughly 67 hours in real time.

A.7 Results 129

model leaderboard score
public private
best performing network 0.07671 0.07693

+ averaging over 60 transformations | 0.07579 0.07603
+ averaging over 17 networks 0.07467 0.07492

Table A.3: Performance (in RMSE) of the best performing network,
as well as the performance after averaging across 60 transformations
of the input, and across 17 variants of the network. Please refer to
Section A.3 for details on how the scores were computed.

The code to reproduce the winning submission for the Galaxy Challenge
is available at https://github.com/benanne/kaggle-galaxies.

A.7 Results

Competition results of the models are listed in Table A.3. We report the
performance of our best performing network, with and without averaging
across 60 transformations, as well as that of the combination of all 17 vari-
ants. The root-mean-square error in Table A.3 is the same metric used to
score submissions in the Galaxy Challenge (Equation A.1). Both averaging
across transformations and averaging across different models contributed sig-
nificantly to the final score. It is worth noting that our model performs well
even without any model averaging, which is important because fast inference
is desirable for practical applications. If predictions are to be generated for
millions of images, combining a large number of predictions for each image
would require an impractical amount of computation.

Although morphology prediction was framed as a regression problem in
the competition (see Section A.3), it is fundamentally a classification task.
To demonstrate the capabilities of our model in a more interpretable fashion,
we can look at classification accuracies. For each question, we can obtain
classifications by selecting the answer with the highest probability for each
image. We can do this both for the probabilities obtained from Galaxy Zoo
participants, and for the probabilities predicted by our model. We can then
compute the classification accuracy simply by counting the number of images
for which the classifications match up. Reducing the probability distribu-
tions to classifications in this fashion clearly causes some information to
be discarded, but classification accuracy is a metric that is much easier to
interpret.

To find out how the level of agreement between the Galaxy Zoo partici-

130 A Galazy morphology classification

pants affects the accuracy of the predictions of our model, we can compute
the entropy of the probability distribution over the answers for a given ques-
tion. The entropy of a discrete probability distribution p over n options
T1,...,%y is given by:

n

H(p) == p(x;)log p(a;). (A2)

i=1

If the entropy is minimal, all participants selected the same answer (i.e.
everyone agreed). If the entropy is maximal, all answers were equally likely
to be selected. The entropy ranges between 0 and log(n). We can convert it
into a measure of agreement a(p) as follows:

_ H(p)
log(n)

The quantity a(p) will equal 0 in case of maximal disagreement, and 1 in

a(p) =1 : (A.3)

case of maximal agreement.

To assess the conditions under which the predictions of the model can
be trusted, we can measure the confidence of a prediction using the same
measure a(p) by applying it to the probability distributions predicted by the
model, instead of the distributions of the crowdsourced answers. This allows
us to relate model confidence and prediction accuracy.

For each question, we selected the subset of images from the real-time
evaluation set!! for which at least 50% of participants answered the question.
This is to ensure that we only consider images for which the question is likely
relevant. We ranked all images in this subset according to the measure
a(p) and divided them into 10 equal bins. We did this seperately for both
the crowdsourced answers and the model predictions. For each bin, we
computed the average of a(p) and the classification accuracy using the best
performing network (no averaging). These values are visualized in a set of
graphs for each question in Figure A.7. The red circles show classification
accuracy versus agreement. The blue squares show classification accuracy
versus model confidence. The classification accuracy across the entire subset
is also shown as a thick horizontal line. The dashed horizontal lines indicate
the maximal accuracy of 100% and the chance-level accuracy, which depends
on the number of options. The number of images in each subset and the
overall classification accuracy are indicated above the graphs.

For all questions, the classification accuracy tapers off as the level of
agreement between Galaxy Zoo participants decreases. This makes sense,

HWe could also have conducted this analysis on the evaluation set from the competi-
tion, but since the true answer probabilities for the real-time evaluation set were readily
available and this set contains over 6,000 images, we used this instead.

A.7 Results 131

as those images are harder to classify. Kuminski et al. [76] report similar
results using the WND-CHARM algorithm, with lowest accuracies for fea-
tures describing spiral arm and irregular structures. Our model achieves
near-perfect accuracy for most of the questions when the level of agreement
is high. Classifications for bulge dominance (Q5) and spiral arm tightness
(Q10) have low agreement overall, and are also more difficult to answer for
the model.

Similarly, the confidence of the model in its predictions is correlated with
classification accuracy: we achieve near-perfect accuracy for most questions
when the model is highly confident. This is a useful property, because it
allows us to determine when we are able to trust the predictions, and when
we should defer to an expert instead. As a consequence, the model could be
used to filter a large collection of images, in order to obtain a much smaller
set that can be annotated manually by experts. Such a two-stage approach
would greatly reduce the experts’ workload at virtually no cost in terms of
accuracy.

For questions 1, 2, 3, 6 and 7 in particular, we are able to make confident,
accurate predictions for the majority of examples. This would allow us to
largely automate the assessment of e.g. smoothness (Q1) and roundedness
(QT). For questions 5 and 10 on the other hand, confidence is low across the
board and the classification accuracy is usually too low to be of practical
use. As a result, determining bulge dominance (Q5) and spiral arm tightness
(Q10) would still require a lot of manual input. The level to which we are able
to automate the annotation process depends on the morphological properties
we are interested in, as well as the distribution of morphology types in the
dataset we wish to analyse.

To assess how well the model is able to predict various different morphol-
ogy types, we computed precision and recall scores for all answers individ-
ually. The precision (P) and recall (R) scores are defined in terms of the
number of true positive (T'P), false positive (FP) and false negative (FN)
classifications as follows:

TP R TP
TP+ FP’ T TP+ FN’

The scores are listed in Table A.4. We used the same strategy as before to
obtain classifications, and only considered those examples for which at least
50% of the Galaxy Zoo participants answered the question. The numbers of
examples that were available for each question and answer are also shown.

P (A.4)

From these scores, we can establish that the model has more difficulty
with morphology types that occur less frequently in the dataset, e.g., star
or artifact (A1.3), no bulge (A5.1), dominant bulge (A5.4) and dust lane
(A8.7). We note that images in the first category are attempted to be deli-

classification accuracy

classification accuracy

Q1: smoothness, 6144 examples Q2: edge-on, 3362 examples Q3: bar, 2449 examples
average accuracy: 96.04%

100] S 100 T T 5. 100
O 1%
@© @©
80 {1 5 80t g 5 80
9] |9}
@ ®
60 {4 < 60} R c 60
S 9
401 {1 & 40} 1 T 40f 1
% %
20f {1 @ 20t . w20 1
o o
O L L L L O 1 1 1 1 O L L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
agreement / confidence agreement / confidence agreement / confidence
Q4: spiral, 2449 examples Q5: bulge, 2449 examples Q6: anything odd, 6144 examples
average accuracy: 82.52% average accuracy: 79.67% average accuracy: 94.76%
100F-- L U N V,Hoo-::.::., [P B L] 5. 100F - T T T]
O 1%
© ©
80 5 80 e 5 80 1
|9} 1)
® ®
60 c 60} . - 60f g
|||||||||||||||||| i) o U
40} {1 © 40} . S 401 g
VN ke e e e e e e e e e e e e == - wn
20} {1 @ 20f 1 @ 20f g
o o
o L L L L o Il Il Il Il O 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
agreement / confidence agreement / confidence agreement / confidence

Figure A.7: Level of agreement (red circles) and model confidence (blue squares) versus classification accuracy for all questions
(see Table A.1), computed on the real-time evaluation set. The overall classification accuracy is indicated as a thick horizontal
line. The dotted and dashed horizontal lines indicate the maximal accuracy of 100% and the chance-level accuracy respectively.
The number of images that were included in the analysis and the overall classification accuracy for each question are indicated
above the graphs.

