859 research outputs found

    The role of the right temporoparietal junction in perceptual conflict: detection or resolution?

    Get PDF
    The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict

    A psychometric measure of working memory capacity for configured body movement.

    Get PDF
    Working memory (WM) models have traditionally assumed at least two domain-specific storage systems for verbal and visuo-spatial information. We review data that suggest the existence of an additional slave system devoted to the temporary storage of body movements, and present a novel instrument for its assessment: the movement span task. The movement span task assesses individuals' ability to remember and reproduce meaningless configurations of the body. During the encoding phase of a trial, participants watch short videos of meaningless movements presented in sets varying in size from one to five items. Immediately after encoding, they are prompted to reenact as many items as possible. The movement span task was administered to 90 participants along with standard tests of verbal WM, visuo-spatial WM, and a gesture classification test in which participants judged whether a speaker's gestures were congruent or incongruent with his accompanying speech. Performance on the gesture classification task was not related to standard measures of verbal or visuo-spatial working memory capacity, but was predicted by scores on the movement span task. Results suggest the movement span task can serve as an assessment of individual differences in WM capacity for body-centric information

    Does It Ping or Pong? Auditory and Tactile Classification of Materials by Bouncing Events

    Get PDF
    Two experiments studied the role of impact sounds and vibrations in classification of materials. The task consisted of feeling on an actuated surface and listening through headphones to the recorded feedback of a ping-pong ball hitting three flat objects respectively made of wood, plastic, and metal, and then identifying their material. In Experiment 1, sounds and vibrations were recorded by keeping the objects in mechanical isolation. In Experiment 2, recordings were taken while the same objects stood on a table, causing their resonances to fade faster due to mechanical coupling with the support. A control experiment, where participants listened to and touched the real objects in mechanical isolation, showed high accuracy of classification from either sounds (90% correct) or vibrations (67% correct). Classification of reproduced bounces in Experiments 1 and 2 was less precise. In both experiments, the main effect of material was statistically significant; conversely, the main effect of modality (auditory or tactile) was significant only in the control. Identification of plastic and especially metal was less accurate in Experiment 2, suggesting that participants, when possible, classified materials by longer resonance tails. Audio-tactile summation of classification accuracy was found, suggesting that multisensory integration influences the perception of materials. Such results have prospective application to the nonvisual design of virtual buttons, which is the object of our current research

    The effect of synesthetic associations between the visual and auditory modalities on the Colavita effect

    Get PDF
    The Colavita effect refers to the phenomenon that when confronted with an audiovisual stimulus, observers report more often to have perceived the visual than the auditory component. The Colavita effect depends on low-level stimulus factors such as spatial and temporal proximity between the unimodal signals. Here, we examined whether the Colavita effect is modulated by synesthetic congruency between visual size and auditory pitch. If the Colavita effect depends on synesthetic congruency, we expect a larger Colavita effect for synesthetically congruent size/pitch (large visual stimulus/low-pitched tone; small visual stimulus/high-pitched tone) than synesthetically incongruent (large visual stimulus/high-pitched tone; small visual stimulus/low-pitched tone) combinations. Participants had to identify stimulus type (visual, auditory or audiovisual). The study replicated the Colavita effect because participants reported more often the visual than auditory component of the audiovisual stimuli. Synesthetic congruency had, however, no effect on the magnitude of the Colavita effect. EEG recordings to congruent and incongruent audiovisual pairings showed a late frontal congruency effect at 400–550 ms and an occipitoparietal effect at 690–800 ms with neural sources in the anterior cingulate and premotor cortex for the 400- to 550-ms window and premotor cortex, inferior parietal lobule and the posterior middle temporal gyrus for the 690- to 800-ms window. The electrophysiological data show that synesthetic congruency was probably detected in a processing stage subsequent to the Colavita effect. We conclude that—in a modality detection task—the Colavita effect can be modulated by low-level structural factors but not by higher-order associations between auditory and visual inputs. Keywords Synesthetic congruency Audiovisual integration Colavita effect Event-related potential

    The neural basis of audio-visual integration and adaptation

    Get PDF
    The brain integrates or segregates audio-visual signals effortlessly in everyday life. In order to do so, it needs to infer the causal structure by which the signals were generated. Although behavioural studies extensively characterized causal inference in audio-visual perception, the neural mechanisms are barely explored. The current thesis sheds light on these neural processes and demonstrates how the brain adapts to dynamic as well as long-term changes in the environmental statistics of audio-visual signals. In Chapter 1, I introduce the causal inference problem and demonstrate how spatial audiovisual signals are integrated at the behavioural as well as neural level. In Chapter 2, I describe methodological foundations for the following empirical chapters. In Chapter 3, I present the neural mechanisms of explicit causal inference and the representations of audio-visual space along the human cortical hierarchy. Chapter 4 reveals that the brain is able to use recent past to adapt to the dynamically changing environment. In Chapter 5, I discuss the neural substrates of encoding auditory space and its adaptive changes in response to spatially conflicting visual signals. Finally, in Chapter 6, I summarize the findings of the thesis, its contributions to the literature, and I outline directions for future research