25UapPIU0D / JUswWaalbe

92UdpIU0d / Judwaaibe

0’1 8'0 9'0

v'0 zo 00 01 80 90 v'0 Z0 00
T T o T T T T O

o o

Joz & | Hdoz &

[u) 2

{ov 8§ | {ov 8§

~ =4

S S

{09 2 | 09

[a) [a)

[a] (]

Jog 2 | 08 <

Q [1]

Q 2
door =} 00T

%ZT €L :Adeindde abeiane
sajdwexa 60T ‘SWJe 40 'ouU :TTO

9dUdpPIU0D / Juswaalbe

0T 8'0 90 ¥'0 20 00
T T T T

so|dwexa €t ‘@deys ab|nq :60

0

0c¢

(014

09

08

00T

Aoeiandoe uonediyisse)d

9dUdpIHU0D / Juswaalbe
0T 8'0 9'0 7’0 0 00
T T T T

- oz

%9T'8/ :Adeiundde abeiane
so|dwexa g8 ‘@i4niea} ppo 80

%€/ 0L :Aoeandde abeiane
sojdwexa 0T ‘Ssaulybiy wie :01d

Aoeiandoe uoiediyisse|d

9dUdpPIIU0D / Juswaalbe

0T 8'0 9'0 70 0 00
T T T T

0

0c¢

(04

09

08

so|dwexa gT9¢ ‘ssaupapunod : /D

00T

Adeiandoe uoiediyisse|d

134 A Galazy morphology classification

brately excluded from the Galaxy Zoo data set via flags in the SDSS pipeline.
Both the precision and recall scores are affected, so this effect cannot be at-
tributed entirely to a bias towards more common morphologies. However,
recall is generally affected more strongly than precision, which indicates that
the model is more conservative in predicting rare morphology types. For a
few very rare answers, we were unable to compute precision scores because
the model never predicted them for the examples that were considered: lens
or arc (A8.2), boxy bulge (A9.2) and four spiral arms (A11.4). While these
are all rare morphologies, they have considerable scientific interest and con-
structing a model that can accurately identify them is still a primary goal.

A.8 Analysis

Traditionally, neural networks are often treated as black boxes that perform
some complicated and uninterpretable sequence of computations that yield
a good approximation to the desired output. However, analysing the param-
eters of a trained model can be very informative, and sometimes even leads
to new insights about the problem the network is trying to solve [160]. This
is especially true for convolutional neural networks trained on images, where
the first-layer filters can be interpreted visually.

Figure A.8 shows the 32 filters learned in the first layer of the best
performing network described in Section A.6.6. Each filter was contrast-
normalized individually to bring out the details, and the three colour chan-
nels are shown separately. Comparing the filter weights across colour chan-
nels reveals that some filters are more sensitive to particular colours, while
others are sensitive to patterns, edges and textures. The same phenomenon
is observed when training convolutional neural networks on more traditional
image datasets. The filters for edge detection seem to be looking for curved
edges in particular, which is to be expected because of the radial symmetry
of the input images.

It is also possible to visualize what neurons in the topmost hidden layer of
the network (i.e. just before the output layer) have learned about the data,
by selecting representative examples from the test set that maximize their
activations. This reveals what type of inputs the unit is sensitive to, and
what kind of invariances it has learned. Because we used maxout units in this
layer, we can also select examples that minimally activate the units, allowing
us to determine which types of inputs each unit discriminates between.

Figure A.9 shows such a visualization for three different units. Clearly
each unit is able to discriminate between two distinct types of galaxies. The
units also exhibit rotation invariance, as well as some scale invariance. For

precision recall # examples

Q1: smoothness 6144
Al smooth 0.8459 0.8841 2700
Al1.2 features or disk 0.9051 0.8742 3435
A1.3 star or artifact 1.0000 0.4444 9

Q2: edge-on 3362
A2.1 yes 0.9065 0.8885 655
A2.2 no 0.9732 0.9778 2707
Q3: bar 2449
A3.1 yes 0.7725 0.7101 483
A3.2 no 0.9302 0.9486 1966
Q4: spiral 2449
A4.1 yes 0.8715 0.8270 1451
A4.2 no 0.7659 0.8226 998
Q5: bulge 2449
A5.1 no bulge 0.6697 0.5000 146
A5.2 just noticeable 0.7828 0.8475 1174
A5.3 obvious 0.8292 0.8049 1092
A54 dominant 0.4444 0.1081 37

Q6: anything odd 6144
A6.1 yes 0.8438 0.7500 828
A6.2 no 0.9617 0.9784 5316
Q7: roundedness 2619
A7.1 completely round 0.9228 0.9282 1197
A7.2 in between 0.9128 0.9171 1279
A7.3 cigar-shaped 0.9000 0.8182 143

Table A.4: Precision and recall scores for each answer. We compute
these values only for the subset of examples in the real-time evaluation
set where at least 50% of participants answered the question. We also
give the number of examples that are in this subset for each answer. A
question mark indicates that we were unable to compute the precision
score because the model did not predict this answer for any of the

considered examples.

precision recall # examples

Q8: odd feature 824

A8.1 ring 0.9097 0.9161 143

A8.2 lens or arc ? 0.0000 2

A8.3 disturbed 0.8000 0.4138 29

A8.4 irregular 0.8579 0.8674 181

A8.5 other 0.6842 0.6810 210

A8.6 merger 0.7398 0.7773 256

AR.7 dust lane 0.5000 0.6667 3

Q9: bulge shape 493

A9.1 rounded 0.9143 0.9412 340

A9.2 boxy ? 0.0000 8

A9.3 no bulge 0.8601 0.8483 145

Q10: arm tightness 1049

Al0.1 tight 0.7500 0.7350 449

A10.2 medium 0.6619 0.7112 457

A10.3 loose 0.7373 0.6084 143

Q11: no. of arms 1049

All1 1 1.0000 0.2037 54

Al11.2 2 0.8201 0.8691 619

Al11.3 3 0.4912 0.3182 88

All4 4 ? 0.0000 21

A11.5 more than 4 0.4000 0.4000 20

Al11.6 can’t tell 0.5967 0.7368 247
BRSHEF - FLEFE STOSREE
EEDCEOE EFOI M EENE0E
H.ATEA RAEEN EiseT
SHEEE™ 800 ENaEE™
" *FEF MPROYFEF "MhEpe
L] e FiE

(a) red channel

(b) green channel

(c) blue channel

Figure A.8: The 32 filters learned in the first convolutional layer of
the best-performing network. Each filter was contrast-normalized indi-
vidually across all channels.

A.9 Conclusion and future work 137

some units, we observed selectivity only in the positive or in the negative
direction (not shown). A minority of units seem to be multimodal, activating
in the same direction for two or more distinct types of galaxies. Presumably
the activation value of these units is disambiguated in the context of all other
unit values.

The unit visualized in Figure A.9b detects imaging artifacts: black lines
running across the center of the images, which are the result of dead pixels
in the SDSS camera. This is interesting because such (known) artifacts are
not morphological features of the depicted galaxies. It turns out that the
network is trying to replicate the behaviour of the Galaxy Zoo participants,
who tend to classify images featuring such artifacts as disturbed galaxies
(answer A8.3 in Table A.1), even though this is not the intended meaning
of this answer. Most likely this is because the button for this answer in the
Galaxy Zoo 2 web interface seems to feature such a black line.

Finally, we can look at some examples from the real-time evaluation set
(see Section A.6.1) with low and high prediction errors, to get an idea of the
strengths and weaknesses of the model (Figure A.10). The reported RMSE
values were obtained with the best performing network and without any
averaging, and without centering or rescaling.

The images that are difficult to classify are quite varied. Some are faint,
but look fairly typical otherwise, such as Figure A.10a. Most are negatively
affected by the cropping operation in various ways: either because they
are not properly centered, or because they are very large (Figures A.10b
and A.10c respectively). This was the original motivation for introducing
an additional rescaling and centering step during preprocessing, but did not
end up improving the overall prediction accuracy. The easiest galaxies to
classify are mostly smooth, round ellipticals.

A.9 Conclusion and future work

We presented a convolutional neural network for fine-grained galaxy mor-
phology prediction, with a novel architecture that allows us to exploit ro-
tational symmetry in the input images. The network was trained on data
from the Galaxy Zoo 2 project and is able to reliably predict various aspects
of galaxy morphology directly from raw pixel data, without requiring any
form of handcrafted feature extraction. It can automatically annotate large
collections of images, enabling quantitative studies of galaxy morphology on
an unprecedented scale.

Our novel approach to exploiting rotational symmetry was essential to
achieve state-of-the-art performance, winning the Galaxy Challenge hosted

Figure A.9: Example images from the test set that maximally and min-
imally activate units in the topmost hidden layer of the best performing
network. Each group of 12 images represents a unit. The top row of
images in each group maximally activate the unit, and bottom row of
images minimally activate it. From top to bottom, these galaxies pri-
marily correspond to the Galaxy Zoo 2 labels of: loose winding arms,
edge-on disks, irregulars, disturbed, other, and tight winding arms.

(a) 0.24610 (b) 0.21877 (c) 0.21145 (d) 0.20088
(e) 0.01112 (F) 0.01174 (g) 0.01187 (h) 0.01223

Figure A.10: Example images from the real-time evaluation set, along
with their prediction RMSEs for the best-performing network (lower is
better). The images on the top row were the most difficult for the
model to classify; the images on the bottom row were the easiest.
Larger angular size and non-radially symmetric morphology are the
most challenging targets for the model.

140 A Galazy morphology classification

on Kaggle. Although our winning solution required averaging many sets of
predictions from different networks for each image, using a single network
also yields competitive results.

Our model can be adapted to work with any collection of centered galaxy
images and arbitrary morphological decision trees. Our implementation was
developed using open source tools and the source code is publicly available.
The model can be trained and used on consumer hardware. Its predictions
are highly reliable when they are confident, making our approach applicable
for fine-grained morphological analysis of large-scale survey data. Perform-
ing such large-scale analyses is an important direction for future research.

In the future, it would be interesting to train networks on larger col-
lections of annotated images. From previous applications in the domain of
computer vision, it has become clear that the performance of convolutional
neural networks scales very well with the size of the dataset. The set of
~ 55,000 galaxy images used in this paper (90% of the provided training
set) is quite a small dataset by modern standards. Even though we com-
bined several techniques to avoid overfitting, which allowed us to train very
large models on this dataset effectively, a clear opportunity to improve pre-
dictive performance is to train the same model on a larger dataset, since
Galaxy Zoo has already collected annotations for a much larger number of
images. More recent iterations of the Galaxy Zoo project have concentrated
on higher redshift samples, so care will have to be taken to ensure that the
model is able to generalize across different redshift slices.

The use of larger datasets may also allow for a further increase in model
capacity (i.e. the number of trainable parameters) without the risk of exces-
sive overfitting. These high-capacity models could be used as the basis for
much larger surveys such as the LSST (Large Synoptic Survey Telescope).
The integration of model predictions into existing annotation workflows,
both by experts and through crowdsourcing platforms, will also require fur-
ther study.

Another possibility is the application of our approach to raw photometric
data which have not been preprocessed for visual inspection by humans. The
networks should be able to learn useful features from this representation, in-
cluding structural changes from multiple wavebands [eg, 55]. Automated
classification of other data modalities that exhibit radial symmetry (a com-
monly occurring property in nature, e.g. in flowers, animals) also presents
an interesting opportunity.

From a machine learning point of view, it would be useful to investigate
improved network architectures based on recent developments, such as the
trend towards deeper networks with in excess of 20 layers of processing and
the use of smaller receptive fields [145, 132].

[1]

Bibliography

Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Ger-
ald Penn. Applying convolutional neural networks concepts to hybrid
nn-hmm model for speech recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEFE International Conference on, pages
4277-4280. IEEE, 2012.

Mike Tyka Alexander Mordvintsev, Christopher Olah. Inceptionism:
Going deeper into neural networks, 2015.

Joakim Andén and Stéphane Mallat. Multiscale scattering for audio
classification. In Proceedings of the 12th International Conference on

Music Information Retrieval (ISMIR), 2011.

Nicholas M Ball, Jon Loveday, Masataka Fukugita, Osamu Nakamura,
Sadanori Okamura, Jon Brinkmann, and Robert J Brunner. Galaxy
types in the sloan digital sky survey using supervised artificial neural
networks. Monthly Notices of the Royal Astronomical Society, 348(3):
1038-1046, 2004.

Steven P Bamford, Robert C Nichol, Ivan K Baldry, Kate Land,
Chris J Lintott, Kevin Schawinski, Anze Slosar, Alexander S Szalay,
Daniel Thomas, Mehri Torki, et al. Galaxy zoo: the dependence of
morphology and colour on environment. Monthly Notices of the Royal
Astronomical Society, 393(4):1324-1352, 2009.

Manda Banerji, Ofer Lahav, Chris J Lintott, Filipe B Abdalla, Kevin
Schawinski, Steven P Bamford, Dan Andreescu, Phil Murray, M Jor-
dan Raddick, Anze Slosar, et al. Galaxy zoo: reproducing galaxy
morphologies via machine learning. Monthly Notices of the Royal As-
tronomical Society, 406(1):342-353, 2010.

142

[7]

A Bibliography

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra,
Tan Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-
Farley, and Yoshua Bengio. Theano: new features and speed improve-
ments. arXiv preprint arXiv:1211.5590, 2012.

Yoshua Bengio. Learning deep architectures for AI. Technical report,
Dept. IRO, Université de Montreal, 2007.

Yoshua Bengio. Practical recommendations for gradient-based training
of deep architectures. In Neural Networks: Tricks of the Trade, pages
437-478. Springer, 2012.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Unsupervised
feature learning and deep learning: A review and new perspectives.
CoRR, abs/1206.5538, 2012.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu.
Advances in optimizing recurrent networks. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on,
pages 8624-8628. IEEE, 2013.

James Bennett and Stan Lanning. The netflix prize. In Proceedings of
KDD cup and workshop, volume 2007, page 35, 2007.

J Bergstra, D Yamins, and DD Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision ar-
chitectures. In Proceedings of the 30th International Conference on
Machine Learning (ICML-13), volume 28, pages 115-123, 2013.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific Computing Con-
ference (SciPy), June 2010.

E Bertin. Classification of astronomical images with a neural network.
In Science with Astronomical Near-Infrared Sky Surveys, pages 49-51.
Springer, 1994.

Emmanuel Bertin and S Arnouts. Sextractor: Software for source
extraction. Astronomy and Astrophysics Supplement Series, 117:393—
404, 1996.

Thierry Bertin-Mahieux, Ron J. Weiss, and Daniel P.W. Ellis. Clus-
tering beat-chroma patterns in a large music database. In Proceedings
of the 11th International Conference on Music Information Retrieval
(ISMIR), 2010.