    The Head Turning Modulation System: An Active Multimodal Paradigm for Intrinsically Motivated Exploration of Unknown Environments

    Get PDF
    Over the last 20 years, a significant part of the research in exploratory robotics partially switches from looking for the most efficient way of exploring an unknown environment to finding what could motivate a robot to autonomously explore it. Moreover, a growing literature focuses not only on the topological description of a space (dimensions, obstacles, usable paths, etc.) but rather on more semantic components, such as multimodal objects present in it. In the search of designing robots that behave autonomously by embedding life-long learning abilities, the inclusion of mechanisms of attention is of importance. Indeed, be it endogenous or exogenous, attention constitutes a form of intrinsic motivation for it can trigger motor command toward specific stimuli, thus leading to an exploration of the space. The Head Turning Modulation model presented in this paper is composed of two modules providing a robot with two different forms of intrinsic motivations leading to triggering head movements toward audiovisual sources appearing in unknown environments. First, the Dynamic Weighting module implements a motivation by the concept of Congruence, a concept defined as an adaptive form of semantic saliency specific for each explored environment. Then, the Multimodal Fusion and Inference module implements a motivation by the reduction of Uncertainty through a self-supervised online learning algorithm that can autonomously determine local consistencies. One of the novelty of the proposed model is to solely rely on semantic inputs (namely audio and visual labels the sources belong to), in opposition to the traditional analysis of the low-level characteristics of the perceived data. Another contribution is found in the way the exploration is exploited to actively learn the relationship between the visual and auditory modalities. Importantly, the robot—endowed with binocular vision, binaural audition and a rotating head—does not have access to prior information about the different environments it will explore. Consequently, it will have to learn in real-time what audiovisual objects are of “importance” in order to rotate its head toward them. Results presented in this paper have been obtained in simulated environments as well as with a real robot in realistic experimental conditions

    Anomaly Detection, Rule Adaptation and Rule Induction Methodologies in the Context of Automated Sports Video Annotation.

    Get PDF
    Automated video annotation is a topic of considerable interest in computer vision due to its applications in video search, object based video encoding and enhanced broadcast content. The domain of sport broadcasting is, in particular, the subject of current research attention due to its fixed, rule governed, content. This research work aims to develop, analyze and demonstrate novel methodologies that can be useful in the context of adaptive and automated video annotation systems. In this thesis, we present methodologies for addressing the problems of anomaly detection, rule adaptation and rule induction for court based sports such as tennis and badminton. We first introduce an HMM induction strategy for a court-model based method that uses the court structure in the form of a lattice for two related modalities of singles and doubles tennis to tackle the problems of anomaly detection and rectification. We also introduce another anomaly detection methodology that is based on the disparity between the low-level vision based classifiers and the high-level contextual classifier. Another approach to address the problem of rule adaptation is also proposed that employs Convex hulling of the anomalous states. We also investigate a number of novel hierarchical HMM generating methods for stochastic induction of game rules. These methodologies include, Cartesian product Label-based Hierarchical Bottom-up Clustering (CLHBC) that employs prior information within the label structures. A new constrained variant of the classical Chinese Restaurant Process (CRP) is also introduced that is relevant to sports games. We also propose two hybrid methodologies in this context and a comparative analysis is made against the flat Markov model. We also show that these methods are also generalizable to other rule based environments

    Meta-analyses support a taxonomic model for representations of different categories of audio-visual interaction events in the human brain

    Get PDF
    Our ability to perceive meaningful action events involving objects, people and other animate agents is characterized in part by an interplay of visual and auditory sensory processing and their cross-modal interactions. However, this multisensory ability can be altered or dysfunctional in some hearing and sighted individuals, and in some clinical populations. The present meta-analysis sought to test current hypotheses regarding neurobiological architectures that may mediate audio-visual multisensory processing. Reported coordinates from 82 neuroimaging studies (137 experiments) that revealed some form of audio-visual interaction in discrete brain regions were compiled, converted to a common coordinate space, and then organized along specific categorical dimensions to generate activation likelihood estimate (ALE) brain maps and various contrasts of those derived maps. The results revealed brain regions (cortical “hubs”) preferentially involved in multisensory processing along different stimulus category dimensions, including (1) living versus non-living audio-visual events, (2) audio-visual events involving vocalizations versus actions by living sources, (3) emotionally valent events, and (4) dynamic-visual versus static-visual audio-visual stimuli. These meta-analysis results are discussed in the context of neurocomputational theories of semantic knowledge representations and perception, and the brain volumes of interest are available for download to facilitate data interpretation for future neuroimaging studies
    • …
    corecore