A Bibliography 143

[18]

[19]

[20]

[24]

[25]

[26]

[27]

28]

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul
Lamere. The million song dataset. In Proceedings of the 11th Interna-
tional Conference on Music Information Retrieval (ISMIR), 2011.

Christopher M Bishop. Pattern recognition and machine learning, vol-
ume 1. springer New York, 2006.

Y-Lan Boureau, Jean Ponce, and Yann Lecun. A theoretical analysis of
feature pooling in visual recognition. In 27th International Conference
on Machine Learning, 2010.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun.
Spectral networks and locally connected networks on graphs. arXiv
preprint arXiv:1312.6203, 2013.

P.J. Burt and E.H. Adelson. The laplacian pyramid as a compact image
code. IEEE Transactions on Communications, 31:532-540, 1983. ISSN
0090-6778.

Michael A. Casey, Remco Veltkamp, Masataka Goto, Marc Leman,
Christophe Rhodes, and Malcolm Slaney. Content-based music infor-
mation retrieval: Current directions and future challenges. In Proceed-
ings of the IEEE, volume 96, pages 668—696, April 2008.

O. Celma. Music Recommendation and Discovery in the Long Tail.
PhD thesis, Universitat Pompeu Fabra, Barcelona, 2008.

Daniel Clery. Galaxy Zoo Volunteers Share Pain and Glory of
Research. Science, 333(6039):173-175, July 2011. doi: 10.1126/
science.333.6039.173. URL http://dx.doi.org/10.1126/science.
333.6039.173.

Adam Coates and Andrew Y. Ng. The importance of encoding versus
training with sparse coding and vector quantization. In Proceedings
of the 28th International Conference on Machine Learning (ICML),
2011.

Adam Coates and Andrew Y. Ng. Learning feature representations
with k-means. Neural Networks: Tricks of the Trade, Reloaded, 2012.

Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-
layer networks in unsupervised feature learning. Journal of Machine
Learning Research - Proceedings Track, 15:215-223, 2011.

Adrian A Collister and Ofer Lahav. Annz: estimating photometric red-
shifts using artificial neural networks. Publications of the Astronomical
Society of the Pacific, 116(818):345-351, 2004.

http://dx.doi.org/10.1126/science.333.6039.173
http://dx.doi.org/10.1126/science.333.6039.173

144

[30]

[32]

[33]

[34]

A Bibliography

DW Darg, S Kaviraj, CJ Lintott, K Schawinski, M Sarzi, Steven Bam-
ford, J Silk, R Proctor, D Andreescu, P Murray, et al. Galaxy zoo:
the fraction of merging galaxies in the sdss and their morphologies.
Monthly Notices of the Royal Astronomical Society, 401(2):1043-1056,
2010.

Jorge De La Calleja and Olac Fuentes. Machine learning and image
analysis for morphological galaxy classification. Monthly Notices of the
Royal Astronomical Society, 349(1):87-93, 2004.

Sander Dieleman and Benjamin Schrauwen. Multiscale approaches to
music audio feature learning. In Proceedings of the 14th International
Conference on Music Information Retrieval (ISMIR), 2013.

Sander Dieleman, Philémon Brakel, and Benjamin Schrauwen. Audio-
based music classification with a pretrained convolutional network. In
Proceedings of the 12th International Conference on Music Informa-
tion Retrieval (ISMIR), 2011.

Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-
invariant convolutional neural networks for galaxy morphology pre-
diction. Monthly Notices of the Royal Astronomical Society, 450(2):
1441-1459, 2015.

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Ben-
gio, and Pascal Vincent. The difficulty of training deep architectures
and the effect of unsupervised pre-training. pages 153-160, April 2009.

F. Eyben, S. Bock, B. Schuller, and A. Graves. Universal onset detec-
tion with bidirectional long-short term memory neural networks. In

Proc. 11th Intern. Soc. for Music Information Retrieval Conference,
ISMIR, Utrecht, The Netherlands, 2010, 2010.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann Le-
Cun. Learning hierarchical features for scene labeling. IEEFE Transac-
tions on Pattern Analysis and Machine Intelligence, August 2013. in
press.

Andrew E Firth, Ofer Lahav, and Rachel S Somerville. Estimating
photometric redshifts with artificial neural networks. Monthly notices
of the royal astronomical society, 339(4):1195-1202, 2003.

SR Folkes, O Lahav, and SJ Maddox. An artificial neural network
approach to the classification of galaxy spectra. Monthly Notices of
the Royal Astronomical Society, 283(2):651-665, 1996.

A Bibliography 145

[40]

[47]

[48]

[49]

Jonathan T Foote. Content-based retrieval of music and audio. In
Voice, Video, and Data Communications, pages 138-147. International
Society for Optics and Photonics, 1997.

Rémi Foucard, Slim Essid, Mathieu Lagrange, and Gaél Richard.
Multi-scale temporal fusion by boosting for music classification. In
Proceedings of the 12th International Conference on Music Informa-
tion Retrieval (ISMIR), 2011.

Zhouyu Fu, Guojun Lu, Kai Ming Ting, and Dengsheng Zhang. A sur-
vey of audio-based music classification and annotation. IEEE Trans-
actions on Multimedia, 13(2):303-319, 2011. ISSN 1520-9210.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. Biological cybernetics, 36(4):193-202, 1980.

Robert Gens and Pedro Domingos. Deep symmetry networks. In
Advances in Neural Information Processing Systems 27 (NIPS 2014),
2014.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural net-
works. In JMLR WE&CP: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics (AISTATS 2011),
2011.

Hanlin Goh, Nicolas Thome, and Matthieu Cord. Biasing restricted
boltzmann machines to manipulate latent selectivity and sparsity. In
Deep Learning and Unsupervised Feature Learning Workshop — NIPS,
2010.

Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhut-
dinov. Neighbourhood components analysis. In Advances in Neural
Information Processing Systems 17, pages 513—-520, 2004.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in Neural Information Pro-
cessing Systems, pages 2672-2680, 2014.

Tan J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron
Courville, and Yoshua Bengio. Maxout networks. arXiv preprint
arXiv:1302.4589, 2013.

146

[50]

[54]

[57]

[58]

A Bibliography

Simone Gori, Kai Hamburger, and Lothar Spillmann. Reversal of ap-
parent rotation in the enigma-figure with and without motion adapta-
tion and the effect of t-junctions. Vision research, 46(19):3267-3273,
2006.

Philippe Hamel and Douglas Eck. Learning features from music audio
with deep belief networks. In Proceedings of the 11th International
Conference on Music Information Retrieval (ISMIR), 2010.

Philippe Hamel, Sean Wood, and Douglas Eck. Automatic identifi-
cation of instrument classes in polyphonic and poly-instrument au-
dio. In Keiji Hirata, George Tzanetakis, and Kazuyoshi Yoshii, edi-
tors, ISMIR, pages 399-404. International Society for Music Informa-
tion Retrieval, 2009. ISBN 978-0-9813537-0-8. URL http://dblp.
uni-trier.de/db/conf/ismir/ismir2009.html#HamelWEQ9.

Philippe Hamel, Simon Lemieux, Yoshua Bengio, and Douglas Eck.
Temporal pooling and multiscale learning for automatic annotation
and ranking of music audio. In Proceedings of the 12th International
Conference on Music Information Retrieval (ISMIR), 2011.

Philippe Hamel, Yoshua Bengio, and Douglas Eck. Building musically-
relevant audio features through multiple timescale representations. In
Proceedings of the 13th International Conference on Music Informa-

tion Retrieval (ISMIR), 2012.

B. HauBler, S. P. Bamford, M. Vika, A. L. Rojas, M. Barden, L. S.
Kelvin, M. Alpaslan, A. S. G. Robotham, S. P. Driver, 1. K. Baldry,
S. Brough, A. M. Hopkins, J. Liske, R. C. Nichol, C. C. Popescu, and
R. J. Tuffs. MegaMorph - multiwavelength measurement of galaxy
structure: complete Sérsic profile information from modern surveys.

MNRAS, 430:330-369, March 2013. doi: 10.1093/mnras/sts633.

Mikael Henaff, Kevin Jarrett, Koray Kavukcuoglu, and Yann LeCun.
Unsupervised learning of sparse features for scalable audio classifica-
tion. In Proceedings of the 12th International Conference on Music
Information Retrieval (ISMIR), 2011. ISBN 978-0-615-54865-4.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. Technical report, University of
Toronto, 2012.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke,

http://dblp.uni-trier.de/db/conf/ismir/ismir2009.html#HamelWE09
http://dblp.uni-trier.de/db/conf/ismir/ismir2009.html#HamelWE09

A Bibliography 147

[64]

[67]

Patrick Nguyen, Tara N Sainath, et al. Deep neural networks for
acoustic modeling in speech recognition: the shared views of four re-
search groups. Signal Processing Magazine, IEEE, 29(6):82-97, 2012.

Geoffrey E. Hinton. Training products of experts by minimizing con-
trastive divergence. Neural Computation, 14:2002, 2000.

Geoffrey E. Hinton. A practical guide to training restricted boltzmann
machines. Technical report, University of Toronto, 2010.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learn-
ing algorithm for deep belief nets. Neural Computation, 18(7):1527—-
1554, 2006. ISSN 0899-7667. doi: http://dx.doi.org/10.1162/neco.
2006.18.7.1527.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jirgen Schmid-
huber. Gradient flow in recurrent nets: the difficulty of learning long-
term dependencies, 2001.

Matthew Hoffman, David Blei, and Perry Cook. Easy As CBA: A Sim-
ple Probabilistic Model for Tagging Music. In Proceedings of the 10th
International Conference on Music Information Retrieval (ISMIR),
2009. URL http://ismir2009.ismir.net/proceedings/0S5-2.pdf.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering
for implicit feedback datasets. In Proceedings of the 2008 Fighth IEEE
International Conference on Data Mining, 2008. ISBN 978-0-7695-
3502-9.

Marc Huertas-Company, JA Aguerri, M Bernardi, S Mei, and
J Sanchez Almeida. Revisiting the hubble sequence in the sdss dr7
spectroscopic sample: a publicly available bayesian automated classi-
fication. arXiv preprint arXiv:1010.3018, 2010.

Eric J. Humphrey, Aron P. Glennon, and Juan Pablo Bello. Non-linear
semantic embedding for organizing large instrument sample libraries.
In Xue wen Chen, Tharam S. Dillon, Hisao Ishbuchi, Jian Pei, Haixun
Wang, and M. Arif Wani, editors, ICMLA (2), pages 142-147. IEEE
Computer Society, 2011. URL http://dblp.uni-trier.de/db/conf/
icmla/icmla2011-2. html#HumphreyGB11.

Eric J. Humphrey, Juan P. Bello, and Yann LeCun. Moving beyond
feature design: Deep architectures and automatic feature learning in
music informatics. In Proceedings of the 13th International Conference
on Music Information Retrieval (ISMIR), 2012.

http://ismir2009.ismir.net/proceedings/OS5-2.pdf
http://dblp.uni-trier.de/db/conf/icmla/icmla2011-2.html#HumphreyGB11
http://dblp.uni-trier.de/db/conf/icmla/icmla2011-2.html#HumphreyGB11

148

[68]

[72]

73]

A Bibliography

Aapo Hyvérinen and Patrik Hoyer. Emergence of phase- and shift-
invariant features by decomposition of natural images into independent
feature subspaces. Neural Comput., 12(7):1705-1720, July 2000. ISSN
0899-7667. doi: 10.1162/089976600300015312. URL http://dx.doi.
org/10.1162/089976600300015312.

Navdeep Jaitly and Geoffrey E. Hinton. Learning a better represen-
tation of speech soundwaves using restricted boltzmann machines. In
Proceedings of ICASSP 2011, pages 5884-5887, 2011.

Tristan Jehan and David DesRoches. The echo nest analyzer docu-
mentation, January 2014. URL http://developer.echonest.com/
docs/v4/_static/AnalyzeDocumentation.pdf.

Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor,
Michaél Mathieu, and Yann L Cun. Learning convolutional feature
hierarchies for visual recognition. In Advances in neural information
processing systems, pages 1090-1098, 2010.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in Neural
Information Processing Systems 25, 2012.

Alex Krizhevsky. Convolutional deep belief networks on cifar-10. Tech-
nical report, University of Toronto, 2010.

Richard Kronland-Martinet, Jean Morlet, and Alexander Grossmann.
Analysis of sound patterns through wavelet transforms. International
Journal of Pattern Recognition and Artificial Intelligence, 1(02):273—
302, 1987.

Evan Kuminski, Joe George, John Wallin, and Lior Shamir. Combin-
ing human and machine learning for morphological analysis of galaxy
images. Publications of the Astronomical Society of the Pacific, 126
(944):959-967, 2014.

Alexandre Lacoste and Douglas Eck. A supervised classification al-
gorithm for note onset detection. In EURASIP Journal on Applied
Signal Processing, 2007.

O. Lahav, A. Naim, R. J. Buta, H. G. Corwin, G. de Vaucouleurs,
A. Dressler, J. P. Huchra, S. van den Bergh, S. Raychaudhury, L. So-
dre, Jr., and M. C. Storrie-Lombardi. Galaxies, Human Eyes, and

http://dx.doi.org/10.1162/089976600300015312
http://dx.doi.org/10.1162/089976600300015312
http://developer.echonest.com/docs/v4/_static/AnalyzeDocumentation.pdf
http://developer.echonest.com/docs/v4/_static/AnalyzeDocumentation.pdf

A Bibliography 149

[81]

[82]

[85]

[36]

Artificial Neural Networks. Science, 267:859-862, February 1995. doi:
10.1126/science.267.5199.859.

O Lahav, A Nairn, L Sodré, and MC Storrie-Lombardi. Neural com-
putation as a tool for galaxy classification: methods and examples.
Monthly Notices of the Royal Astronomical Society, 283(1):207-221,
1996.

K. Land, A. Slosar, C. Lintott, D. Andreescu, S. Bamford, P. Murray,
R. Nichol, M. J. Raddick, K. Schawinski, A. Szalay, D. Thomas, and
J. Vandenberg. Galaxy Zoo: the large-scale spin statistics of spiral
galaxies in the Sloan Digital Sky Survey. MNRAS, 388:1686-1692,
August 2008. doi: 10.1111/j.1365-2966.2008.13490.x.

Edith Law and Luis von Ahn. Input-agreement: a new mechanism for
collecting data using human computation games. In Proceedings of the
27th international conference on Human factors in computing systems,
2009.

Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin,
Kai Chen, Greg S. Corrado, Jeff Dean, and Andrew Y. Ng. Building
high-level features using large scale unsupervised learning. In Pro-

ceedings of the 29th International Conference on Machine Learning
(ICML-12), 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278-2324, 1998.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng.
Convolutional deep belief networks for scalable unsupervised learn-
ing of hierarchical representations. In Proceedings of the 26th An-
nual International Conference on Machine Learning, ICML ’09, pages
609-616, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-
1. doi: http://doi.acm.org/10.1145/1553374.1553453. URL http:
//doi.acm.org/10.1145/1553374.1553453.

Honglak Lee, Peter Pham, Yan Largman, and Andrew Ng. Unsuper-
vised feature learning for audio classification using convolutional deep
belief networks. In Advances in Neural Information Processing Systems
22. 20009.

Jong-Hwan Lee, Ho-Young Jung, Te-Won Lee, and Soo-Young Lee.
Speech feature extraction using independent component analysis. In

http://doi.acm.org/10.1145/1553374.1553453
http://doi.acm.org/10.1145/1553374.1553453

150

[91]

[92]

(93]

[94]

A Bibliography

Acoustics, Speech, and Signal Processing, 2000. ICASSP’00. Proceed-
ings. 2000 IEEE International Conference on, volume 3, pages 1631
1634. IEEE, 2000.

Michael S Lewicki. Efficient coding of natural sounds. Nature neuro-
science, 5(4):356-363, 2002.

TL Li, Antoni B Chan, and AH Chun. Automatic musical pattern
feature extraction using convolutional neural network. In Proc. Int.
Conf. Data Mining and Applications, 2010.

Dawen Liang, Minshu Zhan, and Daniel P. W. Ellis. Content-aware col-
laborative music recommendation using pre-trained neural networks.
In Machine Learning for Music Discovery Workshop at the 32nd In-
ternational Conference on Machine Learning, 2015.

C. Lintott, K. Schawinski, S. Bamford, A. Slosar, K. Land, D. Thomas,
E. Edmondson, K. Masters, R. C. Nichol, M. J. Raddick, A. Szalay,
D. Andreescu, P. Murray, and J. Vandenberg. Galaxy Zoo 1: data
release of morphological classifications for nearly 900 000 galaxies.
MNRAS, 410:166-178, January 2011. doi: 10.1111/j.1365-2966.2010.
17432 .x.

C. J. Lintott, K. Schawinski, A. Slosar, K. Land, S. Bamford,
D. Thomas, M. J. Raddick, R. C. Nichol, A. Szalay, D. Andreescu,
P. Murray, and J. Vandenberg. Galaxy Zoo: morphologies derived
from visual inspection of galaxies from the Sloan Digital Sky Survey.
MNRAS, 389:1179-1189, September 2008. doi: 10.1111/j.1365-2966.
2008.13689.x.

Chris J Lintott, Kevin Schawinski, William Keel, Hanny Van Arkel,
Nicola Bennert, Edward Edmondson, Daniel Thomas, Daniel JB
Smith, Peter D Herbert, Matt J Jarvis, et al. Galaxy zoo:‘hanny’s
voorwerp’, a quasar light echo? Monthly Notices of the Royal Astro-
nomical Society, 399(1):129-140, 2009.

Beth Logan. Mel frequency cepstral coefficients for music modeling. In
International Symposium on Music Information Retrieval, volume 28,
page 5, 2000.

R.F. Lyon. A computational model of filtering, detection, and compres-
sion in the cochlea. In Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP ’82., volume 7, pages 1282-1285,
May 1982. doi: 10.1109/ICASSP.1982.1171644.

A Bibliography 151

[95]

[96]

[97]

[99]

[100]

[101]

[102]

[103]

[104]

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image
representations by inverting them. CoRR, abs/1412.0035, 2014. URL
http://arxiv.org/abs/1412.0035.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid.
Convolutional kernel networks. arXiv preprint arXiv:1406.3332, 2014.

Karen L. Masters, Moein Mosleh, A Kathy Romer, Robert C Nichol,
Steven P Bamford, Kevin Schawinski, Chris J Lintott, Dan Andreescu,
Heather C Campbell, Ben Crowcroft, et al. Galaxy zoo: passive red
spirals. Monthly Notices of the Royal Astronomical Society, 405(2):
783-799, 2010.

Karen L Masters, Robert C Nichol, Ben Hoyle, Chris Lintott, Steven P
Bamford, Edward M Edmondson, Lucy Fortson, William C Keel,
Kevin Schawinski, Arfon M Smith, et al. Galaxy zoo: bars in disc
galaxies. Monthly Notices of the Royal Astronomical Society, 411(3):
20262034, 2011.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115-133, 1943.

Brian McFee and Gert R. G. Lanckriet. Metric learning to rank. In
Proceedings of the 27 th International Conference on Machine Learn-
ing, 2010.

Brian McFee, Luke Barrington, and Gert R. G. Lanckriet. Learning
content similarity for music recommendation. IEEE Transactions on
Audio, Speech & Language Processing, 20(8), 2012.

Brian McFee, Thierry Bertin-Mahieux, Daniel P.W. Ellis, and
Gert R.G. Lanckriet. The million song dataset challenge. In Proceed-
ings of the 21st international conference companion on World Wide
Web, 2012. ISBN 978-1-4503-1230-1. doi: 10.1145/2187980.2188222.
URL http://doi.acm.org/10.1145/2187980.2188222.

T. Melvin, K. Masters, C. Lintott, R. C. Nichol, B. Simmons, S. P.
Bamford, K. R. V. Casteels, E. Cheung, E. M. Edmondson, L. Fortson,
K. Schawinski, R. A. Skibba, A. M. Smith, and K. W. Willett. Galaxy
Zoo: an independent look at the evolution of the bar fraction over the
last eight billion years from HST-COSMOS. MNRAS, January 2014.
doi: 10.1093/mnras/stt2397.

P. W. Mirowski, Y. LeCun, D. Madhavan, and R. Kuzniecky. Com-
paring svim and convolutional networks for epileptic seizure prediction

http://arxiv.org/abs/1412.0035
http://doi.acm.org/10.1145/2187980.2188222

152

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

A Bibliography

from intracranial eeg. Machine Learning for Signal Processing, 2008.
MLSP 2008. IEEE Workshop on, pages 244-249, 2008.

N. Morgan, Qifeng Zhu, A. Stolcke, K. Sonmez, S. Sivadas, T. Shi-
nozaki, M. Ostendorf, P. Jain, H. Hermansky, D. Ellis, G. Dodding-
ton, B. Chen, O. Cretin, H. Bourlard, and M. Athineos. Pushing
the envelope - aside [speech recognition]. Signal Processing Magazine,
IEEE, 22(5):81-88, Sept 2005. ISSN 1053-5888. doi: 10.1109/MSP.
2005.1511826.

M. Muller, D.P.W. Ellis, A. Klapuri, and G. Richard. Signal processing
for music analysis. Selected Topics in Signal Processing, IEEE Journal
of, 5(6):1088-1110, 2011. ISSN 1932-4553.

Meinard Miiller. Information Retrieval for Music and Motion. Springer
Verlag, 2007. ISBN 3540740473.

Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-
road obstacle avoidance through end-to-end learning. In Advances in
neural information processing systems, pages 739-746, 2005.

A Naim, O Lahav, L. Sodre, and MC Storrie-Lombardi. Automated
morphological classification of apm galaxies by supervised artificial
neural networks. Monthly Notices of the Royal Astronomical Society,
275(3):567-590, 1995.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), 2010.

Juhan Nam, Jorge Herrera, Malcolm Slaney, and Julius O. Smith.
Learning sparse feature representations for music annotation and re-
trieval. In Proceedings of the 13th International Society for Music
Information Retrieval Conference (ISMIR), 2012.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee,
and Andrew Y. Ng. Multimodal deep learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning, 2010.

M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional re-
stricted boltzmann machines for shift-invariant feature learning. In
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEFE
Conference on, pages 2735 —2742, 2009. doi: 10.1109/CVPR.2009.
5206577.

A Bibliography 153

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

SC Odewahn, EB Stockwell, RL Pennington, RM Humphreys, and
WA Zumach. Automated star/galaxy discrimination with neural net-
works. In Digitised Optical Sky Surveys, pages 215-224. Springer, 1992.

Nikita Orlov, Lior Shamir, Tomasz Macura, Josiah Johnston, D Mark
Eckley, and Ilya G Goldberg. Wnd-charm: Multi-purpose image classi-
fication using compound image transforms. Pattern recognition letters,
29(11):1684-1693, 2008.

Kai Lars Polsterer, Fabian Gieseke, and Oliver Kramer. Galaxy clas-
sification without feature extraction. In Astronomical Data Analysis
Software and Systems XXI, volume 461, page 561, 2012.

Andreas Rauber, Alexander Schindler, and Rudolf Mayer. Facilitating
comprehensive benchmarking experiments on the million song dataset.
In Proceedings of the 13th International Conference on Music Informa-
tion Retrieval (ISMIR), 2012. ISBN 978-972-752-144-9. URL http://
dblp.uni-trier.de/db/conf/ismir/ismir2012.html#RauberSM12.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Ste-
fan Carlsson. Cnn features off-the-shelf: an astounding baseline for
recognition. arXiv preprint arXiv:14083.6382, 2014.

Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor,
editors. Recommender Systems Handbook. Springer, 2011. ISBN 978-
0-387-85819-7.

Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann Ma-
chines. 2009. URL http://jmlr.csail.mit.edu/proceedings/
papers/v5/salakhutdinov09a/salakhutdinov09a.pdf.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factor-
ization. In Advances in Neural Information Processing Systems, vol-

ume 20, 2008.

J. Salamon and J. P. Bello. Feature learning with deep scattering
for urban sound analysis. In European Signal Processing Conference
(EUSIPCO), August 2015.

Kevin Schawinski, Chris Lintott, Daniel Thomas, Marc Sarzi, Dan
Andreescu, Steven P Bamford, Sugata Kaviraj, Sadegh Khochfar, Kate
Land, Phil Murray, et al. Galaxy zoo: a sample of blue early-type
galaxies at low redshift. Monthly Notices of the Royal Astronomical
Society, 396(2):818-829, 20009.

http://dblp.uni-trier.de/db/conf/ismir/ismir2012.html#RauberSM12
http://dblp.uni-trier.de/db/conf/ismir/ismir2012.html#RauberSM12
http://jmlr.csail.mit.edu/proceedings/papers/v5/salakhutdinov09a/salakhutdinov09a.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v5/salakhutdinov09a/salakhutdinov09a.pdf

154

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

A Bibliography

Dominik Scherer, Andreas Miiller, and Sven Behnke. Evaluation of
pooling operations in convolutional architectures for object recogni-
tion. In Proceedings of the 20th International Conference on Artificial
Neural Networks (ICANN), 2010.

Jan Schliiter and Christian Osendorfer. Music Similarity Estimation
with the Mean-Covariance Restricted Boltzmann Machine. In Pro-
ceedings of the 10th International Conference on Machine Learning
and Applications (ICMLA), 2011.

Christian Schorkhuber, Anssi Klapuri, and Alois Sontacchi. Audio
pitch shifting using the constant-q transform. Journal of the Audio
Engineering Society, 61(7/8):562-572, 2013.

Frank Seide, Gang Li, and Dong Yu. Conversational speech tran-
scription using context-dependent deep neural networks. In INTER-
SPEECH, pages 437-440, 2011.

Lior Shamir. Automatic morphological classification of galaxy images.
Monthly Notices of the Royal Astronomical Society, 399(3):1367-1372,
2009.

Lior Shamir, Anthony Holincheck, and John Wallin. Automatic quan-
titative morphological analysis of interacting galaxies. Astronomy and
Computing, 2:67-73, 2013.

Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation
invariant scattering for texture discrimination. In Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages
1233-1240. IEEE, 2013.

B. D. Simmons, C. Lintott, K. Schawinski, E. C. Moran, A. Han,
S. Kaviraj, K. L. Masters, C. M. Urry, K. W. Willett, S. P. Bamford,
and R. C. Nichol. Galaxy Zoo: bulgeless galaxies with growing black
holes. MNRAS, 429:2199-2211, March 2013. doi: 10.1093/mnras/
sts491.

Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. CoRR, abs/1312.6034, 2013. URL http://arxiv.
org/abs/1312.6034.

http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034

A Bibliography 155

[134]

[135]

[136]

[137]

138

[139]

[140]

141]

[142]

Ramin A Skibba, Steven P Bamford, Robert C Nichol, Chris J Lin-
tott, Dan Andreescu, Edward M Edmondson, Phil Murray, M Jordan
Raddick, Kevin Schawinski, Anze Slosar, Alexander S. Szalay, Daniel
Thomas, and Jan Vandenberg. Galaxy zoo: disentangling the environ-
mental dependence of morphology and colour. Monthly Notices of the
Royal Astronomical Society, 399(2):966-982, 2009.

M. Slaney. Web-scale multimedia analysis: Does content matter? Mul-
tiMedia, IEEE, 18(2):12-15, 2011. ISSN 1070-986X. doi: 10.1109/
MMUL.2011.34.

Malcolm Slaney, Kilian Q. Weinberger, and William White. Learning
a metric for music similarity. In Proceedings of the 9th International
Conference on Music Information Retrieval (ISMIR), 2008.

Jasper Snoek, Hugo Larochelle, and Ryan Adams. Practical bayesian
optimization of machine learning algorithms. In P. Bartlett, F.C.N.
Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 25, pages 2960—
2968. 2012. URL http://books.nips.cc/papers/files/nips25/
NIPS2012_1338.pdf.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning Re-
search, 15:1929-1958, 2014. URL http://jmlr.org/papers/vi5/
srivastaval4a.html.

Richard Stenzel and Thomas Kamps. Improving Content-Based Sim-
ilarity Measures by Training a Collaborative Model. pages 264—
271, London, UK, September 2005. University of London. URL
proceedings/1081.pdf.

S. S. Stevens, Je, and E. B. Newman. A scale for the measurement of
the psychological magnitude of pitch. J. Acoust Soc Amer, 8:185-190,
1937.

MC Storrie-Lombardi, O Lahav, L Sodre, and LJ Storrie-Lombardi.
Morphological classification of galaxies by artificial neural networks.
Monthly Notices of the Royal Astronomical Society, 259(1):8P-12P,
1992.

Dan Stowell and Mark D Plumbley. Audio-only bird classification
using unsupervised feature learning. In CEUR Workshop Proceedings,
volume 1180, pages 673-684, 2014.

http://books.nips.cc/papers/files/nips25/NIPS2012_1338.pdf
http://books.nips.cc/papers/files/nips25/NIPS2012_1338.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
proceedings/1081.pdf

156

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

A Bibliography

Bob L Sturm. An analysis of the gtzan music genre dataset. In Pro-
ceedings of the second international ACM workshop on Music infor-
mation retrieval with user-centered and multimodal strategies, pages
7-12. ACM, 2012.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In
Proceedings of the 30th International Conference on Machine Learning

(ICML-13), pages 1139-1147, 2013.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014.

Yichuan Tang and Abdel rahman Mohamed. Multiresolution deep
belief networks. In Proceedings of the 15th International Conference
on Artificial Intelligence and Statistics (AISTATS), 2012.

George Tzanetakis and Perry Cook. Musical genre classification of
audio signals. IEEFE Transactions on Speech and Audio Processing, 10:
293-302, 2002. ISSN 1063-6676.

George Tzanetakis, Georg Essl, and Perry Cook. Audio analysis using
the discrete wavelet transform. In Proc. Conf. in Acoustics and Music
Theory Applications, 2001.

Adron van den Oord, Sander Dieleman, and Benjamin Schrauwen.
Deep content-based music recommendation. In Advances in Neural
Information Processing Systems 26, 2013.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research, 9(2579-2605):85, 2008.

Stéfan van der Walt, Johannes L Schonberger, Juan Nunez-Iglesias,
Francgois Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouil-
lart, and Tony Yu. scikit-image: Image processing in python. Technical
report, PeerJ PrePrints, 2014.

Chong Wang and David M. Blei. Collaborative topic modeling for
recommending scientific articles. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2011. ISBN 978-1-4503-0813-7. doi: 10.1145/2020408.2020480.
URL http://doi.acm.org/10.1145/2020408.2020480.

http://doi.acm.org/10.1145/2020408.2020480

A Bibliography 157

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

Xinxi Wang and Ye Wang. Improving content-based and hybrid mu-
sic recommendation using deep learning. In Proceedings of the ACM
International Conference on Multimedia, pages 627—-636. ACM, 2014.

Jason Weston, Samy Bengio, and Philippe Hamel. Large-scale music
annotation and retrieval: Learning to rank in joint semantic spaces.
Journal of New Music Research, 2011.

Jason Weston, Chong Wang, Ron Weiss, and Adam Berenzweig. La-
tent collaborative retrieval. In Proceedings of the 29th international
conference on Machine learning, 2012.

K. W. Willett, Kevin Schawinski, Brooke D. Simmons, Karen L. Mas-
ters, Ramin A. Skibba, Sugata Kaviraj, Thomas Melvin, O. Ivy Wong,
Robert C. Nichol, Edmond Cheung, Chris J. Lintott, and Lucy Fort-
son. Galaxy zoo: the dependence of the star formation-stellar mass
relation on spiral disk morphology. Feb 2015.

Kyle W Willett, Chris J Lintott, Steven P Bamford, Karen L. Mas-
ters, Brooke D Simmons, Kevin RV Casteels, Edward M Edmondson,
Lucy F Fortson, Sugata Kaviraj, William C Keel, et al. Galaxy zoo
2: detailed morphological classifications for 304 122 galaxies from the
sloan digital sky survey. Monthly Notices of the Royal Astromnomical
Society, 435(4):2835-2860, 2013.

J. Wiilfing and M. Riedmiller. Unsupervised learning of local features
for music classification. In Proceedings of the 13th International Society
for Music Information Retrieval Conference (ISMIR), 2012.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. CoRR, abs/1311.2901, 2013.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In Computer Vision-ECCV 2014, pages 818—
833. Springer, 2014.

Udo Zolzer. DAFX: digital audio effects. John Wiley & Sons, 2011.

	1 Introduction
	1.1 Music information retrieval
	1.1.1 The semantic gap in music
	1.1.2 Musical audio signal representations
	1.1.3 Tasks of interest

	1.2 Machine learning
	1.2.1 Supervised learning
	1.2.2 Unsupervised learning
	1.2.3 Other learning paradigms
	1.2.4 Underfitting and overfitting
	1.2.5 Model validation
	1.2.6 Regularisation

	1.3 Deep learning and neural networks
	1.3.1 Neural networks
	1.3.2 Training
	1.3.3 Deep neural networks
	1.3.4 Convolutional neural networks
	1.3.5 Deep learning for MIR

	1.4 Research contributions
	1.5 List of publications

	2 Music classification with a pre-trained convolutional neural network
	2.1 Introduction
	2.2 Dataset
	2.2.1 The Million Song Dataset
	2.2.2 Beat-aligned features

	2.3 Background
	2.3.1 Restricted Boltzmann machines
	2.3.2 Deep belief networks
	2.3.3 Convolutional deep belief networks
	2.3.4 Supervised finetuning

	2.4 Tasks
	2.5 Approach
	2.5.1 Network layout
	2.5.2 Unsupervised pre-training

	2.6 Experiments
	2.7 Results
	2.8 Conclusion

	3 Unsupervised multiscale feature learning
	3.1 Introduction
	3.2 Features for content-based MIR
	3.3 Feature learning
	3.3.1 Learning representations
	3.3.2 Feature learning in MIR

	3.4 Multiscale representations
	3.4.1 Multiscale time-frequency representations of music audio

	3.5 Proposed approach
	3.5.1 Time-frequency representation
	3.5.2 PCA whitening
	3.5.3 Spherical K-means
	3.5.4 Pooling
	3.5.5 Frequency invariance
	3.5.6 Feature hierarchies

	3.6 Experiments
	3.6.1 Datasets
	3.6.2 Tag prediction
	3.6.3 Similarity metric learning
	3.6.4 Genre recognition

	3.7 Results
	3.7.1 Architectures
	3.7.2 Relevant timescales
	3.7.3 Frequency invariance
	3.7.4 Feature hierarchies

	3.8 Conclusion

	4 Deep content-based music recommendation
	4.1 Introduction
	4.2 Music recommendation
	4.2.1 Content-based music recommendation
	4.2.2 Collaborative filtering
	4.2.3 The semantic gap

	4.3 The dataset
	4.4 Weighted matrix factorization
	4.5 Predicting latent factors from music audio
	4.5.1 Bag-of-words representation
	4.5.2 Convolutional neural networks
	4.5.3 Objective functions

	4.6 Experiments
	4.6.1 Versatility of the latent factor representation
	4.6.2 Latent factor prediction: quantitative evaluation
	4.6.3 Latent factor prediction: qualitative evaluation

	4.7 Related work
	4.8 Conclusion

	5 End-to-end learning
	5.1 Introduction
	5.2 Mid-level representations
	5.3 End-to-end learning
	5.4 Experiments and results
	5.4.1 Experimental setup
	5.4.2 Spectrograms versus raw audio
	5.4.3 Dynamic range compression
	5.4.4 Invariance

	5.5 Conclusion

	6 Conclusion and perspectives
	6.1 Summary
	6.2 Perspectives
	6.2.1 Pre-trained convolutional neural networks for music classification
	6.2.2 Multiscale representations
	6.2.3 Content-based music recommendation
	6.2.4 End-to-end feature learning
	6.2.5 Long-term perspectives

	A Galaxy morphology classification
	A.1 Introduction
	A.2 Galaxy Zoo
	A.3 The Galaxy Challenge
	A.4 Related work
	A.5 Exploiting rotational symmetry
	A.6 Approach
	A.6.1 Experimental setup
	A.6.2 Avoiding overfitting
	A.6.3 Preprocessing
	A.6.4 Data augmentation
	A.6.5 Viewpoint extraction
	A.6.6 Network architecture
	A.6.7 Training
	A.6.8 Model averaging
	A.6.9 Implementation

	A.7 Results
	A.8 Analysis
	A.9 Conclusion and future work

	Bibliography

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 28.39, 760.27 Width 536.71 Height 46.13 points
 Mask co-ordinates: Horizontal, vertical offset 31.94, 31.05 Width 540.26 Height 56.78 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 28.3882 760.2739 536.7149 46.1309 31.9368 31.0513 540.2634 56.7764

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 7
 181
 180
 181

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 23.07, 754.95 Width 23.95 Height 15.97 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 23.0654 754.951 23.9526 15.9684

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 7
 181
 180
 181

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 547.36, 749.63 Width 17.74 Height 17.74 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 547.3605 749.6283 17.7426 17.7426

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 7
 181
 180
 181

 1

 HistoryList_V1
 qi2base

